
On (in)tractability of connection and cut problems*

Alexsander A. de Melo1

Orientadores: Celina M. H. de Figueiredo1, Uéverton S. Souza2, Ana Silva3

1Universidade Federal do Rio de Janeiro (UFRJ)
Rio de Janeiro, RJ, Brasil

2Universidade Federal Fluminense (UFF)
Niterói, RJ, Brasil

3Univesidade Federal do Ceará (UFC)
Fortaleza, CE, Brasil

{aamelo,celina}@cos.ufrj.br, ueverton@ic.uff.br, anasilva@mat.ufc.br

Abstract. This work addresses connection and cut problems from the viewpoint
of graph classes and computational complexity, classic and parameterized. Re-
garding connection problems, we investigate the so-called TERMINAL CON-
NECTION problem (TCP), which can be seen as a generalisation of the classical
STEINER TREE problem. We propose several complexity results for TCP, when
restricted to specific graph classes, and some of its input parameters are fixed.
As for cut problems, we analyse the complexity of the classical MAXCUT prob-
lem. We introduce the first complexity classification for the problem on interval
graphs of bounded interval count. In addition, we prove the NP-completeness of
MAXCUT on permutation graphs, settling a question posed by David S. John-
son in the Ongoing Guide to NP-completeness, which has been open since 1985.
Finally, we consider the problem of computing the zig-zag number of a directed
graph, which is a directed width measure defined over cuts of a graph.

1. Introduction
Connection and cut problems on graphs have been widely studied over the years, mainly
due to the fact that such problems are closely related to a great variety of real-world ap-
plications, playing an important role in the field of network design. Generally, connection
problems aim to obtain a minimum/maximum number of required elements whose inclu-
sion yields a connected graph satisfying certain conditions, while cut problems aim to
obtain a minimum/maximum number of required elements whose removal yields a (dis-
connected) graph with more connected components. Both settings are ways of measuring
the robustness of the network.

As an example of connection problem, consider the scenario in which a group
of special nodes (e.g. wireless devices) in a communication network needs to broadcast
messages among themselves, but some of such nodes are physically unreachable. Then,
in order to establish a viable communication route, additional nodes of the network (e.g.
repeaters) might be required, which in turn implies an extra associated cost. Hence, the

*The present document summarises the contributions of the PhD thesis entitled On (in)tractability
of connection and cut problems [de Melo 2022]. This work was partially supported by CNPq (GD
140399/2017-8) and CAPES (Finance Code 0001; PDSE 88881.187636/2018-01).

https://cos.ufrj.br/index.php/pt-BR/publicacoes-pesquisa/details/15/3057
https://cos.ufrj.br/index.php/pt-BR/publicacoes-pesquisa/details/15/3057

objective is to obtain a feasible configuration that contains all of the special nodes and
that, at the same time, minimises the number of additional nodes used. On the other hand,
concerning cut problems, consider as an example the problem of designing fault tolerant
networks, where the objective is to have a fully operable system even after the failure
of some of its components. Informally, the robustness of a system can be evaluated by
measuring the connectivity between any two subgroups of nodes in the corresponding
network. In other words, it can be described as a function of the maximum number of
distinct existing links between any two subgroups of nodes of the network.

In this work, we investigate the computational complexity, classic and parameter-
ized, of connection and cut problems. We solve many open questions posed by the com-
munity; in particular, we settle the computational complexity of a long-standing problem
asked by David S. Johnson in the Ongoing Guide to NP-completeness [Johnson 1985]. In
what follows, we discuss our contributions in more details.

One of the most fundamental and well-known connection problems is STEINER
TREE, which was proved to be NP-hard by Karp in his seminal paper [Karp 1972]. Since
then, STEINER TREE has been extensively studied from the point of view of graph classes
and computational complexity, being one of the eleven problems selected by David S.
Johnson to appear in the Ongoing Guide to NP-completeness [Johnson 1985]. As a vari-
ant of STEINER TREE, and having as motivation applications in information security,
network routing and telecommunications, the TERMINAL CONNECTION problem (TCP)
was introduced recently [Dourado et al. 2014]. However, TCP was also proved to be NP-
complete on general graphs [Dourado et al. 2014]. We then investigate the complexity of
the problem when restricted to specific graph classes and some of its input parameters are
fixed. We propose several polynomial-time algorithms and hardness proofs. In Section 2,
we formally define the STEINER TREE and TERMINAL CONNECTION problems, and we
summarise our main contributions, focusing particularly on results that separate the com-
plexity of TCP from the complexity of STEINER TREE. These results were presented at
the 47th International Conference on Current Trends in Theory and Practice of Computer
Science [de Melo et al. 2021a], and they were published as a full paper in RAIRO - The-
oretical Informatics and Applications [de Melo et al. 2023]. Further obtained results for
TCP and related variants were also published as full papers in Journal of Computer and
System Sciences [de Melo et al. 2020] and in Networks [de Melo et al. 2021b], and as an
extended abstract in Matemática Contemporânea [de Melo et al. 2022].

As for cut problems, MAXCUT is one of the most classical graph theory
problems, and it is known to be NP-complete since the seventies [Garey et al. 1976].
Nonetheless, only recently its restriction to interval graphs has been announced to be
hard [Adhikary et al. 2021]. Yet, the complexity on the even more restricted class of
unit interval graphs, i.e. interval graphs of interval count 1, still remains unknown. In
fact, many flawed proofs of polynomial-time solvability for the problem on the class
of unit interval graphs have been presented [Bodlaender et al. 1999, Boyaci et al. 2017],
just to be disproved closely after [Bodlaender et al. 2004, Kratochvı́l et al. 2020]. We
present the first complexity result for MAXCUT on interval graphs of bounded interval
count, by proving that the problem remains NP-complete on interval graphs of interval
count 4. Our contribution is a relevant improvement towards filling the complexity gap
between interval and unit interval graphs. As an additional result, we prove that MAX-

https://doi.org/10.1007/978-3-030-67731-2_20
https://doi.org/10.1007/978-3-030-67731-2_20
https://doi.org/10.1051/ita/2023002
https://doi.org/10.1051/ita/2023002
https://doi.org/10.1016/j.jcss.2020.02.001
https://doi.org/10.1016/j.jcss.2020.02.001
https://doi.org/10.1002/net.21976
http://doi.org/10.21711/231766362021/rmc4814

CUT is also NP-complete on permutation graphs, which, along with interval graphs, is
one of the most important and extensively studied geometric intersection graph classes.
This result also closes a long-standing question appearing in the Ongoing Guide to NP-
completeness [Johnson 1985]. In Section 3, we formally define the MAXCUT problem
and give a brief idea of our NP-complete proofs. Our results for the problem on interval
graphs were presented at the 46th International Symposium on Mathematical Foundations
of Computer Science-MFCS 2021 [de Figueiredo et al. 2021] and have been recently pub-
lished as a full paper in Discrete & Computational Geometry [de Figueiredo et al. 2023b].
Concerning permutation graphs, our results have been recently published as a full paper
in Journal of Graph Theory [de Figueiredo et al. 2023a].

Structural parameters have been crucial in the development of parameterized com-
plexity theory. Many problems that are hard on general graphs become tractable when
parameterized by such parameters [Courcelle 1990]. Nevertheless, one of their limi-
tations is the fact that, when dealing with directed graphs, the direction of edges are
not taken into account. Then, Johnson, Robertson, Seymour and Thomas initiated a
quest for the development of width measures that explicitly consider the direction of
edges [Johnson et al. 2001]. This motivated the development of several width mea-
sures for directed graphs, such as directed path-width [Barát 2006] and directed tree-
width [Johnson et al. 2001]. Moreover, defined over cuts of directed graphs, the notion
of zig-zag number was introduced in [de Oliveira Oliveira 2013] as a generalization of
directed path-width and an attempt to provide a unified algorithmic framework based on
monadic second-order logic. However, very little was known about the complexity of
computing the zig-zag number of a directed graph, with many questions remaining open.
We present the first results concerning these questions. More specifically, we analyse the
complexity of the k-ZIG-ZAG NUMBER problem, which consists in deciding whether the
input directed graph has zig-zag number at most k, for a fixed k ≥ 0. We prove that
k-ZIG-ZAG NUMBER is in NP, and that 2-ZIG-ZAG NUMBER is already an NP-hard prob-
lem. In Section 4, we define the notion of zig-zag number of directed graphs and present
our contributions regarding the complexity of k-ZIG-ZAG NUMBER. These results were
published as a full paper in Discrete and Applied Mathematics [Dourado et al. 2022].

2. Connection problems
Let G be a graph and W be a non-empty subset of the vertex set of G. A connection
tree T of G for W is a tree subgraph of G that contains every vertex in W , and whose
leaves belong to W . In a connection tree T for W , the vertices belonging to W are
called terminal, and the vertices belonging to V (T) \W are called non-terminal and are
classified into two types according to their respective degrees in T , namely: the non-
terminal vertices of degree exactly 2 in T are called linkers and the non-terminal vertices
of degree at least 3 in T are called routers. This defines a partition of the vertex set of a
connection tree into terminal vertices, linkers and routers. Figure 1 illustrates the notions
of connection tree, linkers and routers.

The STEINER TREE problem has as input a connected graph G, a non-empty sub-
set W of V (G), and a non-negative integer k, and it asks whether there exists a connected
subgraph T of G that contains every vertex in W and satisfies |V (T) \ W | ≤ k. Note
that, if such a connected subgraph exists, then it admits a spanning tree with at most k
vertices not belonging to W . Thus, STEINER TREE can be alternatively defined in terms

https://doi.org/10.4230/LIPIcs.MFCS.2021.38
https://doi.org/10.4230/LIPIcs.MFCS.2021.38
https://doi.org/10.1007/s00454-023-00508-x
https://doi.org/10.1002/jgt.22948
https://doi.org/10.1016/j.dam.2021.09.013

(a) Graph G and terminal set W (b) T1 (c) T2

Figure 1. A graph G, a terminal set W (blue squares), and connection trees of G
for W , each with a distinct number of linkers (red circles) and routers (solid
black circles).

of connection tree, by asking whether the input graph G has a connection tree T for
W with at most k non-terminal vertices. However, STEINER TREE does not distinguish
the non-terminal terminal vertices among themselves. This motivates the definition of
the TERMINAL CONNECTION problem (TCP, for short), which has as input a connected
graph G, a non-empty terminal set W ⊆ V (G), and two non-negative integers ℓ and r,
and it asks whether there exists a connection tree T of G for W that has at most ℓ linkers
and at most r routers. TCP was proved to be polynomial-time solvable (more specifically,
to be in XP) when the parameters ℓ and r are both fixed, whereas it is NP-complete even
if exactly one of the parameters ℓ ≥ 0 or r ≥ 0 is fixed [Dourado et al. 2014].

An important observation about TCP and STEINER TREE is the fact that there is
a Turing reduction from STEINER TREE to TCP that preserves the structure of the input
graph, namely: (G,W, k) is a yes-instance of STEINER TREE if and only if (G,W, ℓ, r)
is a yes-instance of TCP for some pair ℓ, r ∈ {0, . . . , k} whose sum is exactly k. Hence,
if TCP (with ℓ and r arbitrarily large) is polynomial-time solvable on some graph class
G, then so is STEINER TREE. Nevertheless, if either ℓ ≥ 0 or r ≥ 0 is fixed, then
possibly TCP is polynomial-time solvable on G, while STEINER TREE (for arbitrarily
large k) remains NP-complete on G. Moreover, there might exist a graph class G on
which STEINER TREE is polynomial-time solvable whereas TCP is NP-complete.

We confirm the existence of such separating classes. First, we prove that, on split
graphs, TCP is in XP when parameterized by r, given that r ≥ 1. This tells us that TCP
is polynomial-time solvable for fixed r ≥ 1, whereas STEINER TREE is known to be NP-
complete [White et al. 1985]. In a nutshell, given a graph G on n vertices, we establish
structural properties for the sought tree. Then, relying on these, our algorithm for TCP
enumerates in time nO(r) each possible candidate for router set R, such that |R| ≤ r and
R ⊆ V (G) \ W . Finally, we apply matching techniques to decide whether G admits
a suitable connection tree for W whose router set is exactly R and that has at most ℓ
linkers. We also show that the described algorithm is asymptotically optimum, unless
widely believed complexity assumptions fail, by giving a parameterized reduction from
SET COVER, a well-known W[2]-hard problem. As a second separating result, we prove
through a polynomial-time reduction from HAMILTONIAN PATH that TCP also remains
NP-complete on RDV graphs even if r ≥ 0 is fixed. This contrasts with the computational
complexity of STEINER TREE, which is known to be polynomial-time solvable on strongly
chordal graphs [White et al. 1985], a superclass of RDV graphs. Moreover, we show that
the clique-width of the graph constructed in this reduction from HAMILTONIAN PATH
is at most one unit greater than the clique-width of the original graph. Consequently,
building on this same reduction and on the fact that HAMILTONIAN PATH parameterized
by clique-width is W[1]-hard, we obtain that TCP parameterized by clique-width is also

W[1]-hard, whereas STEINER TREE parameterized by clique-width is known to be in
FPT [Bergougnoux and Kanté 2019].

On the other hand, agreeing with the computational complexity of STEINER
TREE [Colbourn and Stewart 1990], we prove that TCP is linear-time solvable on
cographs. This is done by providing a dynamic programming algorithm over the nodes of
the cotree of the input cograph. In addition, also agreeing with the complexity of STEINER
TREE [Müller and Brandstädt 1987], we prove through a polynomial-time reduction from
VERTEX COVER that TCP is NP-complete on chordal bipartite graphs.

The NP-completeness proof for TCP on chordal bipartite graphs were pub-
lished in [de Melo et al. 2022], and all the other mentioned results were pub-
lished in [de Melo et al. 2020, de Melo et al. 2021a, de Melo et al. 2023]. In particular,
in [de Melo et al. 2020], we analyse the complexity of S-TCP, the strict variant of TCP.
This variant is also used as an auxiliary problem to solve TCP on split graphs.

3. Maximum cut

A cut of a graph G is a partition [A,B] of its vertex set V (G) into two non-empty disjoint
parts A,B ⊆ V (G), and the cut-set of G associated with a cut [A,B] is the set of edges
of G with an endpoint in A and the other endpoint in B. The MAXCUT problem is the
decision problem that has as input a graph G and a non-negative integer k, and which
asks whether there exists a cut in G whose cut-set has cardinality at least k. As previously
mentioned, MAXCUT is a classical NP-complete problem, studied over the years on dis-
tinct graph classes. Nevertheless, its complexity on interval graphs has only been settled
recently [Adhikary et al. 2021], and on the more restricted class of unit interval graphs,
i.e. interval graphs of interval count 1, it still remains open. Moreover, since the Ongoing
Guide to NP-completeness [Johnson 1985], it has been unknown whether the problem is
NP-complete when constrained to permutation graphs.

The notion of interval count of an interval graph was introduced in the eight-
ies cf. [Leibowitz et al. 1982], and it is defined as the minimum number of distinct inter-
val lengths needed to represent the graph among all its interval models. Besides being
an interesting problem by itself, understanding the interval count can be of value for the
investigation of problems that are hard on general interval graphs.

We provide the first complexity classification for MAXCUT on interval graphs of
bounded interval count, showing that it is also NP-complete on interval graphs of interval
count 4. This was presented at MFCS 2021 [de Figueiredo et al. 2021] and has been
recently published in Discrete & Computational Geometry [de Figueiredo et al. 2023b].
Additionally, we prove the NP-completeness of MAXCUT on permutation graphs, a result
that has been recently published in Journal of Graph Theory [de Figueiredo et al. 2023a].
In order to prove these results, we propose polynomial-time reductions from MAXCUT
restricted to cubic graphs. The key gadget of our reduction is the notion of (x, y)-grained
gadget, which we introduce as a generalization of the so-called V -gadgets and E-gadgets
described in [Adhikary et al. 2021].

An (x, y)-grained gadget is a split graph H formed by a stable set S ′ ∪ S ′′ and a
clique K ′ ∪K ′′, with |S ′| = |S ′′| = x and |K ′| = |K ′′| = y, such that K ′ (resp. K ′′) is
complete to S ′ (resp. S ′′), and there is no edge between K ′ (resp. K ′′) and S ′′ (resp. S ′).

https://doi.org/10.4230/LIPIcs.MFCS.2021.38
https://doi.org/10.1007/s00454-023-00508-x
https://doi.org/10.1002/jgt.22948

Grained gadgets are both interval and permutation graphs. Indeed, Figure 2 depicts an
(x, y)-grained gadget and its interval model and permutation representation. The central
property of such a gadget is the fact that, for suitable values of x and y, if G is a supergraph
of an (x, y)-grained gadget whose neighbours are arranged in a well-structured way, then,
in any maximum cut of G, the vertices in K ′ ∪ S ′′ are placed in a same part of the cut,
opposite to the part containing the vertices in K ′′ ∪ S ′. This provides a handy way of
establishing how maximum cuts of the original graph are related to maximum cuts of
our reduction graphs. Then, relying on this property, we use grained gadgets as building
blocks in our polynomial-time reductions, which are briefly described next.

(a) Grained gadget (b) Interval model (c) Permutation representation

Figure 2. An (x, y)-grained gadget and its interval model and permutation repre-
sentation, respectively.

Given a cubic graph G and orderings πV = (v1, . . . , vn) and πE = (e1, . . . , em)
of the vertex set and edge set of G, respectively, we construct an interval model M of
interval count 4, such that G has a cut-set of size at least k if and only if the interval
graph corresponding to M has a cut-set of size at least ϕ(n, k), for a suitable function ϕ.
Intuitively, to construct M, we partition the real line into m mutually disjoint regions,
such that the j-th region is related to the edge ej and holds the information whether ej
is in the cut-set of G. To accomplish this, the edge ej is represented by a grained gadget
Ej , which must be contained within the j-th region, and each vertex vi is represented by a
grained gadget Hj

i and special intervals, called link intervals, connecting Hj
i to Hj+1

i . The
aim of such link intervals is to propagate, from a region to the next, the information about
to which part of the cut the respective vertex vi belongs. In addition, in order to represent
that a vertex vi is an endpoint of an edge ej , we add in a convenient way a couple of
intervals connecting Hj

i to Ej , called incidence intervals, We show that it is possible to
construct such a model M having only four distinct interval lengths. Hence, we obtain
NP-completeness of MAXCUT on interval graphs of interval count 4.

Our proof for the NP-completeness of MAXCUT on permutation graphs employs
a similar approach. More specifically, given G, πV and πE as in the previous paragraph,
we construct a permutation model {Π,Π′}, whose associated permutation graph G′ has a
cut-set of size at least φ(n, k) if and only if G has a cut-set of size at least k, where φ is
a suitable function. In the permutation model {Π,Π′}, each vertex vi of G is represented
by a grained gadget Hi and each edge ej of G is represented by a grained gadget Ej , such
that Hi appears on the left of Hi+1, Hn appears on the left of E1, and Ej appears on the
left of Ej+1. In addition, in order to represent that a vertex vi is an endpoint of an edge ej ,
we add a couple of vertices relating Hi to Ej , so that ej belongs to a maximum cut of G if
and only if the grained gadgets of its endpoints are partitioned in an opposite way in the
corresponding maximum cut of G′. It immediately follows from our construction that the
obtained graph is a permutation graph.

4. Zig-zag number

The notion of zig-zag number was introduced in [de Oliveira Oliveira 2013] as a general-
isation for directed path-width, aiming to provide a unified algorithmic framework for di-
rected graphs based on monadic second-order logic. However, the problem of computing
the zig-zag number of a directed graph was completely unexplored. We then investigate
the computational complexity of k-ZIG-ZAG NUMBER, the problem of deciding whether
a given directed graph has zig-zag number at most k, for fixed k ≥ 0. Intuitively, the
zig-zag number of a directed graph measures how much the directed cycles of this graph
are nested. Next, we present a formal definition for this notion.

Let G be a directed graph on n vertices and π = (u1, . . . , un) be an ordering of
the vertex set of G. For each i ∈ [n − 1], we let SG(π, i) denote the i-th cut-set of G
with respect to π, i.e. the set of all edges of G between the vertices in {u1, . . . , ui} and
the vertices in {ui+1, . . . , un}. For each directed path P of G, we let zn(G, π, P) be the
maximum number of edges of P that belong to the cut-set SG(π, i), where the maximum
is taken over all i ∈ [n− 1]. Then, we let zn(G, π) be the maximum zn(G, π, P) over all
directed paths P of G. Finally, we define the zig-zag number of G, denoted by zn(G), as
the minimum zn(G, π) over all orderings π. Figure 3 exemplifies these notions.

(a) zn(G, π, P1) = 1 (b) zn(G, π, P2) = 2

Figure 3. Directed graph G, ordering π = (u1, . . . , un), and directed paths P1 and
P2 (in bold), such that zn(G, π, P1) = 1 and zn(G, π, P2) = 2, respectively.

It is immediate from the definition of zig-zag number that a directed graph has
zig-zag number 0 if and only if it does not contain any edge. Moreover, one can verify
that every directed acyclic graph with at least one edge has zig-zag number 1. Indeed, it
is known that a directed graph G is directed acyclic if and only if it admits a topological
ordering. Thus, one can verify that, if G is a directed acylic graph and π corresponds to a
topological ordering of G, then zn(G, π) = 1. In other words, graphs of zig-zag number
at least 2 must contain directed cycles. On the other hand, every directed graph G with a
directed cycle of length at least 3 necessarily has zig-zag number at least 2. In this case, for
each ordering π = (u1, . . . , un), there always exist three distinct vertices a, b, c ∈ V (G)
such that (a, b, c) is a directed path of G, where a <π b and c <π b. Next, we present a
sketch of our proofs about the computational complexity of k-ZIG-ZAG NUMBER.

First, we prove that k-ZIG-ZAG NUMBER is in NP for each fixed k. Unlike most
natural decision problems, settling k-ZIG-ZAG NUMBER in NP turned out to be an in-
teresting quest. This is due to the fact that the definition of zig-zag number involves the
alternation of an existential and a universal quantifiers, and thus, a naive application of the
definition only leads to a ΣP

2 -upper bound for the problem. To circumvent this and, then,
settle the problem in NP, we show how to replace the inner universal quantifier, which
iterates over all directed paths, with an XP-time deterministic computation corresponding
to a guessed linear order of the vertices of the input graph and the integer k.

More specifically, we reduce the problem of deciding whether zn(G, π) ≥ k + 1,
for a guessed ordering π, to the REACHABILITY problem in a suitably defined directed
acyclic graph DG(π, k). This graph is constructed considering all possible sequences
S ′
1, . . . , S

′
n−1 of subcuts S ′

i ⊆ SG(π, i) of size at most k+1, such that their union induces
a directed path P . The neat idea behind such sequences is that, when enumerating all
possible subcuts S ′

i, it is sufficient to only consider neighbouring subcuts S ′
i+1 and S ′

i+1.
This owns to the fact that a non-trivial directed graph P is a directed path if and only if it
satisfies the following simple four conditions: (i) P has exactly one vertex of in-degree 0
and out-degree 1; (ii) P has exactly one vertex of in-degree 1 and out-degree 0; (iii) all the
other vertices of P have in-degree 1 and out-degree 1; (iv) P is weakly connected. Then,
using a depth-first search algorithm, we are able to decide in nO(k)-time whether the graph
DG(π, k) has a directed path of size n−1, which in turn is equivalent to deciding whether
the input directed graph G has zig-zag number at least k + 1. Consequently, we obtain
that k-ZIG-ZAG NUMBER is in NP for every fixed k ≥ 0.

Now, through a polynomial-time reduction from POSITIVE NOT ALL EQUAL
3SAT (PNAE 3SAT, for short), we prove that 2-ZIG-ZAG NUMBER is NP-hard. It is
worth mentioning that, for k > 2, it is still unknown whether k-ZIG-ZAG NUMBER is
NP-hard. Given an instance I = (X, C) of PNAE 3SAT, we construct a directed graph
GI comprising a directed cycle Hi = (u1

i , u
2
i , u

3
i) for each variable xi ∈ X , and a directed

cycle H̃j = (v1j , v
2
j , v

3
j) for each clause Cj ∈ C. Also, if xi is the l-th literal in Cj , then

GI further contains the directed edges (u1
i , v

l
j) and (u3

i , v
l
j). We establish the existence of

a satisfying truth assignment for I if and only if there is an ordering of zig-zag number at
most 2 for the vertices of GI . The main idea of our proof is to explore the internal relative
orderings of the vertices of each directed cycle of GI , and the relative placements among
the subgraphs Hl1 , Hl2 , Hl3 , and H̃j for each clause Cj = {xl1 , xl2 , xl3} ∈ C.

The results presented in this section have been published in Discrete Applied
Mathematics [Dourado et al. 2022].

5. Concluding remarks

We have investigated connection and cut problems on graphs from the viewpoint of com-
putational complexity and graph classes, proposing various contributions for these two
groups of problems. In particular, we have answered a long-standing open question for the
MAXCUT problem, appearing in the Ongoing Guide to NP-completeness [Johnson 1985].
In addition to the described contributions, many other results were obtained during the
doctoral studies, including the investigation of width measures for directed graphs from
formal languages and logic standpoints [de Melo and de Oliveira Oliveira 2022]. The ob-
tained results were published in high-standard journals and conferences in the fields of
algorithms and graph theory, counting nine journal papers and six conference papers.
In the thesis’ appendix, we also provide a thorough revision of the Ongoing Guide to
NP-completeness [de Figueiredo et al. 2022]. In that revision, in addition to an updated
version of the original guide [Johnson 1985], we also provide the state of the art of pa-
rameterized complexity of the problems, thus putting in evidence the granularity provided
by the Parameterized Complexity Theory1.

1See Parameterized Complexity News, March 2022, Vol.18, No. 1, ISSN 2203-109X.

https://doi.org/10.1016/j.dam.2021.09.013
https://doi.org/10.1016/j.dam.2021.09.013
http://fpt.wikidot.com/local--files/fpt-news:the-parameterized-complexity-newsletter/2022April

References

Adhikary, R., Bose, K., Mukherjee, S., and Roy, B. (2021). Complexity of maximum
cut on interval graphs. In 37th International Symposium on Computational Geometry,
SoCG 2021, volume 189 of LIPIcs, pages 7:1–7:11.

Barát, J. (2006). Directed path-width and monotonicity in digraph searching. Graphs and
Combinatorics, 22(2):161–172.

Bergougnoux, B. and Kanté, M. (2019). Fast exact algorithms for some connectivity
problems parameterized by clique-width. Theoretical Computer Science, 782:30 – 53.

Bodlaender, H. L., de Figueiredo, C. M. H., Gutierrez, M., Kloks, T., and Niedermeier,
R. (2004). SIMPLE MAX-CUT for split-indifference graphs and graphs with few P4s.
In Experimental and Efficient Algorithms, Third International Workshop, WEA 2004,
volume 3059 of Lecture Notes in Computer Science, pages 87–99.

Bodlaender, H. L., Kloks, T., and Niedermeier, R. (1999). SIMPLE MAX-CUT for unit
interval graphs and graphs with few P4s. Electronic Notes in Discrete Mathematics,
3:19–26.

Boyaci, A., Ekim, T., and Shalom, M. (2017). A polynomial-time algorithm for the
maximum cardinality cut problem in proper interval graphs. Information Processing
Letters, 121:29–33.

Colbourn, C. J. and Stewart, L. K. (1990). Permutation graphs: connected domination
and Steiner trees. Discrete Mathematics, 86(1-3):179–189.

Courcelle, B. (1990). The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Information and Computation, 85(1):12–75.

de Figueiredo, C. M. H., de Melo, A. A., de S. Oliveira, F., and Silva, A. (2021). Maxi-
mum cut on interval graphs of interval count four is NP-complete. In 46th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2021, volume
202 of LIPIcs, pages 38:1–38:15.

de Figueiredo, C. M. H., de Melo, A. A., de S. Oliveira, F., and Silva, A.
(2023a). Maxcut on permutation graphs is NP-complete. Journal of Graph Theory.
doi.org/10.1002/jgt.22948 (forthcoming).

de Figueiredo, C. M. H., de Melo, A. A., de S. Oliveira, F., and Silva, A. (2023b). Max-
imum cut on interval graphs of interval count four is NP-complete. Discrete & Com-
putational Geometry. doi.org/10.1007/s00454-023-00508-x (forthcoming).

de Figueiredo, C. M. H., de Melo, A. A., Sasaki, D., and Silva, A. (2022). Revising
Johnson’s table for the 21st century. Discrete Applied Mathematics, 323:184–200.

de Melo, A. A. (2022). On (in)tractability of connection and cut problems. PhD thesis,
Universidade Federal do Rio de Janeiro.

de Melo, A. A., de Figueiredo, C. M. H., and Souza, U. S. (2021a). On the terminal
connection problem. In 47th International Conference on Current Trends in Theory
and Practice of Computer Science, SOFSEM 2021, volume 12607 of Lecture Notes in
Computer Science, pages 278–292.

https://doi.org/10.1002/jgt.22948
https://doi.org/10.1007/s00454-023-00508-x

de Melo, A. A., de Figueiredo, C. M. H., and Souza, U. S. (2021b). On undirected
two-commodity integral flow, disjoint paths and strict terminal connection problems.
Networks, 77(4):559–571.

de Melo, A. A., de Figueiredo, C. M. H., and Souza, U. S. (2022). The strict termi-
nal connection problem on chordal bipartite graphs. Matemática Contemporânea,
48(14):137–145.

de Melo, A. A., de Figueiredo, C. M. H., and Souza, U. S. (2023). On the computational
difficulty of the terminal connection problem. RAIRO - Theoretical Informatics and
Applications.

de Melo, A. A. and de Oliveira Oliveira, M. (2022). Second-order finite automata. Theory
of Computing Systems, 66(4):861–909.

de Melo, A. A., Figueiredo, C. M. H., and Souza, U. S. (2020). A multivariate analysis
of the strict terminal connection problem. Journal of Computer and System Sciences,
111:22–41.

de Oliveira Oliveira, M. (2013). Subgraphs satisfying MSO properties on z-topologically
orderable digraphs. In Parameterized and Exact Computation, IPEC 2013, volume
8246 of Lecture Notes in Computer Science, pages 123–136.

Dourado, M. C., de Figueiredo, C. M. H., de Melo, A. A., de Oliveira Oliveira, M., and
Souza, U. S. (2022). Computing the zig-zag number of directed graphs. Discrete
Applied Mathematics, 312:86–105.

Dourado, M. C., Oliveira, R. A., Protti, F., and Souza, U. S. (2014). Design of connection
networks with bounded number of non-terminal vertices. Matemática Contemporânea,
42(14):39–47.

Garey, M. R., Johnson, D. S., and Stockmeyer, L. J. (1976). Some simplified NP-complete
graph problems. Theoretical Computer Science, 1(3):237–267.

Johnson, D. S. (1985). The NP-completeness column: An ongoing guide. Journal of
Algorithms, 6(3):434–451.

Johnson, T., Robertson, N., Seymour, P. D., and Thomas, R. (2001). Directed tree-width.
Journal of Combinatorial Theory, Series B, 82(1):138–154.

Karp, R. M. (1972). Reducibility among Combinatorial Problems, pages 85–103.
Springer US, Boston, MA.

Kratochvı́l, J., Masarı́k, T., and Novotná, J. (2020). U-bubble model for mixed unit inter-
val graphs and its applications: The maxcut problem revisited. In 45th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2020, volume
170 of LIPIcs, pages 57:1–57:14.

Leibowitz, R., Assmann, S. F., and Peck, G. W. (1982). The interval count of a graph.
SIAM Journal on Algebraic Discrete Methods, 3(4):485–494.

Müller, H. and Brandstädt, A. (1987). The NP-completeness of Steiner tree and dominat-
ing set for chordal bipartite graphs. Theoretical Computer Science, 53(2-3):257–265.

White, K., Farber, M., and Pulleyblank, W. (1985). Steiner trees, connected domination
and strongly chordal graphs. Networks, 15(1):109–124.

	Introduction
	Connection problems
	Maximum cut
	Zig-zag number
	Concluding remarks

