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Abstract. Probabilistic circuits (PCs) are a family of tractable probabilistic
models capable of answering a wide range of queries exactly and in polytime.
While inference is usually straightforward, learning PCs that both obey the
needed restrictions for inference tractability and exploit their expressive power
has proven to be a challenge. This dissertation aims to propose fast and scal-
able structure learning algorithms for PCs from two different standpoints: from
a logical point of view, we efficiently construct a PC that takes certain knowl-
edge in the form of logical constraints and scalably translate them into a prob-
abilistic circuit; from the viewpoint of data guided structure search, we propose
hierarchically building PCs from random hyperplanes. We empirically show
that either approach is competitive against state-of-the-art methods of the same
class in both performance and scalability.

1. Introduction
In our dissertation, we explore and develop algorithms for learning Probabilistic Circuits
(PCs), a family of deep models distinctly specified as inductive compositions of distri-
butions through graphical formalisms. PCs are highly expressive and efficient, and as
long as certain graphical properties are ensured to hold, provide a wide range of tractable
inference tasks to query from, making them powerful statistical toolboxes. We approach
the problem of learning PCs from two distinct lenses: one from a logic point of view,
and the other from a purely data-centric perspective. In a neuro-symbolic fashion, we
exploit known domain knowledge and learn PCs both from a propositional logic formula
and available data. We show that not only does this combination of learning from both
certain and uncertain knowledge outperform purely data-driven approaches when under a
low-data regime, but also provides a much more scalable approach compared to existing
algorithms for the same class of PCs. A preliminary version of our method was published
at the 8th Symposium on Knowledge Discovery, Mining and Learning [Geh et al. 2020],
with a later full version appearing at the 37th Conference on Uncertainty in Artificial
Intelligence [Geh and Mauá 2021], the premier conference on the fields of Probabilistic
Machine Learning and Reasoning under Uncertainty.

In a completely distinct approach, we look at the problem of learning PCs solely
from data. We revisit random projections, a known method for dimensionality reduction,
and develop a method to efficiently construct a PC by means of hierarchically stacking
random projections. We empirically show that we are able to achieve state-of-the-art
performance at the fraction of the (learning) time of competitors. A preliminary version
of this contribution was published at the 4th Tractable Probabilistic Modeling Workshop



[Geh and Mauá 2021], the main gathering spot for specialists in the area of probabilistic
modeling in Machine Learning and Artificial Intelligence. Furthermore, the dissertation
was awarded 1st place at the 13th National Contest of PhD and MSc Theses on Artificial
and Computational Intelligence (CTDIAC) in 2022, a biannual event recognizing the best
MSc and PhD theses in Brazil on the subject of Artificial and Computational Intelligence.

Finally, as a minor contribution, we provide in the dissertation a systematic review
of the most popular learning algorithms for probabilistic circuits. We write down a super-
ficial complexity analysis — a subject that is often absent in machine learning literature
— of each of the algorithms, and detail both the assumptions made and the structural
guarantees required and provided by each method. Due to page limit constraints, we omit
this last contribution from this report.

We structure the text as follows. We start with a brief informal introduction to
probabilistic circuits in Section 2. We then follow with our first major contribution, giving
a brief description of our proposed learning algorithm and showing empirical results in
Section 3. Our second major contribution comes in Section 4; we show the idea behind
our method and give empirical support to both its performance and scalability. Lastly, we
conclude this report in Section 5, making a brief summary of our contributions.

2. Probabilistic circuits: a birds-eye view
In a nutshell, Probabilistic Circuits (PCs) are nothing more than computational graphs
whose nodes represent a probability distribution made out of the (recursive) composition
of all of its children. We adopt some of the usual nomenclature from Graph Theory; we
shall only work with DAGs and say that, for some graph G = (N,E), when two nodes
N1,N2 ∈ N are connected by an edge coming from N1 to N2, then N1 is the parent of N2;
and N2 the child of N1.

Definition 1 (Probabilistic circuit) A probabilistic circuit C is a rooted connected DAG
whose nodes describe non-negative functions: a sum node represents a weighted summa-
tion over its children, a product node multiplies all of its children, and input nodes, i.e.
nodes with no outgoing edges, are defined as univariate probability density functions.

Inference tasks amount to feeding values to input nodes and then evaluating the
computational graph by the recursive application of each computational unit. Figure 1b
shows a simple probabilistic circuit composed out of a product node × , its children sum
nodes + and + , and four input nodes , , and , each representing a distinct
Gaussian distribution. Edges coming out from sum nodes are weighted and sum to one,
effectively defining a mixture over the children’s distribution. Figure 1a shows two Gaus-
sian mixtures corresponding to nodes + and + , while Figure 1c shows the computational
flow from evaluating the probability of x = 2 and y = 4 as described by the circuit.

There is a natural relationship between probabilistic circuits and logic circuits.
Note that sums and products act equivalently to disjunctions and conjunctions in propo-
sitional logic under the Boolean semiring. In fact, a probabilistic circuit whose in-
put nodes are propositional literals has its support defined by its underlying logic cir-
cuit. Such PCs are often referred to as Probabilistic Sentential Decision Diagrams
(PSDDs [Kisa et al. 2014]) as long as some other conditions are also met. Figure 2
shows a PSDD whose support is defined by a logic circuit representation of the formula
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Figure 1. A product node, its computational flow, and node values for query
p(x = 2, y = 4) = 0.035 with each of its two children as mixture models over
distinct variables X and Y .

ϕ(A,B,C) = (A ∨ ¬B) ∧ (¬B ∨ C). We write + as , and × as when we mean
that the support of a PC comes from a logic formula represented by its underlying logic
circuit; syntactically, the two representations are identical.

An attractive feature of PCs that sets them apart from other probabilistic models is
the range of queries that are possibly extracted from a circuit. Computing queries like the
probability of partial assignments (i.e., marginals), conditional probabilities, maximum
a posteriori probabilities, or even more advanced tasks such as probabilities of logical
events and information theoretic queries like entropies and divergences, are all extractable
in polytime (on the size of the circuit) when certain (sufficient) conditions on their struc-
ture, viz. their computational graph, are met. For the sake of simplicity and to respect the
page limit, we avoid defining these conditions or even providing a more formal definition
of PCs or PSDDs. Chapter 2 of the dissertation1 is dedicated to such formalities, with
an extensive discussion on the sufficiency of conditions, the connection of popular prob-
abilistic and logic models with PCs, and the different reasoning capabilities of circuits.

Learning expressive probabilistic circuits from data under the structural con-
straints imposed by a combination of several conditions for tractability has proven to be
quite a difficult task. This problem becomes even more challenging when domain knowl-
edge is present, as the support of the PC must also be consistent with prior knowledge.
In the next section, we explore a technique for learning PSDDs from both certain (in the
form of a propositional logic formula) and uncertain knowledge (in the form of data).

3. Efficiently learning from both data and prior knowledge

Although there have been many advances in the literature on building PSDDs, the
large majority of these work by either focusing purely on logical approaches for com-
piling CNF or DNFs into the smallest possible (i.e., canonical) circuit representation
[Oztok and Darwiche 2015, Choi and Darwiche 2013], or on learning circuits for domain
specific tasks [Choi et al. 2015, Shen et al. 2017]. Before our contribution, there were
only two existing domain agnostic algorithms for learning the structure of PSDDs from

1https://www.teses.usp.br/teses/disponiveis/45/45134/tde-23052022-122922/en.php

https://www.teses.usp.br/teses/disponiveis/45/45134/tde-23052022-122922/en.php


A B C ϕ(x) p(x)
0 0 0 1 0.140
1 0 0 1 0.024
0 1 0 0 0.000
1 1 0 0 0.000
0 0 1 1 0.560
1 0 1 1 0.096
0 1 1 0 0.000
1 1 1 1 0.180

ϕ(A,B,C) = (A∨¬B)∧(¬B∨C)
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Figure 2. A probabilistic circuit encoding a logic formula as its support by means
of its underlying logic circuit.

data: LEARNPSDD [Liang et al. 2017] and STRUDEL [Dang et al. 2020], both of which
work by growing an initial circuit into a more expressive PC, preserving existing struc-
tural constraints and support. This, however, means that they delegate the translation of
logic formula to logic circuit to a separate, independent algorithm, e.g. compiling from a
CNF. The main drawback of this approach comes from the fact that variables that do not
play a role in the logic formula (but may play a probabilistic role in the distribution) will
be completely discarded from the logic translation procedure, meaning that the resulting
initial circuit will contain a trivial representation (e.g., fully factorized) of these variables
completely separate from the logical portion of the circuit.

In our published article at UAI 2021 [Geh and Mauá 2021], whose content is de-
scribed in detail in Chapter 4 of the dissertation, we proposed the first PSDD learning
algorithm that learns a PC both from a logic formula and from data.

3.1. Sampling and averaging circuits

As previously (implicitly) stated, our objective is to build a logic circuit L from a propo-
sitional logic formula ϕ and derive a probabilistic circuit C from L by adding weights to
edges coming from sum nodes. We choose to do so by a top-down recursive decompo-
sition of ϕ, where at each step we further decompose sub-formulae until either a ⊤, ⊥
or literal is found. A naı̈ve solution would be to construct a disjunction (i.e., sum) node
followed by conjunctions (i.e., products) of all possible worlds, recursively applying the
same method for each children. Unfortunately, this is clearly exponential on the number
of variables. Instead, we resort to a relaxed version where we guarantee a polynomially
sized circuit is constructed. We do so by bounding the number of product nodes to a
constant c and randomly sampling c conjunctions of literals such that they are mutually
exclusive and exhaustive. To make sure the structural conditions set by the definition of
PSDDs are preserved, we must then perform a relaxation step on the logical formula,
which possibly attributes nonzero probability values to impossible worlds. This relax-
ation does not inhibit the expressivity of the model, and due to the random nature of our
method, can be mitigated by a combination of ensembling coupled with sampling guid-
ance, as discussed in Section 4.4.5 of the dissertation. The details on this procedure are
formally described in Chapter 4 of the dissertation. Figure 3 illustrates the sampling pro-



ϕ(A,B,C,D) = (A ∧ ¬B ∧ ¬D) ∨ (B ∧ ¬C ∧D)

1

e1 e2 e3

A ∧B A ∧ ¬B ¬A
¬C ∧D ¬D B ∧ ¬C ∧D

RELAX

1

e1 e2 e3

A ∧B A ∧ ¬B ¬A
D ¬D D

Figure 3. The recursive process of sampling conjunctions (left) followed by the
relaxation (right) of the subformulae in yellow .

cess followed by the relaxation of the circuit needed for ensuring the structural constraints
of PSDDs. We name the entire algorithmic procedure SAMPLEPSDD.

Since the process of building the circuit is done at random, we may sam-
ple a fixed number, say k, of PCs this way and aggregate them into an ensemble.
This can be done immediately by joining every sampled circuit with a sum node;
each weighted edge defines the weight given for each component of the ensemble.
We experiment with the following 5 strategies for ensemble learning: (1) we set all
weights to be uniform, (2) we learn weights by setting (and normalizing) them to their
training set likelihood (LLW), (3) learn by expectation-maximization (EM) over only
component weights [Dempster et al. 1977], (4) apply stacking for density estimation
[Smyth and Wolpert 1998], and lastly (5) compose a Bayesian model combination (BMC)
[Monteith et al. 2011] of PSDDs. Details on these ensemble strategies can be found in
Section 4.3 of the dissertation.

3.2. Experiments

To understand how our method behaves in practice and how each ensemble strategy af-
fects performance, we evaluated our method in 5 distinct domains. Due to the lengthy
discussion it would take to describe each experimental setting, we direct the reader to
Sections 4.4.1–3 of the dissertation. For this report, it suffices to say that each domain
contains the data and a propositional logic formula describing its domain knowledge.
We compare the performance of SAMPLEPSDD against STRUDEL [Dang et al. 2020],
LEARNPSDD [Liang et al. 2017], and LEARNSPN [Gens and Domingos 2013]. It is
worth noting that LEARNSPN is a popular purely data-driven method for learning a more
flexible class of PCs (as opposed to the stronger structural conditions we impose for PS-
DDs), and is here used as a baseline for measuring performance. In the case of STRUDEL,
we use as initial circuit the purely data-driven method proposed by [Dang et al. 2020],
meaning that neither STRUDEL nor LEARNSPN are domain knowledge aware. We ex-
periment with two versions of LEARNPSDD: the first one follows the method described
by [Liang et al. 2017], where an initial circuit is compiled from a CNF containing the
logic formula, which is then grown by LEARNPSDD; the second alternative version, for
when CNF representations are intractable, replaces the CNF compilation with a BDD, a
process trivially done since BDDs are a strict subset of (P)SDDs [Bova 2016].
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Figure 4. Likelihood performance of our methods against state-of-the-art com-
petitors on three of the five domains evaluated (a-c). Mean average learn-
ing time performance (d).

Experiments were run on an Intel i7-8700K 3.70 GHz machine with 12 cores and
64GB RAM. Figure 4 compares the results of our methods against competitors in three
of the 5 datasets (see Section 4.4 of the dissertation), where the abscissa quantifies the
percentage of available data for training, and the ordinate shows the test log-likelihood
(higher is better). Notably, our methods achieve competitive performance especially un-
der low-data regimes yet still remain competitive when more data is available. Figure 4
shows how likelihood weighting had the worst performance, as ensembles trained this
way often degenerate to a single component. Stacking, on the other hand, proved highly
competitive. Of note is the interruption of LEARNSPN in Figure 4c due to the highly
intensive memory cost of the learning algorithm; when faced with more than 50% of the
dataset, the algorithm ran out of memory. Figure 4d shows the learning time of each
algorithm; each curve shows the average time in seconds to generate a single circuit,
except for Ensemble of SAMPLEPSDD’s, which shows the time to sample 100 circuits
and then learn component weights via LLW. On average, STRUDEL took 15 seconds,
LEARNPSDD 13 minutes, and SAMPLEPSDD 3 seconds to learn a single PSDD.

Section 4.4.5 of the dissertation further comments on the performance of SAM-
PLEPSDD as a logical model, empirically showing that by modifying some of the pa-



rameters, we are able to achieve better approximations of the original formula at a cost to
learning time.

4. Learning circuits with random projections
Random Projections (RPs) are widely known in the Density Estimation Tree (DET) litera-
ture for producing seemingly better data partitionings compared to the usual axis-aligned
splits commonly done in k-d trees [Freund et al. 2008]. Intuitively, RPs are nothing more
than randomly generated oblique hyperplanes hierarchically stacked on top of each other
in order to partition data into cells. Interestingly, [Dasgupta and Freund 2008] provably
showed that partitioning data into polytopes this way should allow DETs to successfully
learn low dimension manifolds with reasonably high probability. Unfortunately, despite
this attractive theoretical guarantee, DETs lack the expressivity, accuracy and flexibility
of more modern probabilistic models.

It has recently been shown that probabilistic circuits are more closely related to
DETs than previously thought [Correia et al. 2020], and are, as a matter of fact, a subset
of PCs. Although an interesting subject, for the sake of brevity we reserve this discussion
on the relationship of DETs and PCs to Example 2.3 and Section 5.1 of the dissertation,
and instead focus on the more vital question: if DETs are PCs, can we take advantage of
known learning procedures in DETs and transplant them to more general circuits? More
importantly, are the results from RPs also true in the case of PCs? We seek to understand
the answer to this last question from a more practical point of view, producing a learning
algorithm for PCs inspired by known random projection learning algorithms for DETs.

4.1. LEARNRP

An RP hyperplane of dimension d = |X| discriminates an assignment x to one of its
side or the other via a Boolean mapping f : x 7→

∑d
i=1 xi · ai > θ, where a = {ai}di=1

describes a random unit vector and θ is a projection threshold found in such a way that the
two splits are more or less equally sized. Let D be the dataset to be learned in matrix form,
with rows as observations and columns listing variables. We propose a learning algorithm,
which we call LEARNRP, that samples a hyperplane f , partitions the dataset D into two
splits S1 = {x|∀x ∈ D ∧ f(x)} and S2 = {x|∀x ∈ D ∧ ¬f(x)}, and constructs a
sum node + with two product nodes × and × , initializing weights to the proportion of
each partition |S1|/|D| and |S2|/|D|. Following a given binary tree, each product node
then decomposes the sub-data column-wise in agreement with the current variables. The
procedure then recursively repeats for each of the products’ children. Figure 5 shows a
call to LEARNRP, with hyperplanes matching colors with nodes; at each recursive call,
data points are projected onto the space of variables until only a single variable remains,
in which case a univariate distribution (e.g., a Gaussian in Figure 5) is learned. Once a
PC is constructed from this procedure, we fine-tune weights by first learning weights via
100 iterations of mini-batch Expectation-Maximization (EM), followed by 30 iterations
of full EM. Proper formalization of both RPs and LEARNRP is contained in Chapter 5 of
the dissertation.

4.2. Experiments

We compare the performance of LEARNRP on the 20 well-known binary datasets for
density estimation [Lowd and Davis 2010, Van Haaren and Davis 2012] against reported
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Figure 5. A call to LEARNRP where hyperplane B is sampled, partitioning the
data (top left). A sum + is created, with its children decomposing variables
according to the criterion defined by a binary tree (top right).

results from five state-of-the-art learning algorithms for PCs: LEARNSPN, STRUDEL,
LEARNPSDD, XPC [Mauro et al. 2021], and PROMETHEUS [Jaini et al. 2018]. It
should be noted that both PROMETHEUS and LEARNSPN produce less constrained PCs
in terms of their structure, leading to possibly more expressive circuits (albeit with a more
restricted range of inference tasks available to them). We report results for ensembles of
STRUDEL, LEARNPSDD and XPC, which means that the PCs produced by these meth-
ods all fall under the same class of PCs generated by LEARNRP.

Surprisingly, we found that LEARNRP ranked, on average, second best against
much more sophisticated competitors (see Table 1), only losing to PROMETHEUS. Apart
from fitness of data, we also evaluated the learning time for LEARNRP and all other
competitors except for PROMETHEUS, since no source code for it was available. This
comparison can be visualized in Figure 5.7 and 5.8 of the dissertation, where we label
LEARNRP-F as 100 iterations of mini-batch EM and 30 of full EM, LEARNRP-100 as
100 iterations of mini-batch EM, and LEARNRP-0 as the time for only learning the struc-
ture without fine-tuning weights. We found that our approach is orders of magnitude
faster than most other techniques, even though we achieve better performance.

5. Conclusions
The objectives of our dissertation were three-fold. The first (minor) contribution, which
we omit from this text for the sake of brevity, consisted of a systematic review of the
literature of learning algorithms for probabilistic circuits, providing a better picture of the
current state-of-the-art in PC learning. Our second contribution describes an algorithm
for learning a specific class of PCs, called PSDDs, from both data and domain knowledge
in the form of a propositional logic formula. We showed that our approach fared better
compared to competitors when faced with low-data regimes yet remained competitive
otherwise. In our third and last contribution, we sought to use random projections, a
well-known artifice in density estimation literature, to construct PCs by a hierarchical



Dataset LEARNSPN STRUDEL LEARNPSDD XPC PROMETHEUS LEARNRP
NLTCS -30.03 |-28.73| -30.16 -31.02 -27.91 -28.66
MSNBC -19.73 -16.38 -31.78 -15.50 -23.96 |-19.26|

KDD -40.50 -41.50 -39.94 -40.91 -39.80 |-40.27|
PLANTS |-250.68| -254.41 -253.19 -248.34 -248.50 -254.15
BAUDIO |-57.02| -58.69 -55.71 -57.58 -56.47 -57.02
JESTER -35.88 -34.99 -34.97 |-34.75| -34.40 -33.56

BNETFLIX -155.92 -154.47 -155.97 -153.75 |-154.17| -152.63
ACCIDENTS |-85.06| -86.22 -89.61 -84.70 -84.59 -85.69

TRETAIL -158.20 -155.33 -161.09 -153.67 |-155.21| -153.52
PUMSB STAR -82.52 -86.22 -88.01 -86.61 |-84.45| -83.57

DNA -75.98 -55.03 -51.29 -53.43 -52.80 |-52.92|
KOSAREK -2.18 |-2.13| -2.11 -2.15 -2.12 -2.14

MSWEB -10.98 -10.68 -10.52 -10.77 -10.59 |-10.62|
BOOK -6.11 -6.04 -6.04 -6.18 |-6.04| -6.33

TMOVIE -10.25 -9.71 |-9.89| -9.93 -9.86 -9.90
CWEBKB -6.11 -6.06 -5.99 |-6.05| -6.01 -6.22

CR52 -12.97 |-12.98| -13.02 -14.19 -12.81 -13.77
C20NG |-24.78| -24.12 -26.12 -26.06 -22.75 -26.12

BBC |-52.48| -53.67 -58.01 -54.82 -51.49 -51.41
AD -11.04 -10.81 -10.72 -10.94 -10.87 |-10.84|

Avg. Rank 4.28 ± 1.50 3.75 ± 1.48 |3.58 ± 2.14| 3.95 ± 1.61 2.15 ± 1.04 3.30 ± 1.65

Table 1. Average test log-likelihood benchmark and average rank with standard
deviation (last row) of LEARNRP against competitors. In bold first place,
underline second, |between pipes| third.

partitioning random method. Experiments showed our approach ranked second best on
average, even though ours proved degrees of magnitude faster in terms of learning time.
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