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Abstract. Virtual reality (VR) and head-mounted displays are constantly gain-
ing popularity in various fields such as education, military, entertainment, and
health. Although such technologies provide a high sense of immersion, they
can also trigger symptoms of discomfort. This condition is called cybersick-
ness (CS) and is quite popular in recent VR publications. This work proposes a
novel experimental analysis using symbolic machine learning to rank potential
causes of CS in VR games. We estimate CS causes and rank them according to
their impact on the classical machine learning classification task. Experiments
are performed using two VR games and 6 experimental protocols along with 37
valid samples from a total of 88 volunteers.

1. Introduction
Activities such as virtual training environments, simulations and entertainment in immer-
sive virtual formats are constantly becoming more popular with the continued develop-
ment and public interest in VR technologies over the last years [Calvelo et al. 2020]. In
2019, the VR hardware market was valued at 4.4 billion US dollars and is expected to
reach 10 billion US dollars by 2022 [Statista 2020].

Head-mounted displays (HMDs) is one of the means of achieving immersive
virtual reality. These devices usually consist of electronic displays and lenses that are
fixed over the head where the display and lenses face the eyes of the user. HMDs
are used for various purposes in the industry such as in games that focus on entertain-
ment [Studios 2015], military [Rizzo et al. 2011], education [Ahir et al. 2020], therapy
[Carrión et al. 2019] and simulators for numerous contexts [Kühnapfel et al. 2000].

Unfortunately, HMDs are strongly related to frequent manifestations of discom-
fort [Kolasinski 1995]. Among the possible manifestations, cybersickness (CS) deserves
special attention as it is the most frequent and is usually associated to long exposures to
HMDs. According to Ramsey et al. [Ramsey et al. 1999], approximately 80% of par-
ticipants who have already experienced HMD-based VR reported discomfort sensations
after just 10 minutes of exposure. In addition, more than 60% of usability problems are
strongly related to discomfort [Kolasinski 1995].

The most frequent symptoms caused by CS are general discomfort, headache,
stomach awareness, nausea, vomiting, sweating, fatigue, drowsiness, disorientation, and
apathy [Dennison and D’Zmura 2017]. These symptoms impact the user experience and
affect the profit and coverage of the VR game industry. In addition, discomfort symptoms
can vary across individuals, where some people are more susceptible than others.



Several works in the literature address the CS phenomenon and mitiga-
tion strategies for immersive VR applications using HMDs [Mousavi et al. 2013,
Davis et al. 2014, Rebenitsch and Owen 2016, Porcino et al. 2020b]. While most pre-
vious works [Jin et al. 2018, Kim et al. 2019, Jeong et al. 2019] are mainly focused on
detecting and predicting CS events, this work estimates and is amenable to rank the at-
tributes that contribute the most to triggering cybersickness, enabling a selection of the
most adequate strategy to mitigate CS. We propose an approach that allows the estimation
of a cause while the user is under the VR condition. However, the suggestion of strategies
can be implemented afterwards by the game designer. In this direction, symbolic machine
learning is adequate, as understandability is essential [Maree and Omlin 2020].

2. Contributions and Awards
Through this research, we have been contributing to mitigate cybersickness problems in
VR environments:

Providing an extensive cybersickness literature review. Our review facilitates
researchers to identify the leading causes for most discomfort situations in VR environ-
ments and associate the most recommended strategies to minimize such discomfort. Ad-
ditionally, Kemeny et al. [Kemeny et al. 2020] cited part of this work in their book. At
the moment, more than 90 works (not only in computing, but also in other areas such as
medicine and psychology) cited us [Porcino et al. 2017].

SVR’ best review paper award. Part of this work [Porcino et al. 2020b] was
awarded at the symposium on virtual and augmented reality (SVR), in 2020. Additionally,
we published an extended version of this study to SBC’ Journal on Interactive Systems
[Porcino et al. 2021d].

Proposing the cybersickness profile questionnaire. We create the cybersick-
ness profile questionnaire (CSPQ) based on our literature findings. The CSPQ contains 9
questions about user profile tied to cybersickness manifestations [Porcino et al. 2020a].

Proposing symbolic machine learning models to identify causes of cyber-
sickness in VR environments. We are the first to use symbolic classifiers (deci-
sion tree and random forest) to estimate CS causes during a gameplay experience
[Porcino et al. 2021b]. Additionally, we published an extended version of this study to
Entertainment Computing Journal [Porcino et al. 2021a].

Proposing an experimental methodology to capture user and gameplay data
tied to cybersickness. We created and conducted an iterative evaluating protocol method-
ology and proposed two VR games (a racing game and a flight game) for user and game-
play data acquisition [Porcino et al. 2021e].

SVR’ best doctoral thesis award. This work was awarded at the symposium on
virtual and augmented reality (SVR), in 2021 [Porcino et al. 2021c].

Providing a public VR users database. The raw dataset of this work is published
in a public domain for further reproduction and comparisons [Porcino 2021].

2.1. Related Work
Several studies use deep learning models such as convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) to predict CS. Kim, J. et al. [Kim et al. 2019],



proposed a deep learning architecture to estimate the cognitive state using brain signals
and how they are related to CS levels. Their approach is based on deep learning mod-
els, such as long short-term memory (LSTM) RNN and CNN [Lawrence et al. 1997,
Graves et al. 2013, Sak et al. 2014]). The algorithms learn the individual characteristics
of the participants that lead to the manifestation of CS symptoms when watching a VR
video.

Jin et al. [Jin et al. 2018] grouped CS causes as follows: hardware characteristics
(VR device settings and features), software characteristics (content of the VR scenes),
and characteristics based on the individual user. The authors used classifiers to estimate
the level of discomfort. A total of three machine learning algorithms (CNN, LSTM-RNN,
and support vector regression [Drucker et al. 1997]) were used. According to the authors,
the LSTM-RNN obtained the best results.

Jeong et al. [Jeong et al. 2019] focused on 360° VR streaming content. They an-
alyzed scenarios of CS using brain signals. Their work uses data from 24 individuals and
aims to identify common brain characteristics of VR stream patterns associated to CS
manifestation. They examined VR segments and highlighted them when several individ-
uals felt discomfort at the same time. However, the authors were not able to find specific
and individual CS causes.

Garcia-Agundez et al. [Garcia-Agundez et al. 2019] focus on the classification of
the level of CS. The proposed model uses a combination of bio-signal and game set-
tings. User signals such as respiratory and skin conductivity of 66 participants were
collected. Authors obtained a classification accuracy of 82% (SVM) when it comes
to binary classifications and 56% (kNN) for the ternary case. Moreover, Porcino et
al. [Porcino et al. 2020a] proposed an approach that is amenable to the prediction of CS
during the gameplay. Authors were able to achieve an average accuracy of 96.54% with
random forest considering a total of 16 different machine learning algorithms and differ-
ent scenarios. In addition, they identified attributes responsible for painful states in VR
games.

3. Proposed Solution
Kim, J. et al. [Kim et al. 2019] and Jeong et al. [Jeong et al. 2019] capture data using
external medical equipment. This equipment is not mainstream in terms of VR. In this
work, we focus on data captured without the use of extra accessories. Hence, we discard
the use of any external medical equipment that could harm the user experience, or even
that decrease the likelihood of the user owning the equipment in the first place.

Furthermore, Garcia-Agundez et al. [Garcia-Agundez et al. 2019] and Porcino et
al. [Porcino et al. 2020a] do not focus on the estimate of the weight or on the influence of
the attributes (i.e., the cause) leading to CS, as opposed to the proposal of this work.

In this novel approach, we use symbolic machine learning to analyse and identify
one or more causes of discomfort, which is user and context specific. In other words, the
approach described in this manuscript is not a general rule for recognizing the presence
of discomfort as previously approached in the current literature. In contrast, it provides
real-time user and context-sensitive evaluation and estimation of causes for cybersickness.

Moreover, the use of symbolic classifiers is paramount for an appropriate anal-



ysis and understanding of the decision. Although previous work suggest that deep
learning classifiers are the most suitable approach for CS prediction [Jeong et al. 2019,
Kim et al. 2019], deep neural networks are black boxes that are very difficult to grasp.
For this reason, this research limited the analysis to symbolic machine learning algorithms
that enable a straight understanding of the decision path.

This work is built upon the understandability of symbolic classifiers, whose pre-
diction process can be represented by a set of unordered or disjoint rules. Symbolic classi-
fiers are not novel and they have been used in many scenarios where clear logical compre-
hensiveness is required [Bernadini 2006]. Among the comprehensible realm of classifiers
we can highlight decision tables, bayes classifiers and most notably in terms of accuracy
rates, decision tree approaches. Decision tree approaches offer a robust prediction and a
wide variety of algorithms and implementations in the literature [Rodrigues et al. 2018].
A decision tree can be written as a set of disjoint unordered rules [Flach 2012].

The logical prediction path of the decision trees inherit a personal fingerprint as-
sociated to attribute weights. Usually, attributes that are closer to the tree root are more
important, as they often reduce the chaos in data more than the rest, i.e., they separate
the information more appropriately than other features, improving the information gain
and reducing entropy. As a general rule, the frequency in which attributes appear in the
decision path is also an important piece of information. We combine these two aspects to
estimate the importance of the attribute (i.e., the most important causes of discomfort).

Let us suppose a decision tree described by 13 decision nodes, as shown in Figure
1, which contains in their conditions the features Gender, Rotation, VR experience, and
Acceleration. Furthermore, let us consider a path for an instance that was predicted as
discomfort, where the green arrows illustrate a single decision path.

The coverage of each node is also shown in Figure 1. We can observe that the
lower the depth of the three, the lower the coverage of each node. We used this aspect
to calculate the importance of the features. In this sense, we compute a potential-cause
score (PCS) by summing up the heights of these features (e.g., for a specific instance, as
highlighted with the green arrows). In this case, gender appeared once and has height 3,
VR experience has height 2, and Rotation has height 1. Next, the output is divided by
the sum of all depths of the tree, as follows: gender=3/6 or 50, VR experience=2/6 or
approximately 33 and Rotation=1/6 or approximately 17. In this case, we estimate gender
as the most relevant cause for CS.

PCS(F ) =

∑max height
h=0 {h , if F belongs to the height0, otherwise∑max height

h=0 h
(1)

In equation 1, h varies from 0 to the maximal tree height, and F is the feature being
evaluated. PCS is computed considering just the decision path (e.g., the one highlighted
in green)

Furthermore, the random forest model can be considered a set of decision trees.
We sum the PCS results from each tree t if this tree’s final decision is equal to the RF final
decision. Otherwise, we sum 0 in this iteration. In Equation 2, we sum the PCS results
from each tree t if the classification result of t is equal to the final RF classification result,



Figure 1. A decision tree model. The green arrows illustrate a decision path
for a specific instance that uses the attributes Gender, VR experience, and
Rotation. Each attribute is associated to height values 3, 2, 1, and 0, re-
spectively.

where votes from several trees are scored together and a single class, e.g., the mode, is
chosen as the classification result. Otherwise, we sum 0 at this iteration.

PCSRF (F ) =
∑
t ϵ T

{P CS(F ), if tree t decision = RF final decision0, otherwise

(2)

4. Results
Predicting the cause of CS is not trivial. Every user has a specific susceptibility to discom-
fort. Furthermore, several attributes are related to the hardware and ergonomic aspects of
the devices. We are still far from tracing very precise causes for all specific cases. How-
ever, so far, factors such as rotation, speed, gender, and previous VR experience, appeared
as dominant factors that can trigger CS.

Our approach works with up to eight factors attributed to CS. Previous works
in the literature already proposed strategies for four of these attributes (exposure time,
acceleration, speed, frame rate, and camera rotation on the z-axis) [Melo et al. 2018,
Bouyer et al. 2017, Budhiraja et al. 2017, Van Waveren 2016]. The remaining causes
(gender, VR experience, and age) are causes associated to the user profile and are still
not associated to a clear strategy. In addition, we observed different patterns of causes for
users in the race game when compared to the flight game.

Exposure time (timestamp) was the most frequent cause of discomfort. Overall,
the race game contributed more to CS manifestation (39.4) when compared to the flight
game (35.9). A possible suggestion is to reduce the time of exposure in the case of race
games. CS triggered by acceleration shifts controlled by users was less frequent in the
race game (5.6) when compared to the flight game, where acceleration was not controlled
by the user (11.80).

Another feature that influences on the discomfort in both scenarios is the former
VR experience. PCS was greater in the race game in contrast to the flight game, 8.25 and



Figure 2. Random Forest feature ranking (identification of cybersickness causes)
for the race (A) and flight game (B) for P5 subjects.

4.76, respectively. In addition, rotation was marked as cause more frequently in the flight
(18.70) when compared to the race game (13.83).

Our results (Figure 2) show that rotation and acceleration triggered cybersickness
more frequently in a flight game in contrast to a race game. We could also observe that
participants that are less experienced with VR are more prone to feel discomfort. Former
experience plays a more important role on the race game, as this game provides more
liberty to the user in terms of controllers, more displacement alternatives and a more self-
controlled acceleration. Additionally, time is a crucial variable is terms of CS mitigation.
Conclusively, different causes that trigger discomfort arise based on short or long term
VR exposures. As final remark, we suggest strategies for mitigating CS for these two
scenarios.

5. Conclusions

In this work, we propose an approach to identify causes of cybersickness in different
virtual reality games using head-mounted displays. To the best of our knowledge, this is
the first work that uses symbolic classifiers to analyze causes of cybersickness during the
gameplay experience. Once the cause is identified, game designers are able to select the
most adequate strategy to mitigate the impacts of CS, according to the literature.

We experimented with two different scenarios and proposed the use of two sym-
bolic machine learning algorithms, along with an analysis to identify the optimal tree
depth for the generated models. Next, we performed a feature ranking to identify the
most relevant causes of CS, which vary along with the gameplay experience and is related
to the user. We observed that exposure time, rotation, and acceleration are most likely the
top factors contributing to CS. As exposure time appeared as a preliminary cause for CS
in our experiments, we suggest reducing the time of exposure in the case of race games
(to 5 minutes max) or to provide intervals for the user at every 5 minutes of experience.

At last, we conclude that introducing rapid movements and related variables that
are controlled by the user can potentially lead to higher incidence of cybersickness.
Virtual reality games that rely on low complexity controllers are a better fit for non-
experienced users.



As a final remark, the raw dataset of this work along with developed games
are available in the following public domain: for further reproduction and comparison
[Porcino 2021].

5.1. Limitations and discussion

COVID-19 pandemic affected our experiments and protocols in terms of dataset construc-
tion. For this reason, some features were also not well represented, such as gender (for
women), age (for older adults), and experience (for people with former VR experience).
Moreover, the number of used games did not cover locomotion movements, which is
specific for games where the user can walk virtually.

Another concern is related to a lack of a more robust treatment of the CS level
defined by the verbal feedback of the participants. In other words, verbal feedback is
highly subjective and degrees vary from each participant (e.g., moderate for a user may
not be moderate for another). Consequently, it is tough to define a robust CS feedback
analysis. For this reason, we also considered a binary feedback: no discomfort (for 0
levels of discomfort) and discomfort (for levels 1, 2, and 3).

5.2. Future work

Future work involves including features such as posture, vision impairments, locomotion
and other information into our framework. We also aim to improve the balance of the
dataset as some cases were also not broadly represented, such as gender (few women),
age (few elders) and experience (few subjects with former VR experience). Moreover,
as Exposure time was observed as the most frequent cause of CS in our experiments, we
also intend to conduct investigative research to detect in which specific timestamp we can
identify the increased manifestation of CS symptoms.

Another straightforward way is to explore the gender differences tied to
games and virtual reality tasks. Our results and other works [Liang et al. 2019,
Grassini and Laumann 2020, Curry et al. 2020] pointed out that specific tasks can pro-
duce different results of discomfort for different user profiles and groups, regarding and
not limited to: gender, age, or health issues. Our symbolic machine learning approach
can also assist with future analyses.

Moreover, it is necessary to better understand the correlation of profile features
with gameplay features, and also how results obtained from profile features (gender, age,
VR experience) can be used to label VR experiences according to different groups of
users.

Another challenge is to create a virtual reality experience that explores specific
tasks individually tied to specific CS causes with a long exposure. The evaluation of
individual tasks associated with CS causes may produce a more profound study isolating
any other VR potential influences on the CS results.

At last, we would like to highlight that this work can be seen as a preliminary
guide to elaborate more adequate game designs for VR games and related applications.
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