
Emergent Feature Modularization
Márcio Ribeiro1 , Paulo Borba1 (Advisor) , Claus Brabrand2 (Co-Advisor)

1Universidade Federal de Pernambuco (UFPE), Recife, Brasil

2IT University of Copenhagen (ITU), Copenhangen, Denmark

{mmr3, phmb}@cin.ufpe.br, brabrand@itu.dk

Abstract. Many current implementation techniques for software families and
product lines lack interfaces, which could make code level feature dependen-
cies explicit and avoid errors introduction. As alternative to changing the im-
plementation approach, we introduce a tool-based solution to support develop-
ers in recognizing and dealing with feature dependencies: emergent interfaces,
which are computed on demand using feature-sensitive dataflow analysis. They
emerge in the IDE and emulate benefits of modularity not available in the host
language. In a controlled experiment, our interfaces improved performance of
maintenance tasks by up to 3 times and also reduced errors introduction.

Resumo. Muitas técnicas para implementação de famı́lias e linhas de produ-
tos de software carecem de interfaces, que poderiam explicitar dependências
entre features e evitar introdução de erros. Nesse contexto, apresentamos uma
solução baseada em ferramenta que permite aos desenvolvedores reconhecer
e lidar com dependências entre features: interfaces emergentes, que são com-
putadas sob demanda utilizando-se análises de fluxo de dados sensı́veis a fea-
tures e emergem no ambiente de desenvolvimento para emular benefı́cios de
modularidade não presentes na linguagem de programação. Em um experi-
mento controlado, desenvolvedores que usaram nossa abordagem durante tare-
fas de manutenção foram 3 vezes mais produtivos e introduziram menos erros.

1. Introduction
Developers often introduce errors to software systems when they fail to recognize module
and feature dependencies. This problem is particularly critical for families and Soft-
ware Product Lines (SPLs), in which features can be enabled and disabled, and market
and technical needs constrain how they can be combined. In this context, features often
crosscut each other [Liebig et al. 2010] and share program elements like variables and
methods [Ribeiro et al. 2011a, Ribeiro et al. 2012], without proper modular support from
a notion of interface between features. So developers could easily miss dependencies,
such as when a feature assigns a value to a variable read by another feature. Thus, chang-
ing the assigned value might be the correct action for maintaining one feature, but might
bring undesirable consequences to the other one.

To reduce this feature dependency problem, we propose a technique named emer-
gent interfaces, that establishes, on demand and according to a given maintenance task,
interfaces to feature code [Ribeiro et al. 2010]. We call our technique “emergent” be-
cause, instead of writing interfaces manually, developers can request (by using our tool,
Emergo [Ribeiro et al. 2011b]) interfaces on demand; that is, interfaces emerge to give

65

support for specific maintenance tasks. To do so, emergent interfaces capture depen-
dencies between the feature we are maintaining and the others we might impact. Thus,
developers become aware of the dependencies, and may have better chance of not in-
troducing errors [Yin et al. 2011]. To capture feature dependencies, we propose and im-
plement feature-sensitive dataflow analysis [Brabrand et al. 2012], that analyzes families
and SPLs in a less costly way than compiling and analyzing each product separately.

To evaluate the potential of emergent interfaces to reduce errors and development
effort, we conducted and replicated a controlled experiment. We focus on the study of fea-
ture maintenance tasks in SPLs implemented with preprocessors, which are widely used
to implement variability in industrial practice. Our experiment reveals that, considering
the selected kinds of system and developers, emergent interfaces help to reduce effort for
tasks involving interprocedural dependencies, which cross method boundaries. As for
tasks involving only intraprocedural dependencies, we confirm statistical significance in
only one round. In line with recent research [Yin et al. 2011], in both rounds we observe
that presenting feature dependencies help developers to detect and avoid errors.

Contributions. The concept of emergent interfaces to support developers when main-
taining features and the Emergo tool; data on how often feature dependencies occur in
practice (to assess the problem relevancy); empirical evidence that our interfaces can
reduce developers effort and errors introduction; and the feature-sensitive dataflow anal-
ysis. Novelty. Our idea is out of the mainstream (not human-produced interfaces) and
was first published in Onward!, whose CFP looks for “grand visions and new paradigms
that could make a big difference in how we will one day build software.” Our inter-
faces were the original motivation to feature-sensitive dataflow analysis, which lead to
international collaborations and published papers in conferences with high impact fac-
tor, such as AOSD (one of the five best papers; invited and published in TAOSD)
and PLDI (see http://arnetminer.org/page/conference-rank/html/
PL,SE.html). Awards. Our PhD proposal was the best one at OOPSLA Doctoral
Symposium 2010, worthing the ACM SIGPLAN John Vlissides Award (first brazilian
awarded, see http://www.sigplan.org/Awards/Vlissides/Main). Also,
Emergo was awarded as the best tool at Congresso Brasileiro de Software (CBSoft 2011).

2. Problem

To better explain the issues due to the lack of feature modularity, we outline one concrete
scenario. Although we could illustrate these issues in different contexts, we choose a crit-
ical one: industrial software families and SPLs, that can easily have hundreds of features
with a large number of possible products. In this context, code level feature dependen-
cies may cross feature boundaries, so that a variable changed in one feature is read by
another feature. If developers miss feature dependencies like this on, they might maintain
a feature and actually break another one. This problem is shared by implementation ap-
proaches that support some form of crosscutting, such as aspects. In industrial practice, a
more common scenario, and the one we focus here, is to use #ifdefs, where optional
code fragments are merely annotated in base code [Liebig et al. 2010].

Motivating Example. Our example comes from the Best Lap commercial car
racing game (developed by Meantime Mobile Creations) that motivate players to
qualify for the pole position. To compute the score, developers implemented

66

the variable totalScore to store the player’s total score (see the figure to the
right). Next to the common code base, there is optional code that belongs to fea-
ture ARENA (in gray). This feature publishes high scores on a network server
and, due to resource constraints, is not available in all product configurations.

public void computeLevel() {
 totalScore = curvesCounter * CURVE_BONUS + ...
 - totalCrashes * TIME_MULTIPLIER;
 ...

}

#ifdef ARENA
Network.setScore(totalScore);
#endif public static void setScore(int s){

 score = (s < 0) ? 0 : s;
}

To add penalties when crashing the car, suppose
now that a developer has to let the game score
be not only positive, but also negative. To ac-
complish the task, she localizes the maintenance
points, here just the totalScore assignment,
and changes its value (see the bold line). When
executing products without the ARENA feature,
we observe the desired behavior. But, due to the ARENA associated setScore method,
users using a configuration that includes that feature may report that negative scores are
not submitted to the network server. This was not noticed by the developer, who did not
realize she had to change code of another feature: she would have to change part of the
ARENA code to not check the invariant that all scores are positive. In this context, search-
ing for feature dependencies might increase developers effort since they have to make sure
that the modification does not impact other features. Also, if they miss a dependency, they
can easily introduce errors by not properly completing a maintenance task, for example.

Problem’s Dimension. Whenever we have features sharing elements (i.e., variables,
methods), we say that there is a feature dependency between the involved features. To
assess how often these dependencies occur in practice, we analyze 43 preprocessor-based
families and SPLs with a total of over 30 million lines of code, including Linux, Freebsd,
gcc, vim, and Best Lap [Ribeiro et al. 2012]. Even just looking only at methods (in-
traprocedural analysis), between 1 and 24 percent of all methods contain dependencies;
but, if we consider only methods with #ifdefs, typically more than a half also contain
dependencies. Impact: these numbers serve as a lower bound, since interprocedural de-
pendencies were not measured, but they show that the problem is so common in practice
that building dedicated tool support can be beneficial for companies that use #ifdefs.

3. Emergent Feature Modularization

To help developers avoid feature dependencies problems, we propose a tech-
nique called emergent interfaces that establishes, on demand, interfaces to feature
code [Ribeiro et al. 2010]. When developers are interested in dependencies from a spe-
cific code block, they ask the tool that implements the technique to compute inter-
faces. Then, interfaces emerge, giving support to maintain one feature without break-
ing others. To illustrate how emergent interfaces work, we revisit the Best Lap sce-
nario, where the developer is supposed to change how the total score is computed. The
first step when using our approach consists of selecting the maintenance points. She
selects the totalScore assignment (see the dashed rectangle in figure to the right)

public void computeLevel() {
 totalScore = ...
 ...
 #ifdef ARENA
}

+

Provides: totalScore
to Line 49

[Configuration: Arena]

and then our tool capture dependencies between
the feature she is maintaining and the others. Fi-
nally, the interface emerges as shown in the right-
hand side of the figure. The emerged interface
states that the maintenance task may impact the
behavior of products containing ARENA. So, the

67

core functionality provides totalScore current’s value whereas ARENA requires it.
The developer is now aware of the dependency. When investigating it, she is likely to
discover that she also needs to modify ARENA code to avoid introducing an error.

Feature-Sensitive Dataflow Analysis. To compute the interface, we can use conventional
dataflow analysis, but generating all possible configurations and analyzing them individ-
ually increases costs: an SPL with c number of features will give rise to 2c number of
possible products (minus those invalidated by feature constraints). For the tiny SPL illus-
trated in Figure 1(a) that has two features, A and B, with the feature model ψFM = A∨B,
we have to build and analyze three products (see Figure 1(b)).

void m() {

 int x = 0;

 #ifdef A x++;

 #ifdef B x--;

}

(a) Toy SPL.

void m() {

 int x = 0;

 x++;

}

c = {A} c = {B} c = {A,B}

void m() {

 int x = 0;

 x--;

}

void m() {

 int x = 0;

 x++;

 x--;

}

(b) Each possible product of our toy SPL.

Figure 1. Generating and analyzing each product separately: high costs.

To minimize costs, we design and implement feature-sensitive dataflow analy-
sis to analyze families and SPLs while staying within the framework of dataflow anal-
ysis [Brabrand et al. 2012, Brabrand et al. 2013, Bodden et al. 2013]. Here, there is no
need to build all configurations and we need only one fixed-point computation. To ex-
plain our proposal, we use the sign analysis, used to analyze the sign of variables. We
first lift the CFG to contain feature information. For example, the x++ node includes
{A}, since it is encompassed by #ifdef (A). Then, we lift the lattice, L, such that it
has one element per valid configuration: [[ψFM]] → L. An example element of this lat-
tice is: {{A} 7→ +, {B} 7→ -, {A,B} 7→ 0/+} which corresponds to: for {A}, x is
positive “+”; for {B}, x is negative “-”; and for {A,B}, it is zero-or-positive “0/+”.

{A}: x++;

{{A} 0, {B} 0, {A,B} 0}

{{A} +, {B} 0, {A,B} +}

Finally, we lift the transfer functions to work on elements
of the lifted lattice in a point-wise manner. We apply the
functions only on the configurations for which the state-
ment is executed. Consider the statement “#ifdef (A)
x++;”. The effect of the lifted function on the lattice ele-
ment {{A} 7→ 0, {B} 7→ 0, {A,B} 7→ 0} is depicted to the
right. We apply the function to each of the configurations
for which the formula A is satisfied. Since {A} ⊆ {A} and
{A} ⊆ {A,B}, the function is applied to the lattice values of {A} and {A,B} with re-
sulting value: fx++(0) = +. The same does not happen for configuration {B}, since it
does not satisfy the formula {A} 6⊆ {B}, so its value is left unchanged with value 0.

Emergo. We implemented the emergent concept in a Eclipse tool named Emergo (avail-
able at http://www.cin.ufpe.br/˜emergo). Emergo computes interfaces be-
tween methods or within a single one, by using interprocedural or intraprocedural reach-
ing definitions feature-sensitive dataflow analysis. So we can consider only valid feature
combinations, preventing developers from reasoning about feature constraints and even
from assuming invalid dependencies in case of mutually exclusive features.

68

4. Evaluation

Previously we suggest that our interfaces can make feature maintenance tasks faster and
less error prone. We evaluate these hypotheses in a controlled experiment in two rounds.

Goal, Questions, and Metrics. We focus on maintenance of preprocessor-based SPLs
with and without our interfaces, evaluating them from developers’ perspective and observ-
ing effort and errors they commit. We investigate the following questions: Do emergent
interfaces reduce effort during maintenance tasks involving feature code dependencies in
preprocessor-based systems? Do emergent interfaces reduce the number of errors during
maintenance tasks involving feature code dependencies in preprocessor-based systems?
To answer them, we measure the time to accomplish a maintenance task and how many
incorrect solutions the developer committed during the task (number of errors, NE).

Participants. In a first pilot study, we tested the experimental design with six graduate
students at the University of Marburg, Germany. Next, we performed the actual experi-
ment with 10 graduate students at Federal University of Pernambuco, Brazil (Round 1).
Finally, we replicated the experiment with 14 undergraduate students at Federal Univer-
sity of Alagoas, Brazil (Round 2). Half of the participants had professional experience.

Experimental Material and Tasks. We use two preprocessor-based SPLs as experimen-
tal material: Best Lap and MobileMedia. To cover different use cases, we ask participants
to perform two kinds of maintenance tasks: to implement a new requirement (requiring
interprocedural analysis) and to fix unused variables (requiring intraprocedural analysis).

Design. To evaluate our research questions, we use a standard Latin Square design. So,
each participant performs both kinds of tasks on each SPL and also uses and not uses
emergent interfaces at some part of the experiment, but no participant will perform the
same task twice (with both treatments), which avoids corresponding carry-over effects,
such as learning. The design blocks two factors: participant and tasks. For this design,
we perform an analysis of variance (ANOVA), following the convention p-value < 0.05.

Procedure. After randomly assigning each participant into our Latin Square design, we
distribute task description sheets accordingly. Each participant performs two tasks in two
individually prepared installations of Eclipse (with Emergo installed or not, with Best Lap
or MobileMedia). By preparing the Eclipses, we prevent participants from using Emergo
when they are not supposed to. All Eclipses have an additional plug-in with two buttons:
a Play/Pause button for participants to start/stop the chronometer; and a Finish button to
submit a solution. Before the experiment execution, we perform warmup tasks.

Results. We plot the times for both new-requirement tasks in Figure 4 (left-hand). Here
we use beanplot batches, where each batch shows individual observations as small hor-
izontal lines and the density trace forms the batch shape. In Round 1 (see the legend),
the slowest time when using emergent interfaces is still faster than the fastest time with-
out. On average, participants accomplished the task 3 times faster with emergent inter-
faces. The key results were confirmed in the replication (3.1 times faster), despite the
different student levels. According to an ANOVA test, we obtain statistically significant
evidence that emergent interfaces reduce effort in both new-requirement tasks. For the
unused-variable task, the use of emergent interfaces adds little: the difference between
the treatments is smaller (see Figure 4, right-hand). In fact, we obtain statistically signif-
icant evidence only in Round 2 (1.68 times faster; 1.5 times in Round 1). Regarding NE,

69

in Round 1, only one participant committed more errors when using emergent interfaces,
and all of them committed errors without. Round 2 roughly confirms the results.

50
0

10
00

20
00

EIs No−EIs

New requirement task

Technique

T
im

e
(s

ec
on

ds
)

EIs No−EIs

Round 1
Round 2

50
10

0
20

0
50

0

EIs No−EIs

Unused variable task

Technique

T
im

e
(s

ec
on

ds
)

EIs No−EIs

Round 1
Round 2

Figure 2. Time results for both tasks: new-requirement and unused-variable

5. Concluding Remarks
We introduce emergent interfaces (and feature-sensitive dataflow analysis) that raise
awareness of feature dependencies, improving feature modularity and complementing
previous work [Kästner et al. 2008, Baniassad and Murphy 1998]. Our results shows that
our interfaces decrease developers effort when faced with interprocedural dependencies
while also reducing errors introductions during our tasks. All material is available at
http://www.cin.ufpe.br/˜mmr3/phd-thesis/

References
Baniassad, E. L. A. and Murphy, G. C. (1998). Conceptual module querying for software

reengineering. In ICSE, pages 64–73.

Bodden, E., Tolêdo, T., Ribeiro, M., Brabrand, C., Borba, P., and Mezini, M. (2013).
Analyzing software product lines in minutes instead of years. In PLDI. To appear.

Brabrand, C., Ribeiro, M., Tolêdo, T., and Borba, P. (2012). Intraprocedural dataflow
analysis for software product lines. In AOSD, pages 13–24.

Brabrand, C., Ribeiro, M., Tolêdo, T., Winther, J., and Borba, P. (2013). Intraprocedural
dataflow analysis for software product lines. Transactions on AOSD, 10:73–108.

Kästner, C. et al. (2008). Granularity in Software Product Lines. In ICSE, pages 311–320.

Liebig, J., Apel, S., Lengauer, C., Kästner, C., and Schulze, M. (2010). An analysis of the
variability in forty preprocessor-based software product lines. In ICSE, pages 105–114.

Ribeiro, M. et al. (2011a). On the impact of feature dependencies when maintaining
preprocessor-based software product lines. In GPCE, pages 23–32.

Ribeiro, M. et al. (2012). On the impact of feature dependencies when maintaining
preprocessor-based software product lines. ACM SIGPLAN Notices, 47:23–32.

Ribeiro, M., Pacheco, H., Teixeira, L., and Borba, P. (2010). Emergent Feature Modular-
ization. In Onward!, pages 11–18.

Ribeiro, M., Toledo, T., Borba, P., and Brabrand, C. (2011b). A tool for improving
maintainabiliy of preprocessor-based product lines. In Tools Session (CBSoft 2011).

Yin, Z., Yuan, D., Zhou, Y., Pasupathy, S., and Bairavasundaram, L. (2011). How do fixes
become bugs? In ESEC/FSE, pages 26–36.

70

	CTD - XXVI Concurso de Teses e Dissertações
	Trabalhos Aceitos
	113497_3

