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Abstract. We present the results of an experimental study that quantifies the 

effects of different sources of OS Jitter in the Linux operating system. We 

found that the processor topology, especially regarding the shared processor 

cache, has the most significant influence in terms of OS Jitter. Also, we found 

that in order to reduce the impact of OS Jitter on a given application, the 

number of computational phases in the algorithm is significantly more 

important than the number of distributed processes or compute nodes. 

Resumo. Este trabalho apresenta os resultados de um estudo experimental 

que quantifica os efeitos de diferentes fontes de OS Jitter em um sistema 

operacional Linux. Verificou-se que, o número de fases computacionais do 

algoritmo é significativamente mais importante que o número de processos 

distribuídos ou nós de computação. 

1. Introduction  

The advances in many areas of society have been demanding more computational power 

to perform complex simulation models. This scenario has forced an increasing demand 

for high performance computing (HPC). The concept of distributed processing is 

fundamental because it enables to divide a task in many smaller subtasks and run them, 

in parallel, on different computing nodes [Garg  and De 2006]. Clusters of computers 

have been increasingly used for high performance distributed processing as alternative 

for supercomputers. In a typical cluster-based HPC environment, each computing node 

executes its own operating system. Thus, in addition to the user’s application running on 

the node, there are also operating system (OS) internal routines being executed regularly 

on the same node. This means that OS routines such as hardware interrupt handlers, 

kernel threads and timers, and administrative processes, all of them compete with the 

user application for the node computing resources. This scenario leads to a situation 

where during the user application runtime it suffers periodically from interferences 

caused by the OS internal routines. These interferences have been studied (e.g., [Jones et 

al. 2003], [De et al. 2007]) and reported in the literature as OS Jitter. HPC cluster-based 

applications are typically designed to run in a paradigm of parallel processing, where 

instructions are programmed to be executed in many computational phases [Garg and 

De 2006]. In this approach, after all distributed processes finish a given computational 

phase they all synchronize and then start executing the subsequent phase ([Gioiosa et al. 

2004], [Agarwal et al. 2005] and [Tsafrir et al. 2005]). Since a new phase only starts 

after all distributed processes conclude the current phase, synchronizing the computing 

time of all application processes is critical. The last process that terminates a given 

phase determines the time length of the phase. So, reducing the runtime variability in 
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each node is a major requirement, given that the occurrence of unexpected delays in a 

node will spread along other nodes involved in the same computational phase, bringing 

a longer time to complete the whole task. In this paper, we present an experimental 

study that quantifies the effect of different sources of OS Jitter in the Linux operating 

system. We choose the Linux OS because it is used in more than 90% of the HPC 

clusters listed on the Top500 supercomputer website.  

2. Methodology  

We adopt the design of experiments (DOE) method [Montgomery 2000] to conduct our 

study. This method requires the execution of several tests, where controlled changes are 

made on selected factors of the system, in order to observe and measure the effect of 

these changes on response variables. Each investigated factor is evaluated with respect 

to a predetermined set of values (levels). A factor at a specified level is called a 

treatment. The DOE method allows us to quantify the influence of a factor, individually 

or combined with other factors, on a specific response variable, we apply it to measure 

the impact of different sources of OS Jitter on the execution time of a typical HPC 

application. The HPC application used is a CPU-bound program that performs a matrix 

multiplication algorithm. Thus, our control group is composed of all treatment 

executions where the sources of OS Jitter are present. The experimental groups are those 

treatments where we control the presence and levels of each OS Jitter source 

investigated. Each treatment test is executed following a protocol: i) configure the test 

bed according to the treatment specification; ii) collect the start time (T1); iii) execute 

the matrix multiplication routine; iv) collect the end time (T2); v) replicate steps two to 

four 53 times; vi) write all computation times, (T2 - T1)i=1..53, into a log file. We replicate 

every treatment test 53 times in order to have a sample size large enough to ensure a 

proper estimation of experimental errors and to determine if the differences among 

treatments are statistically significant. The turnaround time of step three is 

approximately 10 minutes. To avoid that a treatment test influences the execution of the 

subsequent treatment, we restart the OS kernel right before starting the execution of a 

new treatment. For each treatment, we discard the first three replications considering 

that their results are more likely to suffer influences from file system and processor 

caches. Thus, our final dataset, per treatment, is composed of 50 run times. To analyze 

the experimental results we use different statistical techniques. First, we identify which 

treatments are statistically different. We do not use a parametric approach, such as 

analysis of variance (ANOVA), because the dataset obtained does not fit the necessary 

assumptions, especially regarding to independent and identically distributed (i.i.d.) 

observations. Thus, we use the non-parametric Kruskal-Wallis test [Vam and Vidakovic 

2007], which allows us to use ranks of observations, providing statistics equivalent to 

those obtained with parametric tests. We compare all treatments and the difference 

between their response variables (run times) are statistically significant if the p-value is 

less than 0.05 (α=5%). For the setup of treatment combinations, and sequence of runs, 

we adopt the signal matrix method [Jain 1991], which was arranged according to the 

Yates’ order [Montgomery 2000]. Solving the signal matrix, we have a ranking of 

individual and combined factors that are sorted by their influence degree on the 

application runtime. Supported by this ranking we can identify the OS Jitter sources 

with more impact on the test application. 
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3. Experimental Study  

In order to conduct the tests, we use a test bed based on a computer composed of two 

quad-core sockets (Intel Xeon E5620 2.40GHz), 24 GB memory, and 1 TB SATA disk. 

The computer microarchitecture has a three-level cache per CPU socket, being the last 

level (L3) of 12MB and shared by all cores of the same socket. Each core has two 

individual levels of cache, L1 (32KB) and L2 (256KB). Figure 1 illustrates the 

processors topology. For the sake of simplicity, we refer to each core as PU #0 to PU #7, 

where PU stands for processor unit. The test program runs only on PU #1, where we 

rigorously control the enabling and disabling of OS Jitter sources. The remaining cores 

are used according to each treatment specification. Our experimental plan is created to 

evaluate quantitatively the effects of different sources (factors) of OS Jitter on the total 

run time of the HPC test application. We encode each evaluated factor using upper case 

letters. Each factor assumes two levels represented by symbols (+) and (-). The level (-) 

means that the OS Jitter source (factors) is disabled, and (+) means enabled. 

3.1. Experiment #1 

In Exp. #1, we evaluate five factors. Factor A represents the operating system runlevel. 

At level (-) the runlevel is 5, which means a higher number of service loaded. 

Differently, the level (+) sets a minimal number of services loaded. This factor is related 

to the number of system processes running concurrently with the user application. 

Factor B represents the kernel timers. Kernel timers are used to allow the execution of 

kernel or user level routines at a given future time. The level (-) of this factor indicates 

that we disable the execution of timers on the same processor (PU #1) that executes the 

test application. The level (+), the timers can be programmed to run on the processor PU 

#1. We always move timers from PU #1 to PU #0, where PU #0 is the processor we 

defined to run all timers from PU #1 when this factor is at level (-). This allows us to 

observe the direct interference of timers. Factor C represents the hardware interrupt 

request (IRQ). This factor at level (-) indicates that the processor PU #1 does not receive 

interrupt requests (except from the timer interrupt); All IRQs are redirected to PU #0. 

On the other hand, this factor at level (+) all IRQs are handled only by the PU #1. This 

allows us to observe the direct interference of IRQs. Factor D represents the processor 

affinity of the system processes. This factor at level (-) means that processor affinity is 

disabled, and thus all system processes can be executed in any processor. This factor at 

level (+) means that we enable the processor affinity and set all system processes to run 

only on PU #0. This allows us to observe the direct interference of system processes. 

Factor E represents the timer interrupt. This factor at level (-) indicates that we disable 

this interrupt on processor PU #1, where the test application is running. For this 

experiment, the results show that 91.23% of the test application run time variation is 

caused by factor E (timer interrupt) and the other factors did not show important 

contributions when compared with the timer interrupt. After comparing all pairs of 

treatments, we notice that every treatment where factor E (timer interrupt) is disabled is 

considered statistically different from the treatments with this factor enabled.  

3.2. Experiment #2 

This experiment consists of six factors. The first five factors (A..E) are the same used in 

Exp. #1, and we introduce the factor F that represents a CPU-bound workload running 
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in background. A process also running a matrix multiplication program implements this 

background workload. The factor F at level (-) means that the application performing 

the background workload is running in a processor (PU #5) that is not sharing L3 cache 

with the processor PU #1. This factor at level (+), the background workload is running 

in a processor (PU #2) that shares the L3 cache memory with PU #1. This allows us to 

observe the interference of other processes sharing processor cache memory with the 

test application. The test application has an average working set size of 12248 kB (11.96 

MB), and the process performing the background workload has 12228 kB (11.94 MB). 

When evaluating the scenario with shared cache (level +), both processes compete for 

the entire L3 cache memory. We split the results in four groups (G1 to G4). Since G1 

and G2 reproduce the treatments evaluated in Exp. #1, the results obtained were 

practically the same discussed in previous subsection. The factor F is disabled in all 

treatments of G1 and G2. On the other hand, this factor is enabled in all treatments of 

G3 and G4, where in G3 the factor E (timer interrupt) is disabled and in G4 is enabled. 

All treatments of G3 the test application did not suffer influence of timer interrupts, but 

from sharing the L3 cache. In G4 both influences, timer interrupts and sharing processor 

cache, are present. That the individual contribution of factors E (timer interrupt) and F 

(shared processor L3 cache) on the application run time are very similar, the results 

show that 33.90% of the test application run time variation is caused by factor F and 

24.76% is caused by factor E. We observe that 32.84% of the total variability could not 

be explained by our factorial design. This may be due to experimental errors introduced 

with the activation of factor F. 

3.3. Experiment #3 

This experiment introduces a network workload in addition to the factors evaluated in 

Exp. #1. This background network workload allows us to observe the interference of 

network interrupts on the test application. For all evaluated treatments, the network 

workload runs on PU#2. The network workload is based on an application receiving 

500-byte UDP datagrams in a continuous way. Some treatments tested in experiments 

#1 and #2 were not evaluated, which are related to the IRQ factor in level (+) and timer 

interrupt factor in level (-). This is necessary because disabling the timer interrupt on 

PU#1 makes the kernel routines, responsible for the datagram packet processing, work 

improperly, which causes the loss of network packets. It occurs because these routines 

use kernel timers that require the timer interrupt enabled. The same applies to the IRQ 

with respect to the network card interrupt handling. Based on the results, we observe 

that the joint contribution of factors C (IRQ) and E (timer interrupt) on the application 

run time is high. The numerical analysis, showed that the average run time is: G1 (9.98 

minutes), G3 (10.01), and G4 (14.54), note that we also organized the treatments in four 

groups. So, when the hardware interrupt request and timer interrupt factors are enabled 

simultaneously on PU#1, the average run time increases significantly (45%). The 

network interrupts may have a greater impact than the worst case of sharing cache. We 

observe that factor C and the iteration CE have very close contributions (approx. 46%) 

and only 0.003% of the total variability could not be explained by our factorial design. 

3.4. Simulation 
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Figure 1. Processor topology  
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Figure 2. Effect for 100 and 200 phases 
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Figure 3. Effect for 500 processes 

 

Figure 4. Summary of the simulation

We simulate the impact of the OS Jitter on a HPC application running in multiple 

compute nodes and composed of multiple computational phases. First, we select two 

treatments (T10 and T23) from Exp. #1. In T10 all investigated factors are disabled and 

in T23 they are all enabled. Based on these treatments, we generated a third dataset with 

the differences between T23 and T10. This new dataset is used to obtain the probability 

density function (pdf) of the run time delay caused by the OS Jitter. We conduct a 

goodness-of-fit test, with 95% of confidence level, and found that this sample follows a 

normal distribution. Next, we use this pdf to simulate the delay occurrences on each 

computational phase of each instance of the application running on multiple computing 

nodes. We vary the number of computational phases per process (1 to 200) and the 

number of processes (1 to 500). We consider only one application process running per 

node, so varying the number of processes means changing the number of compute 

nodes. The simulation results show that when we vary the amount of processes (or 

compute nodes), to any amount of phases, the application execution time growth 

logarithmically. In Figure 2, for different number of computational phases, we observe 

that for few processes (e.g., < 20) the growth of the curve is quite sharp. For more than 

that, the increase in the application time tends to moderate. This happens because with 

few processes taking part at each phase, there is a smaller probability that in a given 

phase some of these processes suffer from OS Jitter influences whose delay is close to 

the highest possible values. If the amount of processes rises (e.g. > 20), then increases 

the probability of delays caused by OS Jitter, per phase, to be close to the highest 

observed delays. Thus, the average delay is close to the highest possible delay. When 

raising the number of phases the application run time rose linearly (see Figure 3). 

Increasing the number of phases, the probability of delays caused by OS Jitter inside of 

each cluster node also increases. Since the nodes are working in parallel, the summation 

of these increased probabilities explains this linear behavior. Summarizing the 

simulation results, in Figure 4 we present the sensitivity analysis of the runtime delay 

with respect to the number of processes and number of phases. We conclude that in 

order to reduce the effects of OS Jitter on the runtime of distributed applications, it is a 

major requirement to reduce the number of computational phases per processes, even 

though it would require a significant increase on the number of processes (or nodes). 

51



  

5. Final Remarks  

The recent advances in areas such as power saving and processor topology have changed 

the way the OS kernels work. These changes consequently affect how the OS routines 

interfere on the user applications. The controlled use of features such as CPU frequency 

scaling and tickless kernel have not been considered in the previous studies, requiring 

update. In addition to including these aspects, we also use a comprehensive 

methodology based on robust statistical techniques that allow us to analyze the 

experimental data in a rigorous way. Several previous works have indicated the timer 

interrupt as the most influential source of OS Jitter. However, we found that sharing 

processor cache has a similar impact on the application run time than timer interrupts, or 

even more, when these two factors are combined. We also observe that the number of 

computational phases in a distributed application has a higher impact on the runtime 

delay, due to OS Jitter, than the number of processes running across the cluster. In the 

future works, we will evaluate the OS Jitter to other types of workloads, including I/O-

bound and hybrids (CPU-bound and I/O-bound). 
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