
Memory-Safe Elimination of Side Channels

Luigi Soares1, Fernando Magno Quintão Pereira1

1Departamento de Ciência da Computação
Universidade Federal de Minas Gerais (UFMG) — Brazil

{luigi.domenico,fernando}@dcc.ufmg.br

Abstract. In this project, we find a new service for partial control-flow lineariza-
tion (PCFL), a code transformation initially conceived to maximize work per-
formed in vectorized programs. We show that PCFL can be employed as a
defense mechanism against timing attacks. This transformation is sound: given
an instance of its public inputs, the partially linearized program always runs
the same sequence of instructions, regardless of secret inputs. Incidentally, if
the original program is publicly safe, then accesses to the data cache will be
data oblivious in the transformed code. The transformation is optimal: ev-
ery branch that depends on some secret data is linearized; no branch that de-
pends on only public data is linearized. Therefore, the transformation preserves
loops that depend exclusively on public information. If every branch that leaves
a loop depends on secret data, then the transformed program will not termi-
nate. Our transformation extends previous work in non-trivial ways. It handles
C constructs such as “break”, “switch” and “continue”, which are absent in
the FaCT domain-specific language (2018). Like Constantine (2021), our code
transformation ensures operation invariance, but without requiring profiling in-
formation. Additionally, in contrast to SC-Eliminator (2018), our implementa-
tion handles programs containing general, unbounded loops.

1. Introduction

Side channels can be viewed as publicly observable outputs made available — usually
unintentionally — from the execution of a computer system. They come in many flavors,
e.g. runtime, cache hits and misses, power consumption and even sound! By observing the
flow of information through side channels, adversaries can obtain sensitive information
that should be otherwise protected. As such, side channels pose a major threat in today’s
world. Not surprisingly, news about the discovery of different types of attacks come out
every year, as Figure 1 illustrates. In this project, we focus on timing attacks.

A program is said to be isochronous if its running time does not depend on sen-
sitive information. Isochronicity is characterized by two properties: data and operation
invariance. Isochronous programs do not leak time-related information [Kocher 1996];
therefore, isochronicity is an essential property in implementations of cryptographic rou-
tines [Almeida et al. 2016, Almeida et al. 2020, Barthe et al. 2019]. In view of this im-
portance, much work has been done to detect time-variant code [Reparaz et al. 2017,
Almeida et al. 2016, Ngo et al. 2017, Barthe et al. 2019, Guarnieri et al. 2021] or to
remove sources of time variance [Agat 2000, Almeida et al. 2020, Fell et al. 2019,
Borrello et al. 2021, Cleemput et al. 2012, Van Cleemput et al. 2020, Gruss et al. 2017,

https://www.allaboutcircuits.com/news/apple-ch
ip-vulerabilities-understanding-microarchitectur
al-side-channel-attacks/

https://threatpost.com/intel-side-channel-attack-
data/164582/

https://thehackernews.com/2022/03/resea
rchers-demonstrate-new-side.html

https://arstechnica.com/infor
mation-technology/2022/06/r
esearchers-exploit-new-intel-
and-amd-cpu-flaw-to-steal-en
cryption-keys/

Figure 1. Recent news about the discovery of side-channel attacks.

Tizpaz-Niari et al. 2019, Chattopadhyay and Roychoudhury 2018, Wu et al. 2018]. And
yet, the implementation of a static code transformation capable of removing time-based
side channels from programs containing general loops remains an elusive endeavor.

Enter Partial Control-Flow Linearization. To solve this open problem, we repur-
pose Moll and Hack [2018]’s partial control-flow linearization (PCFL) algorithm, a code-
optimization technique to speed up programs in the Single-Instruction, Multiple-Data
(SIMD) model [Flynn 1972]. In a SIMD program, some branches can be proven to be uni-
form, meaning that they always yield the same outcome for the threads that execute them
together. The other branches are called divergent. Moll and Hack’s PCFL removes the
divergent branches from the program, linearizing the blocks controlled by said branches.
The transformation keeps the uniform branches unchanged. In principle, PCFL bears as
much importance to side-channel resistance as the fact that more kangaroos live in Aus-
tralia than people in Uruguay.1 However, replace “uniform” with public and “divergent”
with secret, and voilà: we have a beautiful algorithm to produce isochronous programs!

1.1. Objectives

This project’s main goal is to demonstrate the feasibility of adapting Moll and
Hack [2018]’s partial control-flow linearization algorithm to protect programs against
operation-based timing attacks. For that, we evaluated the following research questions:

• RQ1: By how much does the proposed approach increase code size?
• RQ2: What is the time taken to apply the proposed transformation onto programs?
• RQ3: How does the proposed approach impact the running time of programs?

1https://twitter.com/redditcfb/status/1355288917558390786

• RQ4: What are the security guarantees achieved by the proposed approach?
• RQ5: How the general C programs compiled with the proposed method compare

with code written in a domain-specific language for constant-time cryptography?

1.2. Contributions

By leveraging Moll and Hack’s partial control-flow linearization to erase secret-dependent
branches, the following properties are delivered:

• Operation Invariance: given an arbitrary instance of the public inputs, every
execution of the transformed program processes the same sequence of addresses
in the instruction cache.

• Data Invariance: given an arbitrary instance of the public inputs, every execution
of the transformed program processes the same sequence of reads and writes in
the data cache — this property is guaranteed whenever the original program is
publicly safe [Cauligi et al. 2019, §3.2.3].

• Memory Safety: the transformed program only contains out-of-bounds memory
accesses that already exist in the original program, given any input fed to it.

• Termination: a loop in the transformed program only terminates due to public
information. A loop controlled only by secret data will not terminate.

The last property — termination — implies that the transformation proposed in this paper
might turn a terminating program into an infinite loop. Non-termination emerges when
a loop can only terminate due to conditions that depend on secret information. In other
words, a partially linearized loop whose function is called with public inputs that do not
trigger any of the loop exits will run forever. The most trivial case is when every exit con-
dition of the original loop depends on secret information, a scenario that can be statically
determined after partial control-flow linearization, because PCFL will disconnect the loop
from the rest of the control-flow graph.

In this dissertation, we show that Moll and Hack’s adapted algorithm makes pro-
grams operation invariant [Soares 2022, Thm. 5.2]. For a class of programs called as
publicly safe, it also delivers data invariance [Soares 2022, Thm. 5.3] and, consequently,
isochronicity [Soares 2022, Thm. 5.6]. Moreover, we demonstrate that code yielded by
our transformation never leaks more than the original version [Soares 2022, Thm. 5.5].
Programs produced by our transformation still might have branches, as long as these
branches are not influenced by secret data. Furthermore, our technique handles general
loops (statically). Hence, we expand previous work in many ways:

1. Static Generality: In contrast to previous work [Wu et al. 2018], our transforma-
tion handles programs with loops, even if these loops cannot be fully unrolled

2. Static Efficiency: In contrast to previous static transformations [Wu et al. 2018],
we preserve branches controlled by public information, avoiding the unnecessary
execution of unreachable code.

3. Decidability: Our transformation is fully static; hence, in contrast to a dynamic
tool like Constantine [Borrello et al. 2021], it does not require test cases that
exercise all the branches of a program.

4. Convenience: In contrast to a domain-specific language such as
FaCT [Cauligi et al. 2019], programmers can write memory-safe code directly in
general-programming languages like C and still obtain isochronicity.

1 / / g (guess) and n p u b l i c .
2 / / pw (password) i s sec re t .
3 i n t comp(i n t *g , i n t *pw, i n t n) {
4 for (i n t i = 0 ; i < n ; i ++)
5 i f (g [i] != pw [i]) return 0;
6 return 1;
7 }

Figure 2. Function comp compares the user’s guess g with a secret password pw.
It returns immediately whenever two elements are different; as such, it is
neither operation nor data invariant.

2. Partial Control-Flow Linearization by Example
To illustrate how Moll and Hack’s partial control-flow linearization can be adapted to the
context of side-channel resistance, consider the code from Figure 2. Function comp takes
as input a password entered by the user and compares it against the secret password. It
does that by comparing each character, one by one, returning immediatelly if a mismatch
occurs. Suppose that the function was given the public inputs g = {0, 0} and n = 2.
Then, the traces of instructions produced by the execution of the code when given the
secret inputs pw = {0,0} and pw = {1,0} are, respectively,

τ i1 = (i = 0, i < n, g[i] != pw[i], i++, i < n, ret 1) and

τ i2 = (i = 0, i < n, g[i] != pw[i], ret 0).

Notice that, by observing the sequence of instructions, it is possible to determine
the exact position in which the user’s guess and the actual password diverged. Therefore,
function comp leaks information about the sensitive data, allowing an adversary to even-
tually discover it. One approach to prevent this type of attack is to remove branches whose
conditions depend on sensitive information. For that, we can apply a modified version of
Moll and Hack’s partial control-flow linearization algorithm. The resulting code is shown
in Figure 3. The code transformation employed can be broken as follows:

1. Tainted flow analysis: identifies which branches need to be linearized due to
dependencies on sensitive information [Soares 2022, §5.2].

2. Array-bounds analysis: finds out symbolic bounds for arrays, so that we can
decide if it is safe to perform memory accesses [Sperle Campos et al. 2016, §3.2].

3. Rewrite interfaces: wraps each pointer argument into a struct storing its content
and size, which was inferred in the previous step.

4. Predication analysis: finds out which conditions control the execution of each
block and edge of the program’s control-flow graph [Soares 2022, §5.3].

5. Partial Linearization: linearizes the programs’s control-flow graph, adapting
Moll and Hack [2018]’s algorithm [Soares 2022, §§5.1 and 5.4.1].

6. Rewrite code: rewrites instructions to ensure that the code is correct and exe-
cutable [Soares 2022, §§5.4.2 and 5.4.3]. This includes the creation of a so-called
shadow memory that will be used as a surrogate address in order to prevent the
introduction of out-of-bounds memory accesses [Soares and Pereira 2021].

Function comp pcfl, depicted in Figure 3, is operation invariant. That is, the
evaluation of comp pcfl on an arbitrary public input leads to the same trace of in-
structions, regardless of the secret inputs fed into it. This is because the secret-dependent

1 typedef struct p t r i n t w rapped {
2 i n t * data ; / / the ob jec t ’ s content
3 i n t s ize ; / / the ob jec t ’ s i n f e r r e d s ize
4 } p t r i n t w rapped ;
5
6 / / g (guess) and n are pub l i c , pw (password) i s secre t .
7 i n t comp pcf l (p t r i n t w rapped *g , p t r i n t w rapped *pw, i n t n) {
8 i n t *shadow = (i n t *) mal loc (sizeof (i n t)) ;
9 i n t r = 1 ;

10 i n t loop cond = 1;
11 for (i n t i = 0 ; i < n ; i ++) {
12 i n t * g addr = c t s e l (loop cond | (i < g−>s ize) , g−>data , shadow) ;
13 i n t * pw addr = c t s e l (loop cond | (i < pw−>s ize) , pw−>data , shadow) ;
14 i n t g idx = c t s e l (loop cond | (i < g−>s ize) , i , 0) ;
15 i n t pw idx = c t s e l (loop cond | (i < pw−>s ize) , i , 0) ;
16 i n t g i = g addr [g idx] ;
17 i n t pw i = pw addr [pw idx] ;
18 loop cond &= g i == pw i ;
19 r &= loop cond ;
20 }
21 return r ;
22 }

Figure 3. Partially linearized version of the code seen in Figure 2.

branch at Line 5 of the Figure 2 was removed. In Figure 3, the loop can only terminate due
to the public input n. Function comp pcfl, however, is not necessarily data invariant
(and, consequently, not necessarily isochronous). To see that, suppose that comp pcfl
was called with the public inputs g->data = {0,0} and n = 2. Suppose, further,
that the inference algorithm was not capable of determining the size of the array, assign-
ing to it a size of zero. Then, the traces of memory addresses produced by the execution of
the code when given the secret inputs pw = {0,0} and pw = {1,0} are, respectively,

τal,1 = (g->data[0], pw->data[0], g->data[1], pw->data[1]) and

τal,2 = (g->data[0], pw->data[0], shadow, shadow).

If, however, the array-bounds analysis had correctly estimated the real sizes of the
arrays g and pw, then the traces of memory addresses would be identical, thus character-
izing data invariance. There is a class of programs for whom PCFL always ensures data
invariance: the publicly-safe programs [Cauligi et al. 2019]. In the words of Cauligi et al.:
“for a program to be amenable to constant-time compilation, the source must be publicly
safe: it must be free from buffer overflows and undefined behavior using only public-
visible information, i.e. the code must be safe even after removal of secret-dependent
control-flow”. FaCT programs are, by design, publicly safe. Nevertheless, public safety
can be achieved in C-like code by requiring that (i) memory is indexed only by public
data and (ii) memory accesses are proven to be in-bounds. Under these assumptions, the
programs resulted from our transformation meet the same guarantees delivered by FaCT.

3. Results

We implemented our ideas on top of LLVM 13.0 [Lattner and Adve 2004]. We ini-
tially developed a loop-free transformation (Lif) [Soares and Pereira 2021] capable

of repairing programs whose loops can be completely unrolled. The final proto-
type that incorporates Moll and Hack’s partial control-flow linearization algorithm,
and deals with general loops, was built on top of Lif. We refer to this implementa-
tion as PCFL. We compared both methods with SC-Eliminator [Wu et al. 2018],
Constantine [Borrello et al. 2021] and FaCT [Cauligi et al. 2019].

3.1. RQ1, RQ2 and RQ3: Code Size, Transformation Time and Performance

Table 1 summarizes the results obtained in regard to the nine benchmarks that PCFL,
Lif, SC-Eliminator and Constantine can handle. Notice that code size for Lif
and SC-Eliminator is much bigger because these tools require that loops are fully
unrolled. In relative terms, with respect to the nine benchmarks that the four tools can
handle, our PCFL implementation increased code size by 1.02× and running time by
1.61×, while being the fastest transformation.

Table 1. Summary of results with regard to the nine benchmarks that PCFL, Lif,
Constantine and SC-Eliminator can handle. Numbers are arithmetic
means. Measurements happen after programs are transformed and then
optimized with LLVM opt -O3. Original refers to the benchmark with-
out any transformation. PCFL and Lif correspond to our implementations.
CTT refers to Constantine; SC refers to SC-Eliminator. These two tools
can do control- and data-flow linearization. Hence, -Orig refers to their
original implementations, and -CFL refers to the implementation with only
control-flow linearization. Our approaches only do control-flow lineariza-
tion, but achieves data invariance for publicly-safe programs.

Tool Original PCFL Lif CTT-Orig CTT-CFL SC-Orig SC-CFL

Size (#LLVM instrs.) 330.78 337.00 15,342.11 464.67 365.89 10,863.56 8,444.89

Running time (µs) 3.23 5.21 12.09 14.94 6.27 5.19 4.60

Linearization time (ms) 33.49 271.61 2,045.22 65.19 2,697.06 2,149.28

3.2. RQ4: Security Evaluation

Operation Invariance. To verify that PCFL delivers operation invariance, we relied on
CTGrind [Langley 2010], a Valgrind plugin that determines if a program contains
a branch that reads data tainted by secret information. As Figure 4 demonstrates, we
certified empirically that our implementation of PCFL transformed all the 13 benchmarks
into operation-invariant programs.

Data Invariance. When probing data variance in Figure 4, we used an LLVM instru-
mentation pass to verify if the sequence of addresses accessed by each kernel is the same,
regardless of the input. In several cases, we observe that neither SC-Eliminator nor
Constantine achieve data invariance. This apparent failure is a consequence of the
threat model that these tools assume: they consider all the memory accesses to a cache
line as the same access. Our failures to achieve complete data invariance, in turn, are due
to the fact that some memory accesses are replaced with the shadow memory. Neverthe-
less, we could verify that data invariance holds for publicly-safe programs. In particular,
we ported ssl3 and donna from FaCT. When written in FaCT, every benchmark is
publicly safe, and we succeeded in delivering isochronicity for these programs.

Data Opr Opr3 Cor Data Opr Opr3 Cor Data Opr Opr3 Cor Data Opr Opr3 Cor Data Opr Opr3
Y N N Y Y Y Y Y Y Y Y Y Y N N Y Y N N
N N N Y N Y Y X X X X X X X X X X X X
N N N Y N Y Y Y N Y Y Y N Y Y Y N N N
N N N Y Y Y Y UL UL UL UL UL UL UL UL Y N N N
Y N N Y Y Y Y UL UL UL UL UL UL UL UL N N N N
N N N Y N Y Y Y N Y Y Y N Y Y Y N N N
Y N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
N N N Y N Y Y Y N Y Y Y N Y Y Y N Y Y
Y N N Y Y Y Y UL UL UL UL UL UL UL UL Y Y Y Y
N Y Y Y N Y Y Y N Y Y Y N Y Y Y Y Y Y
N N N Y N Y Y Y N Y Y Y N Y Y Y Y N N
Y N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
N N N Y N Y Y Y N Y Y Y N N Y Y N N N

Original PCFL Lif SC-Eliminator Constantine

hash-one
plain-many
plain-one
donna
ssl3

log-rdct
3way
des

loki91
cast5

dijkstra
findmax

histogram

N Property not verified Y Property verified UL Unbounded loop X Tool crashes or transformed program crashes

Figure 4. Security guarantees achieved by the different tools. Cor indicates if the
transformed program produces the same output as its original counterpart
(i.e. if the transformed program is correct). Data refers to data invariance.
Opr refers to operation invariance without compiler optimizations. Opr3
refers to operation invariance at the LLVM opt -O3 optimization level.

3.3. RQ5: Comparison with a Domain-Specific Language

Our implementation of partial-control flow linearization in LLVM in practice gives de-
velopers the chance to obtain in C (or other languages that LLVM supports) the same
security guarantees provided by FaCt [Cauligi et al. 2019]. As Figure 5 shows, the pro-
grams written in FaCT are, usually, shorter and faster. However, the programs that we
generate contain code to ensure memory safety. Therefore, every linearized load and store
operation in a program produced with our technique will contain extra instructions absent
in the equivalent FaCT program. In FaCT, developers use a type qualifier, assume(e),
which let them specify that expression e is the upper bound of an array. This clause
works as a contract: the compiler does not generate code to ensure in-bounds accesses;
rather, the programmer promises that buffer limits will be respected. Thus, it is possible
to provoke out-of-bounds access in the FaCT program, because contracts are not verified.
To this effect, we have forced out-of-bounds accesses in plain-one — something that
cannot happen in the binary produced with PCFL.

ssl3

donna

plain-one

without main

PCFL FaCT

with main without main with main

hash-one

Figure 5. Comparison between programs written in C and linearized with PCFL,
and similar programs written in FaCT, using equivalent control-flow struc-
tures. The column .o shows the size, in bytes, of the binary object file.
The column Instrs shows the number of instructions in the LLVM repre-
sentation of each program. Because they use different main functions, we
show results with and without this routine.

4. Related Work

This project draws its contributions from two different communities: high-performance
computing and software security. Concerning the former, this work is related to research
about control-flow linearization. Concerning the latter, it is related to the static elimina-
tion of side channels. In this section, we explain how the paper connects with previous
contributions in these two domains.

Partial Control-Flow Linearization. In its essence, Moll and Hack [2018]’s algorithm
for control-flow linearization is an efficient way to support predication — a code trans-
formation that converts control dependencies into data dependencies — inasmuch as it
spares uniform branches from being predicated. Compared to previous work, PCFL en-
joys a number of advantages. First, when compared to Ferrante and Mace [1985]’s well-
known linearization approach, Moll and Hacks’s algorithm has better complexity (linear
vs log-linear). Second, it is substantially simpler than previous approaches of similar ser-
vice, such as Karrenberg and Hack [2012]’s. Finally, PCFL handles unstructured control
flows, in contrast to heuristics used in practice [Moreira et al. 2017] by the Intel SPMD
Compiler, for instance. Nevertheless, we emphasize that this work is not about the design
of a partial control-flow linearization approach. We reuse Moll and Hacks’s algorithm
almost without modifications. There exists one important difference between Moll and
Hack’s implementation and ours, which is a consequence of the different purpose that we
have when using partial control-flow linearization. In Moll and Hack’s context, linearized
loops only terminate when all threads exit it. In our case, a loop can have multiple exits:
any exit that is only dependent on public data will be left untouched by our transformation.

Side-Channel Elimination via Control-Flow Linearization. The literature contains
many examples of protections against such attacks. This dissertation is concerned with
the so-called white-box mitigations, which require intervening in the software. The cur-
rent state-of-the-art control-flow linearization technique to make programs written in a
general-purpose language operation invariant is due to Borrello et al. [2021]. In Bor-
rello et al.’s implementation, loops are linearized just-in-time by replacing the normal trip
count of a loop with a special induction variable that dictates how many times that loop
should execute. This kind of transformation requires loop profiling in order to identify
the number of iterations that the loop performs, which implies an important limitation: it
is undecidable to find inputs to exercise specific parts of a program’s code, as Rice’s The-
orem indicates [Rice 1953]. By repurposing Moll and Hack [2018]’s partial control-flow
linearization algorithm, we show that it is possible to yield operation-invariant programs
without the need of a dynamic analysis.

5. Conclusion

The key contribution of this work is to adapt a vectorization technique — partial control-
flow linearization — to solve an open question in side-channel resistance: the static elim-
ination of operation-based side channels in general programs while preserving branches
controlled by public inputs. We believe that the techniques discussed in this paper let
a programmer write, directly in C, code that meets the same safety properties of algo-
rithms written in the FaCT [Cauligi et al. 2019] domain-specific language. In contrast to
previous techniques [Wu et al. 2018], our approach is capable of transforming programs
with unbounded loops, and does not require profiling information [Borrello et al. 2021].

Furthermore, code generate by our tools are competitive when compared to previous
work [Wu et al. 2018, Borrello et al. 2021, Cauligi et al. 2019], and the transformation
itself has practical compilation time.

References
Agat, J. (2000). Transforming out timing leaks. In POPL, page 40–53, New York, NY,

USA. Association for Computing Machinery.

Almeida, J. B., Barbosa, M., Barthe, G., Dupressoir, F., and Emmi, M. (2016). Verifying
constant-time implementations. In SEC, page 53–70, USA. USENIX Association.

Almeida, J. B., Barbosa, M., Barthe, G., Grégoire, B., Koutsos, A., Laporte, V., Oliveira,
T., and Strub, P. (2020). The last mile: High-assurance and high-speed cryptographic
implementations. In Security & Privacy, pages 965–982, New York, NY, USA. IEEE.

Barthe, G., Blazy, S., Grégoire, B., Hutin, R., Laporte, V., Pichardie, D., and Trieu, A.
(2019). Formal verification of a constant-time preserving C compiler. Proc. ACM
Program. Lang., 4(POPL).

Borrello, P., D’Elia, D. C., Querzoni, L., and Giuffrida, C. (2021). Constantine: Au-
tomatic side-channel resistance using efficient control and data flow linearization. In
CCS, page 715–733, New York, NY, USA. Association for Computing Machinery.

Cauligi, S., Soeller, G., Johannesmeyer, B., Brown, F., Wahby, R. S., Renner, J., Grégoire,
B., Barthe, G., Jhala, R., and Stefan, D. (2019). Fact: A dsl for timing-sensitive com-
putation. In PLDI, page 174–189, New York, NY, USA. Association for Computing
Machinery.

Chattopadhyay, S. and Roychoudhury, A. (2018). Symbolic verification of cache side-
channel freedom. Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 37(11):2812–2823.

Cleemput, J. V., Coppens, B., and De Sutter, B. (2012). Compiler mitigations for time
attacks on modern x86 processors. Trans. Archit. Code Optim., 8(4).

Fell, A., Pham, H. T., and Lam, S.-K. (2019). Tad: Time side-channel attack defense of
obfuscated source code. In ASP-DAC, page 58–63, New York, NY, USA. Association
for Computing Machinery.

Ferrante, J. and Mace, M. (1985). On linearizing parallel code. In PLDI, page 179–190,
New York, NY, USA. Association for Computing Machinery.

Flynn, M. J. (1972). Some computer organizations and their effectiveness. Transactions
on Computers, 21(9):948–960.

Gruss, D., Lettner, J., Schuster, F., Ohrimenko, O., Haller, I., and Costa, M. (2017). Strong
and efficient cache side-channel protection using hardware transactional memory. In
SEC, page 217–233, USA. USENIX Association.

Guarnieri, M., Köpf, B., Reineke, J., and Vila, P. (2021). Hardware-software contracts for
secure speculation. In Security & Privacy, pages 1868–1883, New York, US. IEEE.

Karrenberg, R. and Hack, S. (2012). Improving performance of opencl on cpus. In CC,
page 1–20, Berlin, Heidelberg. Springer-Verlag.

Kocher, P. C. (1996). Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In CRYPTO, page 104–113, Berlin, Heidelberg. Springer-Verlag.

Langley, A. (2010). Ctgrind—checking that functions are constant time with valgrind.

Lattner, C. and Adve, V. (2004). LLVM: A compilation framework for lifelong program
analysis and transformation. In CGO, page 75, Washington, USA. IEEE Computer
Society.

Moll, S. and Hack, S. (2018). Partial control-flow linearization. In PLDI, page 543–556,
New York, NY, USA. Association for Computing Machinery.

Moreira, R. E., Collange, C., and Quintão Pereira, F. M. (2017). Function call re-
vectorization. In PPoPP, page 313–326, New York, NY, USA. Association for Com-
puting Machinery.

Ngo, V. C., Dehesa-Azuara, M., Fredrikson, M., and Hoffmann, J. (2017). Verifying and
synthesizing constant-resource implementations with types. In Security and Privacy,
pages 710–728, Washington, DC, USA. IEEE.

Reparaz, O., Balasch, J., and Verbauwhede, I. (2017). Dude, is my code constant time? In
DATE, page 1701–1706, Leuven, BEL. European Design and Automation Association.

Rice, H. G. (1953). Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74(2):358–366.

Soares, L. and Pereira, F. M. Q. a. (2021). Memory-safe elimination of side channels. In
CGO, pages 200–210, Washington, USA. IEEE.

Soares, L. D. C. (2022). Memory-safe elimination of side-channels. Master’s the-
sis, UFMG, Computer Science Department. Online available at: http://hdl.
handle.net/1843/42564.

Sperle Campos, V. H., Alves, P. R., Nazaré Santos, H., and Quintão Pereira, F. M. (2016).
Restrictification of function arguments. In CC, page 163–173, New York, NY, USA.
Association for Computing Machinery.

Tizpaz-Niari, S., Černý, P., and Trivedi, A. (2019). Quantitative mitigation of timing side
channels. In CAV, pages 140–160, Heidelberg, Germany. Springer.

Van Cleemput, J., De Sutter, B., and De Bosschere, K. (2020). Adaptive compiler strate-
gies for mitigating timing side channel attacks. Transactions on Dependable and Se-
cure Computing, 17(1):35–49.

Wu, M., Guo, S., Schaumont, P., and Wang, C. (2018). Eliminating timing side-channel
leaks using program repair. In ISSTA, page 15–26, New York, NY, USA. Association
for Computing Machinery.

