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Abstract. This thesis addresses the reconstruction of shredded paper docu-
ments, a relevant task in various domains such as forensic investigation and
history reconstruction. Despite previous research, dealing with real-shredded
data is a sensitive issue in the literature. To face this challenge, we proposed
two deep learning approaches that have achieved state-of-the-art accuracy in
more realistic scenarios. As a second major contribution, human interaction
was explored to improve reconstruction. Our framework, inspired by the field of
active learning, automatically selects potential mistakes in the solution for user
analysis enabling better accuracy in a scalable way. The results yielded works
in top-tier publications such as CVPR and the Pattern Recognition journal.

1. Introduction
Historically, shredding is also associated with the destruction of espionage content, as
in the Iran hostage crisis [Derian 1989] portrayed in the movie “Argo”, or in the case of
the documents left behind by the official state security service of former East Germany
(Stasi) after the fall of the Berlin Wall. Additionally, shredding may be illicitly motivated
when the objective is to destroy evidence of fraud and other sorts of crimes. In this
context, revealing the original content of shredded papers is of great relevance for forensic
investigation, which can be achieved by first joining coherently the shreds (pieces) as in a
jigsaw puzzle.

Figure 1. Manual reconstruction (1979 Iran hostage crisis). Credits to Lewis
Perdue [Perdue 2013].

Regardless of its importance, manual reconstruction, as illustrated in Figure 1 is
potentially damaging to the paper due to the direct contact with the shreds, besides being a
slow and tedious task for humans. These factors motivated the development of the digital



and automatic reconstruction process [Ukovich et al. 2004, Butler et al. 2012]. Commer-
cial software, such as “Unshredder”1, is available to assist individuals and corporations in
recovering destroyed documents or to aid in criminal investigations. On the other hand,
such technology enables the use of disposed or robbed documents (e.g. industrial espi-
onage) for invasion of privacy and illicit use of sensitive data. Therefore, reconstruction
technologies might help assess the security level of shredding and disposal services pro-
vided by specialized companies.

This work advances the state-of-the-art in the reconstruction of shredded docu-
ments in two main directions. The first direction is the development of deep learning (DL)
methods for high-accuracy reconstruction in more realistic scenarios. To the best of our
knowledge, we were the first to use DL to solve this kind of puzzle. The other is the project
of a human-in-the-loop framework that benefits from human interaction to improve solu-
tions obtained with automatic methods. Although focus is on the reconstruction applica-
tion, the proposed techniques can be extended to other related applications: e.g. solving
jigsaw puzzles with eroded borders [Paumard et al. 2020, Li et al. 2021, Rika et al. 2022]
and reconstruction of ancient papyrus [Abitbol et al. 2021, Pirrone et al. 2021].

Motivation. Traditionally, the reconstruction algorithms perform two main tasks (one
at a time): measuring the compatibility of the shreds by using image features and group-
ing them to maximize the overall compatibility (combinatorial optimization). In digital
reconstruction, the shreds are manipulated only during the acquisition step. After this,
human participation is restricted to specific interventions (semi-automatic reconstruction
[Butler et al. 2012, Pöhler et al. 2015]), or even not required at all (automatic reconstruc-
tion). Considering these facts, we identified four main limitations on the related literature
that motivated our work: (i) the literature has mostly focused on improving the optimiza-
tion process relegating to the background the compatibility analysis of the shreds; (ii)
most works test only with simulated-shredded documents and (iii) with few test instances
(usually ≤ 3 documents), which also yields biased conclusions; and (iv) it lacks studies
on multi-page reconstruction.

Contributions. The bulk of this thesis is on evaluating the compatibility of shreds, the
major research gap in the literature. Within this direction, these are the main contribu-
tions:

• A self-supervised classification-based approach (DEEPREC-CL) for multi-page
reconstruction: results have shown that our method is capable of reconstructing
100 documents with accuracy superior to 90%;

• A self-supervised metric learning approach (DEEPREC-ML) that improves the
time performance of DEEPREC-CL without losing accuracy: it might yield a
speed-up of ≈ 22 times for 505 shreds, and higher for more shreds;

We also proposed a framework for semi-automatic (human-in-the-loop) reconstruction
where human feedback is leveraged in a smart way. In this direction, the main contribu-
tions are:

1https://www.unshredder.com.



• A scalable human-in-the-loop (HIL) recommendation-based framework for recon-
struction of strip-shredded documents;

• Four query strategies for recommending pairs of shreds to be annotated;
• A novel experimental methodology that assesses the impact of human labor on the

quality of the reconstructions: results have shown that a user workload of 25% can
lead to more than 4 p.p. of accuracy improvement (> 40% of error reduction) on
the deep learning methods.

Additionally, it is worthy to mention the release of a new public dataset2 with 100 real
strip-shredded documents (totaling 2,292 shreds). This addresses the lack of publicly
available collections representing real scenarios. The contributions appear in relevant
publications, such as the IEEE/CVF Conf. on Computer Vision and Pattern Recognition
(CVPR), the top-tier in enginering and computer science and the Pattern Recognition
journal (more detailed in the by-products document).

Scope. The scope of our work includes: strip-shredded documents (cuts in the ver-
tical direction), correctly-oriented shreds (the shreds are set upwards, possibly slightly
skewed), single-sided shreds (content is restricted to one paper face), black-and-white ap-
pearance, and shreds with nearly the same dimensions. These are reasonable assumptions
commonly adopted in most works addressing text documents. Nonetheless, it is notewor-
thy that the cross-cut reconstruction is more complex from the optimization perspective.
The works addressing this, however, are not robust for real-shredded data, which is more
complex from the image analysis perspective. Thus, the first step for solving cross-cutting
is a robust approach to strip-shredding.

2. Related works
This section covers different compatibility evaluation approaches and the topic of semi-
automatic reconstruction. We present some representative works and the respective limi-
tations that motivated our work.

2.1. Compatibility evaluation approaches.

Pixel-level fitting. Several works explore distance metrics (e.g. Euclidean) at pixel level
for compatibility evaluation [Chen et al. 2019, Pomeranz et al. 2011]. They are more sen-
sitive to the corruption on the edges of the shreds.

Shape-based unsupervised fitting. Compatibility is measured by using shapes, such as
strokes [Perl et al. 2011] or characters [Paixão et al. 2019] (our previous work) without
any learning process or supervised learning. Using character was proven one of the most
effective reconstruction approaches, however, it requires segmenting textual information.

Supervised learning-based fitting. In this approach, the matching of the shreds is
mainly determined by classification tasks (e.g. recognition of symbols). Typical is-
sues are: instability in character recognition (e.g. OCR-based matching [Perl et al. 2011])

2Available at https://github.com/thiagopx/deeprec-pr20.
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Figure 2. Overview of the classification-based method.

and dependency on specific languages and/or text segmentation [Xing and Zhang 2017].
When it comes to deep learning methods, we were the first to explore deep models
to reconstruct shredded documents [Paixão et al. 2020a, Paixão et al. 2020b]. Our ap-
proach is able to cope with more heterogeneous content because the fitting of patterns is
learned in a self-supervised fashion from large-scale data without segmenting symbols, as
discussed in the following sections.

2.2. Semi-automatic reconstruction.

Few works address semi-automatic reconstruction. Most of them fit the active paradigm
[Butler et al. 2012, Shang et al. 2014], where the user is an inherent part of the recon-
struction process. The process is predominantly manual, being the user responsible for te-
dious activities such as moving shreds, correcting their orientation, and analyzing the ad-
jacency of shreds assisted by GUI tools (e.g. zoom-in/out, drag-and-drop). Conversely, in
the passive paradigm (ours), user intervention is optional since a preliminary solution can
be automatically obtained. User inputs are leveraged to improve an initial/intermediate
solution [Prandtstetter and Raidl 2008]. The novelty in our approach consists in recom-
mending which parts of the solution should be analyzed so that simple (binary) feedback
(confirm or correct) may yield more accurate solutions.

3. Classification-based reconstruction

The classification-based approach for document reconstruction (Figure 2) comprises two
pipelines. The training pipeline (top flow) aims to produce a model to quantify the
compatibility between shreds based on small samples extracted from around the cut-
ting sections of digitally-cut documents. This local approach mimics the manual recon-
struction process, where humans analyze the fitting of shreds based on the local match-
ing of fragmented patterns, primarily at the text line level. Positive samples are ob-
tained from adjacent shreds and negative samples from non-adjacent pairs. The learning
process is self-supervised since adjacency is automatically inferred in simulated shred-
ding. After sampling, a convolutional neural network (CNN) is trained to distinguish
between positive and negative samples. In the reconstruction pipeline (bottom flow), the
trained model is used to evaluate the pairwise compatibility of the scanned shreds (recon-
struction instance). The resulting values are used as input for a graph-based optimizer
[Applegate et al. 2001] that estimates the permutation of shreds representing the final re-
construction.
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Figure 3. Multi-page reconstruction accuracy.

Figure 4. Reconstruction of a S-CDIP instance.

Results on multi-page reconstruction. Three datasets were used for evaluation: S-
MARQUES (60 instances), S-ISRI-OCR (20 instances), and S-CDIP (100 instances), be-
ing the latter two contributions of our thesis. The evaluation is performed incrementally
by mixing k instances (shredded pages), for different values of k. Figure 3 shows the ac-
curacy (mean and 95% confidence interval) given the number of instances. Overall, the
proposed method performed above 90% for the three datasets. The accuracy tends
to stabilize for large k, indicating that the insertion of new documents does not degrade
accuracy, although it increases the complexity of the problem considerably. S-CDIP, as
expected, was verified as the most challenging dataset given the variability of content and
layout complexity. Figure 4 shows an example of reconstruction comprising shreds from
k = 5 documents of S-CDIP (accuracy of 82.93%)3.

Comparison with state-of-the-art. Our method (DEEPREC-CL) was compared to
three relevant methods of literature (referred to by the name of the first author):
Paixão, our preliminary method based on shape matching; Liang, an OCR-based
method [Liang and Li 2020]; and Marques, which relies on edge pixel dissimilarity
[Marques and Freitas 2013]. Due to memory scalability issues, testing with Paixão was
limited to only 5 documents. As for Liang, we were able to run experiments only on
the S-MARQUES and S-ISRI-OCR datasets limited to 3 documents due to the high OCR
overdue. To emphasize the role of compatibility evaluation in producing accurate re-
constructions, we also modified our method by coupling the Marques’ nearest neighbor
optimizer: the modified version was named DEEPREC-CL-NN. As shown in Figure 5, the
average accuracy of the proposed method (DEEPREC-CL) was consistently superior
to the compared methods. Additionally, it demonstrated greater robustness, which is
mainly evidenced by the stability of the accuracy curve. DEEPREC-CL-NN greatly out-
performed Marques, which has the same optimizer, and also Paixão, which leverages
a more powerful optimizer.

3The full reconstruction (k = 100) is available at https://htmlpreview.github.io/
?https://github.com/thiagopx/docs/blob/master/results_s-cdip.html.
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Figure 5. Comparative accuracy performance.

Time efficiency. DEEPREC-CL is also remarkably more scalable in terms of execu-
tion time than Paixão and Liang, as seen in Figure 6. This is critical in real scenarios
since much more than 5 shredded pages are expected as input. Although Marques is very
time efficient, as shown in Figure 5, its low accuracy prevents it from being used in real
data.

4. Metric learning-based reconstruction

Considering a network inference as the time unit cost, we can say that DEEPREC-CL
scales quadratically with the number of shreds. To deal with this, we proposed a metric-
learning approach that scales linearly rather than quadratically. As illustrated in Figure 7,
the rationale of the new approach is that two side-by-side shreds are globally compatible
if they locally fit each other along the touching boundaries. The local approach relies on
small samples (x) cropped from the boundary regions. Instead of pixel comparison, the
samples are first converted to an intermediary representation (e) by projecting them onto
a common embedding space Rd. This is accomplished by two CNNs: fleft and fright,
f• : x 7→ e, specialized on the left and right boundaries, respectively.

Assuming that these models are properly trained, boundary samples (orange and
blue regions in Figure 7) are then projected, so that embeddings generated from compat-
ible regions (mostly found on positive pairings) are expected to be closer in this metric
space, whereas those from non-fitting regions should be farther apart. Therefore, the
global compatibility of a pair of shreds is measured in function of the distances between
corresponding embeddings. The interesting property of this approach is that the projec-
tion step (network inference) can be decoupled from the distance computation, thus, each
shred is processed once by each model, and pairwise evaluation relies on the produced
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Figure 6. Comparative time performance.

Figure 7. Metric learning approach for shreds’ compatibility evaluation.

embeddings.

Comparison with DEEPREC-CL. DEEPREC-CL and DEEPREC-ML (the metric
learning approach) were compared in terms of accuracy and time efficiency. We grouped
the 1,370 shreds of S-MARQUES as the first instance, and the 505 shreds of S-ISRI-
OCR as the second. DEEPREC-ML achieved 94.81 and 97.22% of accuracy for S-
MARQUES and S-ISRI-OCR, respectively, whereas DEEPREC-CL achieved 97.08 and
95.24%. Overall, both methods yielded high-quality reconstructions with a low dif-
ference in accuracy (approx. ±2 p.p.), which is an indication that there is no signif-
icant difference in accuracy. Concerning time efficiency, the methods behave notably
differently, as evidenced in Figure 8. The left chart shows the average elapsed time of
each stage to process the 505 shreds of S-ISRI-OCR: projection (pro) – applicable only
for DEEPREC-ML–, pairwise compatibility evaluation (pw), and optimization process
(opt). In this case, the optimization cost was negligible when compared to the execution
time for pairwise evaluation. Remarkably, DEEPREC-CL demanded more than 80 min-
utes to complete the evaluation stage, whereas our method took less than 4 minutes
(speed-up of ≈ 22 times). Comparatively, the estimated growth for DEEPREC-ML
(blue curve) is significantly slower than the competing method (right chart).

5. A human-in-the-loop reconstruction framework

Full automatic reconstruction usually leads to imperfect reconstructions. A particular way
to improve solutions is to introduce active human supervision (semi-automatic reconstruc-
tion). Inspired by the active learning literature [Rubens et al. 2015], the reconstruction
process can be modeled as a loop where, in each iteration, the human is queried to pro-
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vide inputs, and a new solution is attained. Ideally, the human effort (workload) should
be minimal. In view of this, our framework (Figure 9) includes a recommender module
which detects potential mistakes for human analysis. The human is responsible for setting
apart the negative (wrong) pairings and confirming the positives.

Human

Solution

RecommenderSolver
Automatic

Cost matrix
(Loop entry)

Figure 9. Overview of the proposed HIL reconstruction framework.

The impact of the workload on the accuracy. Quantitatively, workload (αload) means
the fraction of pairs of adjacent shreds in a solution to be analyzed. We have previously
verified that the workload has a greater impact on the accuracy than the number of itera-
tions, thus, the iterations was set to 1. Figures 10 and 11 show that the accuracy increases
roughly linearly with the human workload. The proposed query strategies (OPT-R,
OPT-RL, UNC-R, and UNC-RL) outperform significantly the random-based selec-
tion (baseline) [Prandtstetter and Raidl 2008]. Remarkably, OPT-R was able to increase
the original solution accuracy of the S-CDIP dataset on ≈ 3.80 p.p. for αload = 0.25:
87 pairs were corrected from a total of 220 mistakes (≈ 39.50% of error reduction).

6. Concluding remarks and future work
This thesis presented a corpus of contributions for (semi-)automatic reconstruction of
mechanically-shredded documents. Our effort was initially towards robust compatibil-
ity evaluation between shreds for fully automatic reconstruction, so that the optimization
process might yield improved reconstructions. In a second moment, it was investigated
the introduction of the human as part of the reconstruction process. Future work in-
cludes the extension of proposed methodologies to cross-cut documents. Concerning
human-assisted reconstruction, a promising direction is the development/adaptation of
query strategies to the reconstruction application, including the use of ensemble of strate-
gies for more valuable user feedback. Finally, from a generalization perspective, there are
correlated problems that should benefit from our findings as mentioned in the introduc-
tion.
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