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Abstract. In the context of non-parametric analysis of time series, the use of
Ordinal Patterns combined with descriptors of Information Theory proved be-
ing powerful in characterizing processes underlying the data dynamics. Two
are prominent among those descriptors: Shannon’s entropy and Statistical Com-
plexity; together, they define the Entropy-Complexity Plane (HC). Although pow-
erful, this approach suffers from two major shortcomings: (i) there are no sta-
tistical tests, and (ii) there is some loss of valuable information when discarding
the signal amplitude. This work brings solutions to those problems with (I) em-
pirical tests in the HC plane, and (II) a modification in the transition graph
of ordinal patterns, the Weighted Amplitude Transition Graph, which weights
its edges using amplitude information. We show applications to white noise
analysis, and to discrimination and classification of textures in remotely-sensed
images. We also provide the code and data that promote reproducibility and
replicability of these results.

1. Introduction

In recent years we have seen significant growth in the number of intelligent ap-
plications involving analysis, data mining, and classification, consequently causing an in-
crease in the diversity and volume of information used. With this, the level of complexity
of the investigations, the interdisciplinarity and the number of features necessary to carry
out such activities have also increased. Thus, the study of simple approaches, inexpensive
computationally and independent of the data type for the extraction and characterization
of patterns has become fundamental.

Some requirements are necessary to make good and efficient inferences in data
analysis studies, such as (i) make few or no assumptions about the underlying process;
and (ii) be simple, fast, and transparent; (iii) be resilient before outliers. When analyzing
traditional statistical techniques, we found that they cannot obtain good results without
assuming the data’s characteristic properties, such as the shape of the probability distri-
bution of the samples. In this context, the analysis of Ordinal Patterns coupled with the
use of Information Theory descriptors, in addition to meeting the requirements above,
has been able to detect causal information related to the unobserved variables that control



the system, in addition to identifying chaotic components, assist in the visualization and
characterization of different dynamic regimes, among other applications.

[Bandt and Pompe 2002] proposed the Ordinal Patterns (OPs) as a way to analyse
time series. An OP is a mapping of a subset of D values into the sequence of indexes that
sorts the observations in, e.g., increasing order. The time series z = (z1, z2, . . . , zT+D−1)
is then transformed into de sequence of patterns π = (π1, π2, . . . , πD). There are D!
possible patterns, provided all observations are different. This operation is called “sym-
bolization” and, despite its simplicity, it yields methods which are robust to noise and
produce good results in a variety of situations. It is noteworthy that Bandt & Pompe’s
original paper has received to date more that 2100 citations1.

The sequence of patterns π can then be summarized in two ways: by a marginal or
by a transitional approach. The former forms the histogram of π, while the latter analyses
the transitions (πi, πi+1), mostly as Complex Networks. Once one of these intermediate
representations has been formed, i.e., a histogram or a complex network, information the-
ory descriptors (usually Shannon Entropy and Statistical Complexity) allow us to extract
a few quantifiers that, according to the literature, reveal important characteristics about
the phenomenon that produced the data.

Although the proposal has twenty years, results on the statistical properties of OPs
and derived features are scarce. Most references refer to successful applications, but there
is no theory for building statistical tests. With this, their investigation, for example, in
conjunction with Artificial Intelligence, is still in its early stages, standing out only in the
use of machine learning algorithms to enhance the functionalities in the data characteri-
zation/classification processes. Another problem we noticed is that the application of OP
to multidimensional signals, e.g., images, is limited.

Under this context, this dissertation advances the state-of-the-art in this field with
the following studies and solutions:

HC-PCA: We provide the first confidence regions in the Complexity-Entropy
Plane using true random sequences from physical devices.
Testing White Noise in the confidence regions: We present and evaluate a new
method of building empirical confidence regions in the Complexity-Entropy plane
for the analysis of white noise. We also provide an algorithm that, using geomet-
rical arguments, computes the empirical p-value of a sequence under the white
noise null hypothesis.
Weighted Amplitude Transition Graphs: We propose the first approach of tran-
sition graphs of weighted ordinal patterns using amplitude information of the an-
alyzed sequences.
Analysis and Classification of SAR Textures using Information Theory: We
propose a new representation of textures, which allows a low-dimension char-
acterization useful for, among other applications, their classification. We apply
this methodology to the difficult problem of characterizing textures corrupted by
speckle noise.

1According to Web of Science, May 20, 2022



2. Background

2.1. Bandt-Pompe Symbolization
Consider X = {xt}Tt=1, a real valued time series of length T . Let AD (with D ≥ 2

and D ∈ N) be the symmetric group of order D! formed by all possible permutations
of order D, and the set of unique symbols π(D) = {π1, π2, . . . , πD}. The time delay
embedding representation of X with embedding dimension D ≥ 2 and time delay τ ≥ 1
(τ ∈ N, also called “embedding time,” “time delay”, or “delay”) is:

X
(D,τ)
t = (xt, xt+τ , . . . , xt+(D−1)τ ), (1)

for t = 1, 2, . . . , N with N = T − (D − 1)τ . Then, the vector X(D,τ)
t can be mapped

onto a symbol vector πD
t ∈ AD. This mapping preserves the order relationships between

the elements xt ∈ X
(D,τ)
t , and all t ∈ {1, . . . , T − (D − 1)τ} that share this pattern (also

called “motif”) are mapped onto the same πD
t . We define the mapping X

(D,τ)
t 7→ πD

t by
ordering the observations xt ∈ X

(D,τ)
t in increasing order.

The classic (marginal) approach to calculating the probability distribution of or-
dinal patterns is through the frequency histogram. The Bandt-Pompe probability distri-
bution is the relative frequency of symbols in the series against the D! possible patterns
{π̃D

t }D!
t=1:

p(π̃D
t ) =

#
{
X

(D,τ)
t is of type π̃D

t

}
T − (D − 1)τ

, (2)

where t ∈ {1, . . . , T − (D − 1)τ}. These probabilities meet the conditions p(π̃D
t ) ≥ 0

and
∑D!

i=1 p(π̃
D
t ) = 1, are invariant before monotonic transformations of the time series

values, and, being based on order statistics, are robust to contamination.

2.2. Information-Theoretic Descriptors
After computing all the symbols and their probabilities, the next step into the

characterization of the time series is computing descriptors. Shannon Entropy measures
the disorder or unpredictability of a system, and its normalized version is:

H(P) = − 1

logD!

D!∑
ℓ=1

pℓ log pℓ, (3)

where pℓ is the probability obtained from the symbolization. Although very expressive,
the Shannon Entropy is not able to describe all possible underlying dynamics. To this
aim, [López-Ruiz et al. 1995] proposed the use of disequilibrium Q, a measure of how
far P is from equilibrium or non-informative distribution U, e.g., the uniform law. We
calculate this descriptor as:

Q′(P,U) =
D!∑
ℓ=1

(
pℓ log

pℓ
uℓ

+ uℓ log
uℓ

pℓ

)
, (4)

and then we normalize it Q = Q′/max{Q′}. With this, the Statistical Complexity mea-
sures the dependence structures among the elements and is given by C = H · Q. We
can then map a time series onto the point (h, c), and the set of all possible points is the
Entropy-Complexity plane (H × C).



3. Contributions and Results

3.1. Weighted Amplitude Transition Graphs

Texture is an elusive trait. When dealing with remotely sensed images, the texture
of different patches carries relevant information that is hard to quantify and transform
into useful and parsimonious features. This may be since textures, in this context, is a
synesthesia phenomenon that triggers tactile responses from visual inputs. This work
presents a new way of extracting features from textures, both natural and resulting from
anthropic processes, in SAR (Synthetic Aperture Radar) imagery.

SAR systems are a vital source of data because they provide high-resolution im-
ages in almost all weather and day-night conditions. They provide basilar information,
complementary to that offered by sensors that operate in other regions of the electromag-
netic spectrum, for a variety of Earth Observation applications. Although they present
rich information, such data have challenging characteristics. Most notably, they do not
follow the usual Gaussian additive model, and the signal-to-noise ratio is usually low.

In our approach, we opt to analyze the 1-D signals, linearizing the image samples
using the Hilbert-Peano curve [Lee and Hsueh 1994]. With this approach, we reduce the
dimensionality of the data while preserving the spatial correlation structure. Observations
are then transformed into ordinal patterns with the Bandt-Pompe symbolization. We use
Information Theory descriptors to analyze the distributions these patterns induce, both
directly and by building transition graphs among subsequent patterns. Those descriptors
are the Shannon entropy and the statistical complexity, which are easy to obtain and are
interpretable. They reveal important features of the underlying process.

Our proposal, hereinafter referred to as Weighted Amplitude Transition Graph
(WATG), differs from the traditional ordinal pattern transition graph by incorporating the
absolute difference between successive patterns. First, each time series X is scaled to
[0, 1], since we are interested in a metric able to compare datasets:

xi − xmin

xmax − xmin

7−→ xi, (5)

where xmin and xmax are, respectively, the minimum and maximum values of the series.
This transformation is relatively stable before contamination, e.g., if instead of xmax we
observe kxmax with k ≥ 1, the relative values are not altered. Nevertheless, other more
resistant transformations as, for instance, z scores, might be considered.

Each X
(D,τ)
t vector is associated with a weight βt that measures the largest differ-

ence between its elements:

βt = max{|xi − xj|}, (6)

where xi, xj ∈ X
(D,τ)
t . We propose that the weight assigned to each edge is proportional

to the amplitude difference observed in the transition:

wv
π̃D
i
,v

π̃D
j

=
∑

i:{X(D,τ)
t 7→π̃D

i }

∑
j:{X(D,τ)

t 7→π̃D
j }

|βi − βj|. (7)
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Figure 1. Difference of edges weights between the transition graph and the
weighted graph of ordinal patterns transitions; urban area, with dimension 3 and
delay 1.

Thus, the probability distribution taken from the weighted amplitude transition graph is:{
λv

π̃D
i
,v

π̃D
j

= 1, if (vπ̃D
i
, vπ̃D

j
) ∈ E,

λv
π̃D
i
,v

π̃D
j

= 0, otherwise. , and (8)

p(π̃D
i , π̃

D
j ) =

λv
π̃D
i
,v

π̃D
j

· wv
π̃D
i
,v

π̃D
j∑

v
π̃D
a
,v

π̃D
b

wv
π̃D
a
,v

π̃D
b

. (9)

Note that p(π̃D
i , π̃

D
j ) ≥ 0 and

∑
π̃D
i ,π̃D

j
p(π̃D

i , π̃
D
j ) = 1, so p is a probability function.

To validate our technique in a remote sensing application, we manually selected
200 samples from JPL’s Uninhabited Aerial Vehicle SAR (UAVSAR) images patches
of size 128 × 128 to compose the dataset used in the experiments: 40 samples from
Guatemalan forests; 40 samples from Guatemalan pasture regions; 80 samples from
oceanic regions of Cape Canaveral, divided into two types with different contrast; and
40 samples of urban regions of the city of Munich.

The variation in the magnitude of the targets’ backscatter and, consequently, in
the intensity of the image pixels, depends on the intrinsic properties of the region under
analysis. Urban targets usually exhibit the strongest variation, followed by forest, pasture,
forests, and finally, water bodies. By adding such information related to the amplitude,
the proposed method is able to increase, compared to traditional methods, the granularity
of information captured by ordinal patterns.

As already described, our proposal weights the edges in terms of the difference
of amplitudes. The most significant impact is observed in the transition graphs obtained
from urban areas, as they present a greater amplitude range between their elements. Fig. 1
shows how this information alters the weights of the transition graph. Notice, in particular,
that (vπ̃3

123
, vπ̃3

123
) almost doubled, while (vπ̃3

312
, vπ̃3

231
) and (vπ̃3

213
, vπ̃3

132
) became negligible.

We highlight the impact of the weighting on the probability distribution in the two extreme
cases observed:

• If the 1-D signal presents a low amplitude variation and intensity peaks between,
then the transitions of ordinal patterns that represent the latter have larger weights.
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Figure 2. Location of Guatemala (forest), Cape Canaveral (ocean), and Munich
(urban) in the H × C plane for dimension 3 and delay 1. The continuous curves
correspond to the maximum and minimum values of C as a function of H.

This contributes so that the probability distribution becomes less uniform among
the symbols since it will be more concentrated in these edges. This will also cause
a drop in entropy when compared to the traditional method.

• In 1-D signal that shows a uniform amplitude variation, the weights are well dis-
tributed between their edges, giving rise to a more random probability distribution,
thus obtaining larger entropy.

The Bandt-Pompe symbolization was the first method based on ordinal patterns
proposed in the literature. As shown in Fig. 2 left, it provides a limited separation of
the textures. Transition graphs (Fig. 2 center) improve the spread of the features, but
with some amount of confusion. Our proposal, shown in Fig. 2 right, produces well-
separated features. In this way, we were able to obtain, for this experiment, a perfect
characterization and, consequently, the high descriptive power of the regions.

Experiments with the k-nearest neighbor algorithm applied to the pairs Entropy-
Statistical Complexity descriptors showed that our proposal performs better than Grey-
Level Co-occurrence Matrices, Bandt-Pompe, Transition Graphs, SURF (Speeded-Up
Robust Features), STFT + SURF (Short-Time Fourier Transform), and other techniques
which also employ amplitude information in the analysis of ordinal patterns, and provides
the same quality of results obtained with Gabor filters and HOG (Histograms of Oriented
Gradients). However, while Gabor filters employ 80 features and HOG uses 54 features,
our proposal requires only two. This dimensionality reduction is a huge advantage over
the other techniques, with added values: Firstly, by reducing the dimension of the fea-
tures to 2-D, we can visualize the results. Secondly, for machine learning algorithms, the
smaller the number of dimensions is, the faster the training process is, and the less storage
space is required. Thirdly, overfitting, a recurring problem in data of high dimensionality,
is avoided.

3.2. A Test for White Noise in the Entropy-Complexity Plane

Although the limits of H × C are well defined, a complete characterization of
its intrinsic topology is an open problem, due to the restrictions imposed by its curvilin-
ear space. The lack of knowledge of the joint distribution of the points obtained by this
plane, due to the existing correlation between its variables, prevents the studies on test
statistics for typical time series in this characterization space. However, with the knowl-
edge of the expected variability of such points, according to the underlying dynamics,



we can test hypotheses for a wide variety of models. Results in this direction can be
found in the literature. [Larrondo et al. 2006] showed that the Complexity-Entropy plane
(H × C) is a good indicator of the results of Diehard tests for pseudo-random number
generators. [De Micco et al. 2008] evaluated ways to improve pseudo-random sequences
for their representation in this plane.

In this context, a open problem present in the characterization of sequences using
the H×C plane is the absence of a representative metric distance, which makes it difficult
to build confidence regions. Thus, in the proposed approach, we opted for the construction
of empirical confidence regions obtained through an orthogonal projection of data in the
space of principal components. Therefore, the larger is the data set used to build the
region, the more representative it will be. In the confidence regions proposed by this
work, the white noise hypothesis finds a latent space representation of the data without
the restrictions of the plane boundaries. After calculating these regions, we obtain the
p-value that a sequence is comprised of independent identically distributed observations.

Our test is based on two sources of true random numbers, both from
the observation and measurement of physical phenomena. The first uses vacuum
states [Gabriel et al. 2010], and the second employs atmospheric noise captured by a
cheap radio receiver with no filter for unwanted static sounds caused by atmospheric
noise [Haahr 2018]. We used 54 × 106 4B words from each physical generator, which
approximately amounts to 200MB of data. Such wealth of data allowed us to produce
104 596 and 2093 independent time series of length 1000 and 50 000, respectively. Each
time series is mapped onto a point in the Entropy-Complexity plane.

The first step of the proposed technique consists of applying the principal com-
ponents transformation to the points in the Entropy-Complexity plane hc˜ . With this, we
obtain uncorrelated points

uv˜ =
(
(u1, v1), (u2, v2), . . . , (uN , vN)

)
,

in which un and vn are the first and second principal components of hn and vn, respec-
tively. This projection allowed us to obtain a “central” point of the data set, around
which we will built a rectangular box containing 100 (1− α)% of the observations.
Such box is a variation of the bagplot [Rousseeuw et al. 1999]. Notice that finding the
smallest box that encloses k out of N points is difficult; cf. the work by Chan et al.
(2020) [Chan and Har-Peled 2020]. For simplicity, and without loss of generality, assume
N is odd. We proceeded as follows:

1. Find the indexes that sort the values of the first principal component u =
(u1, u2, . . . , uN) in ascending order: r = (r1, r2, . . . , rN), i.e., ur1 is the mini-
mum value, and urN is the maximum value.

2. Find the point (u, v) whose first principal component is the median: (ur(N+1)/2
, ·).

Apply the inverse principal components transformation, and obtain P ′ = (h′, v′).
Call the corresponding time series “emblematic time series.”

3. Find the point (u, v) whose first principal component is the quantile α/2:
(ur[Nα/2]

, ·).
4. Find the point (u, v) whose first principal component is the quantile 1 − α/2:

(ur[N(1−α/2)]
, ·).



5. The values ur[Nα/2]
and ur[N(1−α/2)]

are the rightmost and leftmost bounds of the
box, respectively.

6. The bottom bound of the box is the smallest second principal component value
whose first principal component is at least ur[Nα/2]

; denote this values vmin.
7. The top bound of the box is the largest second principal value whose first principal

component is at most ur[N(1−α/2)]
; denote this value vmax.

8. The corners of the box are (ur[Nα/2]
, vmin), (ur[Nα/2]

, vmax), (ur[N(1−α/2)]
, vmin) and

(ur[N(1−α/2)]
, vmax).

9. Apply the inverse principal components transformation to these corners obtaining
P1 = (hv1 , cv1), P2 = (hv2 , hv2), P3 = (hv3 , cv3) and P4 = (hv4 , cv4).

The confidence regions obtained provide a powerful tool to make binary assess-
ments about the adequacy of a given time series X to the null hypothesis H0 that it is
white noise. More generally, as we are interested in obtaining the p-value of x under H0,
we devised a procedure to obtain an approximate p-value based on the evidence collected
to build the confidence regions.

The procedure operates on the principal components space and consists of mea-
suring the closeness between the “emblematic point” and the observed point. Given the
time series x of size T , we want its p-value when contrasted with true white noise random
sequences (TWNRS) of the same size at embedding dimension D. We use N TWNRS
of size T , compute their points in the H × C plane, and project them to the correspond-
ing principal components space. We then do the same with x, and obtain a new point
(ux, vx). The closer x is to the emblematic time series, the larger its p-value. Assume that
the emblematic time series is represented by (u, v) in the principal components space. We
measure this closeness by building a box around (ux, vx) that contains (u, v); assume that
ux > u, then:

1. the right side of the box is the smallest uj which is larger that ux; assume it corre-
sponds to the quantile ηu of u˜ = (u1, u2, . . . , uN). By definition, ηu ≥ 1/2.

2. the left side of the box is the 1− ηu quantile of u˜.
3. the top side of the box is the smallest vj which is larger that vx; assume it corre-

sponds to the quantile ηv of v˜ = (v1, v2, . . . , vN). By definition, ηv ≥ 1/2.
4. the bottom side of the box is the 1− ηv quantile of v˜.

The definition of the box for the case ux < u follows naturally. With this approach,
we obtain the smallest box that (i) contains the new point, and (ii) it is defined by observed
points from TRWNS. Such boxes are less prone to distortions in this space since the
distribution of the points becomes less asymmetric than in the Entropy-Complexity plane.

Prior to the study, we conducted an ablation assessment to identify the influence
of the parameters T , D, and τ in the construction of empirical confidence regions. We
verified that the results involving the time delay parameter variation did not show signif-
icant differences in repeated experiments; therefore, in the sequel, we did no consider τ
as a determining factor. On the other hand, we found two relevant variables: the length of
the sequence and the embedding dimension. We, thus, employed the following factors:

• Sequence length T ∈ T = {1× 103, 5× 104},
• Embedding dimension D ∈ D = {3, 4, 5, 6}.

and kept τ = 1, which is the most frequently used option. The values of D are within the
range recommended in the literature [Bandt and Pompe 2002].
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Figure 3. Analysis of the test power with correlated f−k noise.

We assessed the power of the test by contrasting time series with different cor-
relation structure (under the f−k model) in the H × C plane. Our study’s basis is the
emblematic time series for each length T and dimension embedding D. Recall that the
emblematic time was chosen as the most representative of the data set. We use these se-
ries, transform them into f−k correlated noise, and verify the new point’s location in the
H × C plane.

As we can observe in the plane, as the correlation between the observations
increases, that is, k > 0, the randomness decreases, and the entropy presented de-
creases, informing the loss of its stochastic characteristic. Fig. 3(a) shows the over-
all effect of transforming the emblematic time series into f−k correlated noise, with
k = 1/2, 1, 3/2, 2, 5/2, 3. At this scale, the emblematic time series k = 0 and the one
with k = 1/2 appear overlapped. As the correlation increases with k, the randomness de-
creases, causing a drop in the entropy; the series become progressively more predictable.
Fig. 3(b) is a zoom close to the (1, 0) point, along with the confidence regions for the
white noise. We see that k = 0 and k = 0.1 are inside the 95% confidence region, and
k = 0.2 is inside the 99% box. Notice that the time series with k = 3/10 is outside
the confidence regions and does not pass the randomness test. The same holds for all
k > 3/10.

4. Conclusions

The main objective of this work was the investigation of open problems in the
Bandt-Pompe methodology of symbolization and their application to the characterization
of time series and images. Interested in expanding the range of possible applications,
we focused on investigating properties of transition graphs and their limitations. Another
objective was the study of the joint distribution of descriptors in the Complexity-Entropy
plane, as well as possible linear transformations in this space. This technique proved to be
fast, consistent and robust the addition of correlation structures. Thus, we have advanced
in the state of the art by proposing innovative and relevant solutions to deal with scenarios
unforeseen in the seminal article by Bandt and Pompe.



This work presents several possibilities for future research. For example, the use
of WATG can be explored in different application scenarios. Considering that its main
characteristic consists of discriminating sequences with variations in amplitude along
with the arrangement of its elements, its applicability is not restricted to remote sensing
images. In the context of SAR images, modifications can be made to increase the gener-
alizability of the technique. On the other hand, under the context of confidence regions,
our work opens up a huge range of related research. The study of regression models
on correlated descriptors and the development of specific kernels for the Complexity-
Entropy plane are fruitful possibilities for investigation. We also emphasize the need
for efforts to build representative metrics. With the advancement of deep metric learn-
ing techniques [Barros et al. 2020], we can explore the learning of projections in a linear
transformation specific to the plane, which would allow progress to build specific machine
learning algorithms for the Complexity-Entropy space.
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