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Abstract. In 1982, Berge defined the class of x-diperfect digraphs. A digraph
D is x-diperfect if for every induced subdigraph H of D and every minimum
coloring S of H there exists a path P of H with exactly one vertex of each
color class of S. Berge also showed examples of non-x-diperfect orientations
of odd cycles and their complements. The ultimate goal in this research area
is to obtain a characterization of x-diperfect digraphs in terms of forbidden
induced subdigraphs. In this work, we give steps towards this goal by present-
ing characterizations of orientations of odd cycles and their complements that
are x-diperfect. We also show that certain classes of digraphs are x-diperfect.
Moreover, we present minimal non-x-diperfect digraphs that were unknown.

1. Introduction

Let G = (V(G), E(G)) be a graph. We use standard concepts of path, cycle,
complement of a graph and induced subgraph as defined in [Bondy and Murty 2008]]. A
set of vertices S C V(G) is a stable set of G if, for any pair of vertices u,v € S, the
vertices u and v are non-adjacent. A set of vertices 7' C V(G) is a clique of G if, for any
pair of vertices u,v € T, the vertices v and v are adjacent. A (vertex)-coloring S of a
graph G is a partition of V' (G) into stable sets, also called color classes. We say that S is
minimum if S has the smallest possible number of color classes.

Let x(G) denote the chromatic number of G, that is, the number of color classes
in a minimum coloring of G, and let w(G) denote the number of vertices in a maximum
clique of GG. In any coloring, the vertices of a clique must receive distinct colors, so
X(G) > w(G). One may ask for which graphs this equality holds. Such a question led to
the definition of an important class of graphs, named perfect graphs. We say that a graph
G is perfect if, for every induced subgraph H of G, it follows that x(H) = w(H).

Clearly, bipartite graphs (graphs that can be colored with two colors) are per-
fect. However, for any odd cycle C' with at least five vertices, x(C) = 3 and w(C) = 2.
In [Berge 1961], it was observed that complements of odd cycles with at least five vertices
are not perfect (see Figure[I). Indeed, based on some empirical evidence, Berge conjec-
tured that a graph is perfect if and only if its complement is perfect. This conjecture was
proved in [Lovasz 1972].
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Figure 1. Examples of graphs that are not perfect. The graph G, depicted in (a)
is a cycle with five vertices. Observe that x(G;) = 3 and w(G;) = 2. The
graph G, depicted in (b) is the complement of a cycle with seven vertices.
Observe that x(G2) = 4 and w(G3) = 3.

Theorem 1.1 ([Lovasz 1972]). A graph G is perfect if and only if its complement is per-
fect.

Berge also proposed a stronger conjecture of a characterization of perfect graphs
in terms of forbidden induced subgraphs. As mentioned before, if a graph G is perfect,
then GG does not contain an odd cycle with at least five vertices or its complement as an
induced subgraph. Berge conjectured that the converse was true as well. This challenging
conjecture attracted a lot of attention from the research community not only because of
its structural appeal but also because of its algorithmic aspects. It was shown that many
problems such as minimum coloring, maximum clique, and maximum stable set can be
solved in polynomial time for perfect graphs [Grotschel et al. 1984]. This conjecture was
eventually proved some decades later in [Chudnovsky et al. 2006] and it became known
as the Strong Perfect Graph Theorem. This result is considered an important cornerstone
in Graph Theory and the proof of [Chudnovsky et al. 2006]] can be seen as the culmina-
tion of efforts of several researchers along many years. Further information about perfect
graphs and their relevance can be found in [Chudnovsky et al. 2003].

Theorem 1.2 ([Chudnovsky et al. 2006]]). A graph G is perfect if and only if G does not
contain an odd cycle with at least five vertices or its complement as an induced subgraph.

In [Berge 1982], motivated by his research on perfect graphs and some well-
known results for digraphs that relate colorings and paths, Berge introduced the concept
of y-diperfection of digraphs (defined later) which is the main theme of this research. In
order to present such results and concepts, we need some definitions.

Let D = (V(D), A(D)) be a digraph. The underlying graph of D, denoted by
U(D), is the simple graph with vertex set V(D) such that v and v are adjacent in U(D)
if and only if either (u,v) € A(D) or (v,u) € A(D). Similarly, we may obtain a digraph
D from a graph G by replacing each edge uv of G by an arc (u,v), or an arc (v, u), or
both; such digraph D is called a super-orientation of G. A super-orientation that does
not contain a digon (a directed cycle of length two) is an orientation. A digraph D is
symmetric if D is a super-orientation of a graph G in which every edge uv of G is replaced
by both arcs (u,v) and (v, u).



If (u, v) is an arc of D, then we say that u dominates v and v is dominated by u. A
directed path or directed cycle is an orientation of a path or cycle, respectively, in which
each vertex dominates its successor in the sequence. Henceforth, when we say a path of
a digraph, we mean a directed path (note that we do not use this convention for cycles).
A path P is hamiltonian if V(P) = V(D). When we say a cycle of a digraph, we mean
either a super-orientation of an undirected cycle with at least three vertices or a digon.

A graph G is complete if V(G) is a clique. A semicomplete digraph is a super-
orientation of a complete graph. In [Réde1 1934] the following classical result was proved.

Theorem 1.3 ([Rédei 1934]). Every semicomplete digraph has a hamiltonian path.

A stable set of a digraph D is a stable set of its underlying graph U (D). Similarly,
a coloring of a digraph D is a coloring of its underlying graph U(D). In [Roy 1967]
and [Galla1 1968] independent proofs of a generalization of Rédei’s Theorem were given.
They showed that the number of vertices in a longest path of a digraph, denoted by A(D),
is at least y(D). Actually, they proved a stronger statement that uses the concept of
orthogonality. A coloring § and a path P of D are orthogonal if P contains exactly one
vertex of each color class of S. We also say that P is orthogonal to S or vice versa.

Theorem 1.4 ([Gallai 1968][Roy 1967]). Let D be a digraph. For every longest path P
of D, there exists a coloring C of D such that P and C are orthogonal. In particular,
A(D) > x(D).

In [Berge 1982], it was noted that some digraphs have stronger properties in the re-
lation between paths and colorings. In this context, Berge introduced the class y-diperfect
digraphs. A digraph D is x-diperfect if for every minimum coloring S of D there is a path
P orthogonal to S, and this property holds for every induced subdigraph of D. Note that
if a digraph D is y-diperfect, then the inequality A\(D) > (D) (Gallai-Roy’s Theorem)
immediately holds.

Berge also proved that every symmetric digraph is y-diperfect, as well as every
digraph whose underlying graph is perfect. On the other hand, Berge showed the first
examples of obstructions (minimal non-y-diperfect digraphs). He showed that for a cycle
of length five and for the complement of an odd cycle with at least five vertices, there are
orientations that are not y-diperfect. Examples given by Berge are depicted in Figure
The orientation of a cycle of length five in Figure [2al does not have a path with three
vertices of all three colors because no path with three vertices contains vertex u, which
belongs to a color class of size one. The digraph D on Figure [2b]is a super-orientation of
the complement of a cycle of length seven. We have x (D) = 4 and a 4-coloring of D, but
D is not y-diperfect because no path with four vertices contains vertex u, which belongs
to a color class of size one.

Similarly to the problem of the perfect graphs, Berge was interested in obtaining a
characterization of y-diperfect digraphs in terms of forbidden induced subdigraphs. Due
to the similarity of the problems and given the many decades between the proposal of
Berge’s Conjecture and the proof of the Strong Perfect Graph Theorem, it is reasonable to
expect that finding a similar characterization for x-diperfect digraphs may be a challeng-
ing problem. Moreover, to the best of our knowledge, this problem has not been much
studied and many questions regarding a possible characterization of this class of digraphs
remain open.
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Figure 2. Examples of non-y-diperfect digraphs given by Berge. The digraph
depicted in (a) is an orientation of a cycle with five vertices. For the given
minimum coloring, there is no path orthogonal to it. The digraph depicted
in (b) is an orientation of the complement of a cycle with seven vertices.
For the given minimum coloring, there is no path orthogonal to it.

In this paper, we present the approaches used and the results obtained in the first
author’s dissertation [de Paula Silva 2022]]. In the first approach, we gave original char-
acterizations of which super-orientations of odd cycles and which super-orientations of
complements of odd cycles are x-diperfect. Furthermore, we showed that some specific
classes of digraphs that are free of such non-y-diperfect structures are y-diperfect. In the
second approach, we investigated new obstructions. At first glance, it may be tempting to
conjecture that the set of obstructions for y-diperfect digraphs is exactly the set of non-
x-diperfect super-orientations of odd cycles and their complements. However, this is not
true. We gave new examples of obstructions that show that forbidding such structures is
not enough to characterize y-diperfect digraphs.

2. Super-orientations of odd cycles and their complements

In this section, we present our results concerning the characterizations of super-
orientations of odd cycles and their complements that are y-diperfect. Before we present
them, we need to introduce some notation. Let C; denote the graph isomorphic to a cycle
of length k& > 3, and let G denote the complement of G. Let a(G) denote the stability
number of (G, that is, the number of vertices in a maximum stable set of a graph (or
digraph) G.

Let D be a digraph. A vertex v € V(D) is a source if v is not dominated by any of
its neighbors. Similarly, we say that v is a sink if v does not dominate any of its neighbors.
Given a fixed minimum coloring of D, we say that a path P in D is a rainbow path if no
two vertices of P are in the same color class; moreover, if |V (P)| = k, then we may say
that P is a k-rainbow path.

2.1. Super-orientations of Csj 1

Let D be a super-orientation of an odd cycle C' = (1, xo, ..., Tapy1, 1) With at
least five vertices. Let P = (x;,...,x;) be a subpath of C'. We say that the subdigraph
induced by V' (P) is a sector if each of z; and z; is a source or a sink in D; we say that
the sector is odd if P has odd length, otherwise it is even. We say that D is a conflicting
odd cycle if it contains at least two arc-disjoint odd sectors.



We proved that a super-orientation D of an odd cycle is x-diperfect if and only if
D is not a conflicting odd cycle. Figure (3| shows examples of conflicting odd cycles with
minimum colorings that do not admit a 3-rainbow path. While for the digraphs depicted
in Figure [2] there is a vertex in a color class of size one which does not belong to a path
with y (D) vertices, every vertex of both digraphs of Figure |3| belongs to a path with at
least three vertices. Even so, both are non-y-diperfect.

Theorem 2.1. Let D be a super-orientation of an odd cycle. Then, D is x-diperfect if and
only if D is not a conflicting odd cycle.

g X1
T9 X2 T9 X2
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Figure 3. Minimum colorings of conflicting odd cycles which do not admit a 3-
rainbow path. On the left, (z1,22) and (z4, z5) are arc-disjoint odd sectors.
On the right, (1,22, 23,24) and (x4, x5) are arc-disjoint odd sectors.

2.2. Super-orientations of Cs 1

Let GG be a graph isomorphic to a C'y;11, with £ > 2. As cliques in G correspond to
stable sets in G and vice versa, we deduce that a(G) = w(G) = 2 and w(G) = o(G) = k.
Moreover, as we can partition the vertices of G into k cliques of size two and one clique
of size one, we can verify that every minimum coloring of G must have exactly k color
classes of size two and one color class of size one. Hence, x(G) = k + 1.

The characterization of non-y-diperfect super-orientations of complements of odd
cycles required several technical lemmas and auxiliary results. We describe the general
idea behind the proof of such characterization, but we omit most of the technical details.
We refer the reader to Lemmas 3.5 to 3.20 presented in [de Paula Silva 2022]] which are
important tools in the proof. These lemmas allow us to conclude that these digraphs must
have the structure described next.

Let D be a super-orientation of a Cyy, 1, for £ > 2, with a fixed minimum coloring
S. We can build a partition of D into two paths P = (vq,...,vx) and Q = (wy, ..., wg)
with £ vertices and one single vertex u* (which is the vertex in the only color class of size
one of §). Moreover, both V(P) and V(@) induce semicomplete digraphs in D. Based
on this partition, we show that D is non-x-diperfect if and only if the following properties
hold.

e there is no arc (v, v;) or (w;,v;) for j > 1,
» there is no arc (v;, w;) or (w;,v;) for j > 1,
e there is an index p such that v, and w, are the non-neighbors of v* in D,



* no vertex that precedes v, and w, in P and (), respectively, are dominated by u*
and,
* no vertex that succeeds v, and w, in P and (), respectively, dominates u*.

Figure 4| shows an example of a non-y-diperfect super-orientation of a C}; based
on such structure. Although not all arcs are represented in the figure, recall that V' (P) and
V(@) induce semicomplete digraphs.

Figure 4. Non-y-diperfect super-orientation of C1;.

This structural characterization allowed us to prove another characterization with
a more intuitive statement. In order to show that D is y-diperfect, it suffices to ensure that
every vertex of a super-orientation D of a Cy, 1, with k > 2, belongs to a path with y (D)
vertices. Recall that this condition is not sufficient for a super-orientation of an odd cycle
to be x-diperfect (see Figure [3).

Theorem 2.2. Let D be a super-orientation of Coy 1, with k > 2. Then, D is x-diperfect
if and only if every vertex of D belongs to a path with k + 1 vertices.

3. Generalizations of semicomplete digraphs

Rédei’s Theorem [Réde1 1934] ensures the existence of a hamiltonian path in
semicomplete digraphs. Because of that, it is easy to find rainbow paths in digraphs
that contain semicomplete subdigraphs with x (D) vertices. For example, all the digraphs
whose underlying graph is perfect satisfy this property.

Based on these observations, we decided to study some classes of digraphs that are
generalizations of semicomplete digraphs: locally in-semicomplete digraphs and locally
arc in-semicomplete digraphs.

3.1. In-semicomplete digraphs

The classes of in-semicomplete and out-semicomplete digraphs were introduced
in [Bang-Jensen 1990] and [Bang-Jensen 1995]. We say that a digraph D is (locally) in-
semicomplete (respectively, (locally) out-semicomplete) if for every vertex v € V(D) the
in-neighborhood (respectively, out-neighborhood) of v induces a semicomplete digraph.
Note that if we reverse the orientation of each arc of an in-semicomplete digraph we obtain
an out-semicomplete digraph and vice versa. Hence, all the results for in-semicomplete
digraphs have analogous statements that hold for out-semicomplete digraphs.

Let D be an in-semicomplete digraph. Note that every induced subdigraph of D
is also in-semicomplete. Let C' be an induced cycle with at least four vertices of D. If



a vertex of C' has in-degree greater than one, then this implies the existence of a chord
in C' (an arc between non-consecutive vertices of ). So we conclude that C' must be
directed. Hence, C' cannot contain conflicting odd cycles as induced subdigraphs. More-
over, we showed that D cannot contain a non-y-diperfect super-orientation of a Coyx 1
as an induced subdigraph. So, we do not have to deal with the obstructions described in
Section 2

We showed that every in-semicomplete digraph is y-diperfect. The proof of this
result relies on an ingenious induction hypothesis (see [de Paula Silva 2022, Lemma 4.5]).
We remove the vertices of a color class and rather than assuming the existence of a rain-
bow path in the smaller digraph, we assume that there is a collection of rainbow paths
with certain properties (described in the induction hypothesis). Then using some clever
1deas we extend this collection to a collection of rainbow paths in the original digraph.

Theorem 3.1. If D is an in-semicomplete digraph (out-semicomplete digraph), then D is
x-diperfect.

3.2. Arc in-semicomplete digraphs

The classes of arc in-semicomplete digraphs and arc out-semicomplete digraphs
were introduced in [Wang and Wang 2009]. A digraph D is (locally) arc in-semicomplete
(respectively, (locally) arc out-semicomplete) if for every arc (u,v) € A(D) every
in-neighbor (respectively, out-neighbor) of u and every in-neighbor (respectively, out-
neighbor) of v are adjacent or coincide. As in the case of in-semicomplete digraphs, all
the results for arc in-semicomplete digraphs have analogous statements that hold for arc
out-semicomplete digraphs.

Let D be an arc in-semicomplete digraph. As shown in [Freitas and Lee 2021],
every induced odd cycle with at least five vertices of D is directed and D cannot contain
a super-orientation of the complement of an odd cycle with at least seven vertices as an
induced subdigraph. Thus, here we do not have to deal with the obstructions of Section 2]
Freitas and Lee also showed that, when D satisfies some additional properties, V' (D) may
be partitioned into sets with a very particular structure. This result helped us to prove that
every arc in-semicomplete digraph is y-diperfect.

Theorem 3.2. If D is an arc in-semicomplete digraph (arc out-semicomplete), then D is
x-diperfect.

4. New minimal non-yx-diperfect digraphs

Recall that, by the Strong Perfect Graph Theorem, perfect graphs can be charac-
terized by forbidding odd cycles with at least five vertices as well as their complements.
Also, the examples of non-y-diperfect digraphs given in [Berge 1982] when Berge in-
troduced the y-diperfect digraphs are precisely super-orientations of these structures. So
it may be tempting to conjecture that the set of obstructions for y-diperfect digraphs is
exactly the set of non-y-diperfect super-orientations of Cy;, 1 and Cy 1, for £ > 2. How-
ever, such an assertion does not hold. After we obtained the characterizations presented in
Section 2] we found more obstructions. Such digraphs have stability number two or three.
All the obstructions and the method by which we found them are in [de Paula Silva 2022]]
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Figure 5. New y-diperfect digraphs.

Figure [5] shows two examples of the new obstructions. The fact that these digraphs are
obstructions is not obvious, so we refer the reader to [de Paula Silva 2022, Appendix A].

We observed that the underlying graph of the obstructions with stability number
two that we have found is a spanning subgraph of a Cy; 1, for £ > 3. For example, if
we add the arc joining = and y in the digraph depicted in Figure [Sa) we obtain a super-
orientation of a C. Such observation led us to find a method to build an obstruction by
deleting an arc from some non-x-diperfect super-orientations of a Cy; 1 for every k > 3.

Lemma 4.1. For every k > 3, there is an obstruction that is obtained by deleting an arc
from some non-x-diperfect super-orientation of a Co1.

Motivated by these observations, we decided to investigate digraphs with stability
number two whose underlying graph does not contain spanning (k + 1)-chromatic sub-
graphs of a (11 with k > 3. In other words, we are interested in a family # of digraphs
in which D € H if and only if a(D) = 2 and, for every induced subdigraph D’ of D, the
graph U(D’) is not a spanning (k + 1)-chromatic subgraph of a Co, 1 with & > 3. One
may note that this is equivalent to saying that a digraph D € ‘H if and only if every odd
cycle of U(D) has length five.

The main result of this investigation is a characterization of y-diperfect digraphs
in H. We proved that a digraph in ‘H is y-diperfect if and only if it does not contain an
induced conflicting odd cycle. We omit this proof because it is not straightforward and it
depends on several auxiliary results (see [de Paula Silva 2022, Section 5.2]).

Theorem 4.2. Let D be a digraph in which every odd cycle of U(D) has length five. Then,
D is x-diperfect if and only if D does not contain a conflicting odd cycle as an induced
subdigraph.

5. Conclusion

In this paper, we presented the main results obtained in [de Paula Silva 2022].
These results were published in two paper. The first one was published in Discrete Math-
ematics [de Paula Silva et al. 2022a]] and it contains the results concerning the character-
izations of y-diperfect super-orientations of odd cycles and their complements and the
proofs that every in-semicomplete digraph and every arc in-semicomplete digraph is x-
diperfect. The second one was published in the proceedings of the 15th Latin American
Symposium on Theoretical Informatics (LATIN 2022) [lde Paula Silva et al. 2022b]]. This



paper contains the results concerning the new obstructions that we have found focusing
on those with stability number two.

The new obstructions that we have found do not seem to have an evident pattern.
At this moment, it seems hard to conjecture what would be the set of minimal non-y-
diperfect digraphs.

We note that our characterization of y-diperfect super-orientations of comple-
ments of odd cycles led us to find an infinite family of counterexamples to a conjecture
of Berge on the characterization of a-diperfect digraphs [de Paula Silva et al. |]. The class
of a-diperfect digraphs was introduced in [Berge 1982]] simultaneously with the class of
x-diperfect digraphs with the aim of establishing a structural relation between stable sets
and path-partitions on digraphs. This result was obtained shortly after the writing of de
Paula Silva’s master’s dissertation.

6. Author’s Contribution

The contribution of this research project went far beyond the initial expectations.
When Caroline started her master’s studies, we already knew the characterization of
x-diperfect super-orientations of odd cycles and just expected to find a characterization
of y-diperfect super-orientations of complements of odd cycles (or at least make progress
towards that goal) as the main contribution of the project. Surprisingly, we found such
characterization — and a proof that in-semicomplete digraphs are y-diperfect — within the
first six months of research. In the following two months, a proof that arc in-semicomplete
digraphs are y-diperfect was obtained, allowing us to submit a paper to an international
journal by the end of the first year of research. This fast and steady progress was only pos-
sible due to Caroline’s knowledge, creativity, research maturity and discipline above the
average of a master’s student. The proof that in-semicomplete digraphs are y-diperfect
can be seen as an example of Caroline’s creativity and research maturity. She obtained
this proof quickly and completely on her own in an unusual and ingenious way which
surprised the advisors.

In the second year we decided to investigate whether the non-y-diperfect super-
orientations of odd cycles and complements of odd cycles found would be the only ob-
structions to y-diperfectness. Again, Caroline’s ideas were fundamental to obtain a neg-
ative answer. She started the process of identifying structural properties that an arbitrary
obstruction must have, which lead us to finding new obstructions. Once again Caroline
showed she is tailored for research for being able to ask good questions and attempting to
answer them with creativity and perseverance. Another situation in which her researcher
reasoning nature lead to important progress came right after finishing her master’s studies.
Aware of the analogue conjecture of Berge for a-diperfect digraphs and having acquired
a deep understanding of the structure of super-orientations of complements of odd cycles,
she realized that there was an infinite subset of such digraphs that were counterexamples
to Berge’s conjecture on a-diperfect digraphs proposed in 1982.

It must be emphasized that her master’s studies occurred between March 2020 and
March 2022 — the worst period of the COVID pandemic. During the first year of research,
while making important progress, Caroline was also taking graduate courses for the first
time in her academic life, and those were being adapted to online courses right after the
strike of COVID pandemic.
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