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Abstract. This thesis investigates several aspects of computational problems
related to circuits and neighborhood exploration. Supported by a vast litera-
ture, we explore notable trends in algorithms, optimization, and computational
complexity; and we provide some results for each topic discussed. The the-
sis’ contributions are organized into four projects: (i) the study of SUCCINCT
MONOTONE CIRCUIT CERTIFICATION (SMCC); (ii) the study of BEST-CASE
ENERGY COMPLEXITY IN SATISFYING ASSIGNMENTS (MINEC+

M ); (iii) the
proposition of the Th-hierarchy as an alternative to the hierarchy of complexity
classes so-called W-hierarchy; and (iv) the study of the MAXIMUM MULTI IM-
PROVEMENT problem. Over the course of these four projects, we develop poly-
nomial and parameterized reductions, NP-completeness proofs, classical and
parameterized complexity analysis, and implementations of exact algorithms
and metaheuristics.

1. Introduction
In the last few decades, the resolution of hard combinatorial optimization problems has
become one of the most prolific fields in Computer Science. Several studies address these
problems from both theoretical and practical perspectives. In addition, the scientific com-
munity has dedicated efforts to understand the different levels of hardness and how pro-
blems behave in terms of tractability and structure. In this thesis, we present discoveries
related to the computational complexity theory from three different perspectives:

• First, we address two measures in circuit complexity: The certification-width
and the energy complexity. When dealing with monotone circuits, we prove
the NP-Completeness of SUCCINCT MONOTONE CIRCUIT CERTIFICATION
(SMCC) and BEST-CASE ENERGY COMPLEXITY IN SATISFYING ASSIGN-
MENTS (MINEC+

M ) even for planar circuits. We also prove that both problems
are W[1]-hard, but SMCC belongs to W[P], while an XP-algorithm for MINEC+

M

is provided. After all, for both problems, we develop a pre-processing of input
circuit (inspired by win-win approach strategies) where it was possible to prune
graphs with bounded genus; this results in a structure whose treewidth is bounded.
Hence, dynamic programming algorithms on tree decompositions were provided,
solving the problems in FPT-time.

• In a second perspective, we present a hierarchy of classes of parameterized pro-
blems based on threshold circuit satisfiability – the Th-hierarchy. The study of



Th-hierarchy aims to understand possible gaps in the well-known W-hierarchy
and the interaction Th-hierarchy versus W-hierarchy levelwise. We show that the
hierarchies collapse in high levels (i.e., W [P ] = Th[P ]). Next, we study ways to
convert threshold circuits into Boolean circuits with optimal depth; thus, we de-
monstrate that it is possible to construct an AKS sorting network in polynomial-
time. This supports the prove that Th[t] ⊆ W [SAT ], for every t ∈ N.

• Additionally, in an experimental front, we formalize the concept of neighborhood
exploration called Multi Improvement (alternative to the traditional First Impro-
vement and Best Improvement) and we build dynamic programming algorithms
to solve the Maximum Multi Improvement Problem (MMIP) modeled as an in-
ner step of a local search for TSP instances. Experiments have shown that this
approach provides a possibility to perform fast neighborhood searches with high
stability.

Note that all these approaches present novel concepts about problems in circuit
complexity, computational complexity classes and neighborhood search. Because of this,
we consider this thesis is a pioneer in circuit complexity studies and complexity classes
in Brazil. All projects described in the Sections 2 to 5 have unprecedented formalization.

The full-text of the thesis are organized in four projects which are summarized in
following sections. Some proofs and discussions were omitted in this document. Thus,
we refer the full reading of [Silva 2021].

2. Succinct Certification
In the Chapter 2 of the thesis, we introduce the notion of certification-width of a monotone
Boolean circuit, a complexity measure that intuitively quantifies the minimum number of
edges that need to be traversed by a minimal set of positive weight inputs in order to
certify that a given circuit is satisfied. We call the problem of computing this invariant
as SUCCINCT MONOTONE CIRCUIT CERTIFICATION (SMCC). But first, consider the
following definitions.
Definition 1. A Boolean circuit is a directed acyclic graph C(V,E) having only one
sink, where the set of vertices V is partitioned into (I,G, {vout}): (i) a set of inputs I =
{i1, i2, . . . } composed of the vertices of in-degree 0; (ii) a set of gates G = {g1, g2, . . . },
which are vertices labeled with Boolean operators; (iii) and the single output (sink) vertex
vout with out-degree equal to 0 and also labeled with a Boolean operator. The input
vertices represent Boolean variables that can take values from {0, 1} ({false, true}),
and the label/operator of a gate or output vertex w is given by f(w).

In this chapter, we only deal with monotone circuits.
Definition 2. A monotone circuit is a Boolean circuit where the Boolean operators al-
lowed are in {AND, OR}.

Definition 3. An assignment of a circuit C is a vector X = [x1, x2, . . . , x|I|] of values for
the set of inputs I , where for each j, xj ∈ {false, true} is the value assigned to input ij .
We say that X is a satisfying assignment if C evaluates to true when given x as input.

Definition 4. Given a monotone circuitC with a satisfying assignmentX , an edge (vj, vk)
is considered critical to X → C if vj evaluates to true and there is a path P from vk to
vout in which all gates along P (including vout) also evaluate to true.



Definition 5. Given a monotone circuit C, and a satisfying assignment X of C, a positive
certificate forX → C is a connected subgraph of C formed by the critical edges and their
respective vertices.

Since a positive certificate may have redundant edges, next, we present the notion
of succinct certificate; and certification-width of C.
Definition 6. Given a monotone circuit C, and a satisfying assignmentX of C, a succinct
certificate for X → C, is a connected subgraph SCX→C of its positive certificate such
that:

• vout is a vertex of SCX→C ; and
• for every vertex v of SCX→C holds that

– if f(v) = AND, then every in-edge of v is in SCX→C ;
– if f(v) = OR, then exactly one in-edge of v is in SCX→C .

The size of a succinct certificate SCX→C is the number of edges of SCX→C .
Definition 7. The certification-width of a monotone circuit C is the minimum size among
all possible succinct certificates on all satisfying assignments of C.

Now, we have all elements to describe our main problem.

SUCCINCT MONOTONE CIRCUIT CERTIFICATION (SMCC)
Instance: A monotone circuit C; a positive integer k.
Goal: Determine whether the certification-width of C is at most k.

We denote by k-SMCC the parameterized version of SUCCINCT MONOTONE
CIRCUIT CERTIFICATION where k is the parameter.

As a first result, we prove that SMCC is NP-complete even when the input mono-
tone circuit is planar.
Theorem 1. SMCC is NP-complete even restricted to planar circuits.

The proof is based on a reduction from PLANAR VERTEX COVER.

2.1. Parameterized complexity

Subsequently, we show that k-SMCC, the problem parameterized by the size of the solu-
tion, is W[1]-hard, but still in W[P]. In contrast, we show that k-SMCC is fixed-parameter
tractable when restricted to monotone circuits of bounded genus.
Lemma 1. k-SMCC is in W[P].

The proof follows from a reduction to WEIGHTED CIRCUIT SATISFIABILITY.
Theorem 2. k-SMCC is W[1]-hard.

We prove the W[1]-hardness of k-SMCC using a reduction from MULTICOLO-
RED CLIQUE, a well-known W[1]-complete problem.

Using Radius Theorem from [Robertson and Seymour 1984] we are able to either
solve k-SMCC on planar circuits or output an equivalent instanceC ′ with treewidth boun-
ded by a function of k (as stated in Lemma 2).
Lemma 2. Let (C, k) be an instance of SMCC with n = |V (C)| and m = |E(C)|. There
is an algorithm that in O(n +m) time either solves (C, k) or outputs an instance (C ′, k)
of SMCC such that:



• (C ′, k) is an yes-instance of SMCC if and only if (C, k) is also an yes-instance;
• C ′ is an induced subcircuit of a circuit C∗ that has diameter at most 2k and it is

also an induced subcircuit of C.
The proof of Lemma 2 is based on a preprocessing algorithm which prunes the

circuit C in order to produce C ′.
Lemma 3. Let (C, k) be an instance of SMCC. There is an algorithm that inO(n2+nm)
time either solves (C, k) or outputs an instance (C ′, k) of SMCC having depth at most k,
such that (C ′, k) is an yes-instance of SMCC if and only if (C, k) is also an yes-instance.

Now, a reasoning similar to [Robertson and Seymour 1984] can be used from
[Kanj et al. 2017] where genus is the bounded property of a circuit.
Lemma 4. Let C ′ be the circuit obtained from Lemma 3. It holds that C ′ has treewidth at
most (4k + 10) · (g + 1)3/2, where g is the genus of C ′.

From Lemma 4, in order to solve k-SMCC on bounded genus graphs, it is enough
to present an FPT algorithm parameterized by the treewidth of C.
Theorem 3. k-SMCC can be solved in time 2O(tw) · n, where tw is the treewidth of C.

The proof of Lemma 3 is a dynamic programming on nice tree decompositions.

3. Energy Complexity
In the Chapter 3 of the thesis, we deal with a circuit complexity measure called energy
complexity (EC). The idea behind this measure is to evaluate the number of gates in a
circuit that returns true for an assignment. The neuroscience literature argues that the
activation of neurons in a human brain happens sparsely. It was shown in [Lennie 2003]
that the metabolic cost of a single spike in cortical computation is very high in a way
that approximately 1% of the neurons can be activated simultaneously. This phenomenon
happens due to the asymmetric energy cost between neurons activated and non-activated
in natural cases. From the other side, digital circuits, when satisfied (outputting true),
on average activate 50% of the gates. This dilemma artificial vs natural was discussed in
[Uchizawa et al. 2006] triggering the first statement of the term Energy Complexity.

After a previous analysis, we realize that Energy Complexity and Certification-
width are closely related. Meanwhile Certification-width concerns to activated edges,
Energy Complexity is about activated vertices. Naturally, we focus in understand which
conclusions of Chapter 2 can be transported to a computational problem based on Energy
Complexity. We define such a problem as BEST-CASE ENERGY COMPLEXITY IN SA-
TISFYING ASSIGNMENTS (MINEC+

M ).

Given a Boolean circuit C and an assignment X , the Energy Complexity of X
into C, EC(C,X), is defined as the number of gates that output true in C according
to the assignment X . The (Worst-Case) Energy Complexity of C (denoted by EC(C)) is
the maximum EC(C,X) among all possible assignments X (See [Dinesh et al. 2020]).
Analogously, the Best-Case Energy Complexity of C (denoted by MinEC(C)) is the
minimum EC(C,X) among all possible assignments X .

BEST-CASE ENERGY COMPLEXITY OF SATISFYING ASSIGNMENTS IN MONOTONE
CIRCUITS – MINEC+

M

Instance: A monotone Boolean circuit C and a positive integer k.
Question: Is there a satisfying assignment X for C such that EC(C,X) ≤ k?



We denote by k-MINEC+
M the natural parameterized version of MINEC+

M .

Using a reduction from PLANAR VERTEX COVER we are able to show that
MINEC+

M is NP-complete even when restrict to planar circuits. Our NP-completeness
proof follows from a reduction from similar to that employed in Chapter 2.
Theorem 4. MINEC+

M is NP-complete even when restricted to planar circuits.

Additionally, we state some results regarding Parameterized Complexity. Here,
some conclusions from Chapter 2 can not be transferred to Chapter 3. In the full-text
thesis, we detail all main differences between SMCC and MINEC+

M . For MINEC+
M , it is

needed to verify the possibility of ‘leak of a true signal’ in a specific situation where a
satisfied gate is in-neighbor of a not-satisfied AND-gate.
Theorem 5. k-MINEC+

M is in XP.

The proof of Theorem 5 is given by an XP-algorithm.
Theorem 6. k-MINEC+

M is W[1]-hard.

This hardness proof is also given by a reduction from MULTICOLORED CLIQUE.

The following statements also uses the reasoning based on Grid Minor Theorem
and the lemma from [Kanj et al. 2017] about genus, and finally, after a clever dynamic
programming (which proves Theorem 7) we can write an FPT-algorithm for k-MINEC+

M .

Lemma 5. Let (C, k) be an instance of MINEC+
M . There is an algorithm that in poly-

nomial time either solves (C, k) or outputs an equivalent instance (C ′, k) of MINEC+
M

where each vertex is at distance at most 2k + 1 from vout in the underlying graph of C ′.

Corollary 1. MINEC+
M is fixed-parameter tractable when restricted to monotone circuits

having bounded maximum in-degree.
Lemma 6. Let C ′ be the circuit obtained from Lemma 5. It holds that C ′ has treewidth at
most (8k + 14) · (g + 1)3/2, where g is the genus of C ′.

Theorem 7. MINEC+
M can be solved in time 2O(tw) · n, where tw is the treewidth of C ′.

4. Th-hierarchy
The third project developed in this thesis still address questions about circuits, but, here
we use circuits as tools for Complexity Classes studies. We introduce the Th-hierarchy,
a natural generalization of the W-hierarchy defined by unweighted threshold circuit satis-
fiability problems. Investigating the relationship between Th-hierarchy and W-hierarchy,
we discuss the complexity of transforming Threshold circuits into Boolean circuits, and
observe that sorting networks are powerful tools to handle such transformations. Be-
fore entering in the main topics of this summary, we hardly encourage the reading of
[Silva 2021] and [Downey and Fellows 2012].

The characterization of decision problems as WCS(t, h) in standard Boolean cir-
cuits has widespread attention, especially considering the enormous advance in Parame-
terized Complexity Theory. When classifying a problem in the W-hierarchy, in short, we
are encapsulating the parameterized intractability of this problem in terms of satisfiability
of a corresponding circuit based on Boolean functions (AND, OR and NOT). Thus, some
questions emerge. Is W-hierarchy comprehensive enough? Are there problems complete
considering a more general basis of functions?



Due to these questions, our curiosity turns into the threshold circuits.

Next, we present some conventions and preliminaries that are important for the
sequence of this section (See more preliminaries in Chapter 4 from [Silva 2021]).
Definition 8 (Decision threshold circuits). A decision threshold circuit is a decision cir-
cuit containing AND gates, OR gates, NOT gates, and unweighted threshold gates,
where an unweighted threshold gate computes an unweighted threshold function.

Our generalization of WCS(t, h) by considering threshold circuits is as follows.

WEIGHTED WEFT t DEPTH h THRESHOLD CIRCUIT SATISFIABILITY – WTCS(t, h)
Instance: A decision threshold circuit C with weft t and depth h.
Parameter: A positive integer k.
Question: Does C has a satisfying assignment of weight k?

Similarly, we present the complexity classes Th[t].
Definition 9. A parameterized problem Π belongs to the class Th[t] if and only if Π is
fixed-parameter reducible to WTCS(t, h) for some constant h.

Analogously, we define WEIGHTED THRESHOLD CIRCUIT SATISFIABILITY
(WTCS) and Th[P] as a generalization of WCS and W[P] by considering decision th-
reshold circuits instead of decision Boolean circuits. In addition, we define the generali-
zation of WSAT as follows.

WEIGHTED TREELIKE THRESHOLD CIRCUIT SATISFIABILITY – WTTSAT
Instance: A decision threshold circuitC whose graph induced by its gates is isomorphic
to a tree (treelike circuit).
Parameter: A positive integer k.
Question: Does C has a satisfying assignment of weight k?

Thus, the Th-hierarchy is as follow: Th[1] ⊆ Th[2] ⊆ · · · ⊆ Th[SAT ] ⊆ Th[P ].

By definition, it holds that

W[t] ⊆ Th[t] (for every t ∈ N) as well as W[SAT] ⊆ Th[SAT] and W[P] ⊆ Th[P].

At this point, some questions emerge such as

“W[P] = Th[P]?”, “W[SAT] = Th[SAT]?”, and “W[1] = Th[1]?”

To understand the relationship between these classes (at the highest levels), we re-
visit the Sorting Network field and present a time complexity analysis for the construction
of AKS sorting networks, see [Paterson 1990].

Although the W-hierarchy is a set of infinite classes of parameterized problems, it
may possible that the W-hierarchy is not complete in the sense that may exist a parame-
terized problem Π such that Π ∈ W[t + 1]; Π /∈ W[t]; Π is hard for W[t]; but, Π is not
complete for W[t + 1], for some t. Then, it is possible that there are problems between
W[t] and W[t + 1], or between W[SAT] and W[P]. Therefore, one of the motivation of
the work in this section is consider classes based on threshold circuits to identify potential
gaps in the W-hierarchy.

By definition, the following lemma is clear.



Lemma 7. W [t] ⊆ Th[t], for every t ∈ N.

In contrast, it is not clear if Th[t] ⊆ W [t] for some t. We begin our discussion by
disregarding structural constraints, which leads us to the W[P] versus Th[P] dilemma.

To show that Th[P] ⊆ W[P] it is enough to present a fixed-parameter reduction
from WEIGHTED THRESHOLD CIRCUIT SATISFIABILITY to WEIGHTED CIRCUIT SA-
TISFIABILITY. In this case, it suffices to provide a way to locally replace each unweigh-
ted threshold gate for an equivalent Boolean circuit. For that, we consider the Sorting
Networks. Therefore, based on Lemma 8, the Theorem 8 holds.
Lemma 8. Given an unweighted threshold gate T with n inputs and threshold t, in poly-
nomial time with respect to n, one can construct an decision Boolean circuit CT (a sorting
network) such that CT computes the same function of T .
Theorem 8. It holds that Th[P ] = W [P ].

To show the W[SAT]-membership of Th[t], for every t ∈ N, we first ensure the
existence of a polynomial-time algorithm that converts a threshold gate (with fan-in n)
in Boolean circuit with O(log n) depth. We know that the AKS sorting networks have
logarithmic depth, and by construction its gates has bounded fan-out. In addition, after a
complexity analysis developed in the thesis, it was possible to state the Proposition 1.
Proposition 1. One can construct an AKS sorting network in polynomial time.

Therefore, we can replace each unweighted threshold gate for an equivalent de-
cision Boolean circuit by first construct an AKS network and then converting it into a
treelike sub-circuit. After that, to obtain a complete treelike circuit, it is enough to handle
with the gates inter sorting networks, which can be done since instances of WCS(t, h)
have depth bounded by h, which is a constant. Hence, in polynomial time one can take
an instance of WTCS(t, h) and outputs an equivalent treelike Boolean circuit C, i.e., a de-
cision circuit corresponding to a Boolean formula. Thus, WTCS(t, h) is fixed-parameter
reducible to WSAT and Th[t] ⊆ W[SAT], for each t ∈ N.
Lemma 9. For each t ∈ N, it holds that Th[t] ⊆ W[SAT].

Figura 1. Relationship between W-hierarchy and Th-hierarchy.

Figure 1 shows the inclusion relationships we know between the W and Th classes.



5. Multi Improvement
Finally, the fourth project of this thesis have a different nature. Here, we analyze an
interesting insight called Multi Improvement, which is a local search strategy based on
neighborhood exploration for (meta)heuristics. In order to present a formal description
for the MAXIMUM MULTI IMPROVEMENT PROBLEM (MMIP), we first present some
theoretical background.

In Chapter 5 of the thesis, we consider the problem of finding a maximum set of
independent moves from a given neighborhood structure, which is defined as the MAXI-
MUM MULTI IMPROVEMENT PROBLEM (MMIP).

MAXIMUM MULTI IMPROVEMENT PROBLEM
Instance: An instance I of an optimization problem Π; a feasible solution P of I; an
evaluation function f according to Π; and a neighborhood operator ψ.
Goal: Determine a set S of independent moves according to ψ to be applied to P in
order to obtain a feasible solution P ′ that maximizes f(P ′).

In other words, MAXIMUM MULTI IMPROVEMENT PROBLEM consists of the
following:

• An instance I of an optimization problem Π, an objective function f for Π, a
feasible solution P of I , and a neighborhood operator ψ;

• Let M = {m1,m2, . . .mℓ} be the set of moves given by a neighborhood operator
ψ, such that the neighborhood ψ(P ) of P is defined as

ψ(P ) = {P ′
1 = m1(P ), P

′
2 = m2(P ), . . . , P

′
ℓ = mℓ(P )};

• Let g(m′, P ), a function that returns the gain/loss when m′ ∈ M is applied on P ,
i.e.

g(m′, P ) = f(m′(P ))− f(P ).

• Let σ(mi,mj), a function that returns 1 if {mi,mj} ∈M are independent of each
other and returns 0, otherwise. This can be defined formally as

σ(mi,mj) = 1 ⇐⇒ [g(mi, P ) = g(mi,mj(P ))] ∧ [g(mj, P ) = g(mj,mi(P ))];

• Consider also a decision variable xi ∈ {0, 1} that represents if a move mi ∈ M
will be selected (1, case positive)

The solution for the MMIP is a set of moves that maximizes Eq. (1).

maximize
∑

i ∈ 1..|ψ(P )|

xi · g(mi, P ) (1)

Subject to:

xi + xj ≤ 1, if σ(mi,mj) = 0 (2)

Theorem 9. MMIP ∝ WEIGTHED CLIQUE PROBLEM.



Theorem 9 is proved by a polynomial reduction from MMIP to WEIGTHED CLI-
QUE PROBLEM. This give us a notion of a difficult to solve MMIP by exact algortihms.

However, we developed three polynomial-time dynamic programming algorithms
for solving the MMIP problem, when

Π = TRAVELING SALESMAN PROBLEM,

and the neighborhood operator ψ ∈ {2-Opt, 3-Opt and OrOpt-k}
Several experiments are performed and the analysis suggest the rise of a new open

topic focused on developing novel efficient neighborhood searches based on Multi Im-
provement. Experiments attested that, unlike FI and BI, MI has good stability, a fact that
guarantees a estimation of the cost of the partial solution at a given step of the search.

6. By-products
The achievements of this thesis has appeared (until this moment) in the following inter-
national journals and conferences:

• Maximum Multi Improvement on neighborhood exploration
Optimization Letters, v. 16, p. 97–115, 2022.

• Succinct certification of monotone circuits.
Theoretical Computer Science, v. 889, p. 1-13, 2021.

• Succinct Monotone Circuit Certification: Planarity & Parameterized Complexity.
COCOON - The 26th International Computing and Combinatorics Conference,
LNCS 12273, p. 496–507, 2020.

• Energy Complexity of Satisfying Assignments in Monotone Circuits:
On the Complexity of Computing the Best Case.
AAIM - The 15th International Conference on Algorithmic Aspects in Informa-
tion and Management, LNCS 13153, p. 380–391, 2021.

• Parameterized Complexity Classes Defined by Threshold Circuits:
Using Sorting Networks to Show Collapses with W-hierarchy Classes.
COCOA - The 15th Annual International Conference on Combinatorial Optimi-
zation and Applications, LNCS 13135, p. 348-363, 2021.

The papers published in AAIM’2021 and COCOA’2021 were selected among
those of high quality and invited to their special issues in the journals Theoretical Compu-
ter Science and International Journal of Foundations of Computer Science, respectively.

Next, we present final remarks about our four innovative and pioneering projects.

Project 1. Although several works deal with complexity measures closely related to the
notion of a succinct certificate, most of the literature results focus on discovering lower
and upper bounds for these measures and characterizing related complexity classes. In this
chapter, we address another direction, we introduce the SUCCINCT MONOTONE CIRCUIT
CERTIFICATION problem and investigate its time complexity.



Project 2. The energy complexity measure represents an interesting manner to analyse
the activation of gates through a circuit. Previous works address energy complexity in
threshold circuits as a model that simulates a neural network. In this chapter, we introduce
the discussion of energy complexity problems in terms of time complexity, and investigate
the complexity to computing the best-case energy complexity of monotone circuits.

Project 3. To understand and identify potential gaps in the W -hierarchy, in this work, we
proposed, using threshold circuits, a novel family of complexity classes of parameterized
problems that are candidates for not being precisely covered in the W -hierarchy.

Project 4. Although the First and Best Improvement strategies have been widely studied
on literature, little work has been devoted to exact move composition. This work presents
a formal model of the MAXIMUM MULTI IMPROVEMENT PROBLEM, which gives the
optimal combination of moves in a Multi Improvement neighborhood exploration.

7. Conclusion
During the doctorate process, many possibilities emerged from each seminar, class, or
lecture. Since the beginning of this thesis writing, one idea has been clear: To avoid
trivialities. With this purpose, our four projects detailed in previous sections aimed at
the proposition of unexplored concepts. The problems SUCCINCT MONOTONE CIRCUIT
CERTIFICATION, BEST-CASE ENERGY COMPLEXITY and MAXIMUM MULTI IMPRO-
VEMENT are unprecedented (likewise the concept of Th-hierarchy). It is always risky to
describe novel problems, measures, and concepts. It is impossible to predict the reception
of the scientific community when it is faced with non-addressed problems. However, all
concerns about the novelty of our projects were outdated. Besides, all those works receive
positive answers from relevant international journals and conferences.
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