

Exploratory Study on the Linux OS Jitter

Elder Vicente, Rivalino Matias Jr.

School of Computer Science – Federal University of Uberlandia (UFU), MG – Brazil

elder@mestrado.ufu.br, rivalino@fc.ufu.br

Abstract. We present the results of an experimental study that quantifies the

effects of different sources of OS Jitter in the Linux operating system. We

found that the processor topology, especially regarding the shared processor

cache, has the most significant influence in terms of OS Jitter. Also, we found

that in order to reduce the impact of OS Jitter on a given application, the

number of computational phases in the algorithm is significantly more

important than the number of distributed processes or compute nodes.

Resumo. Este trabalho apresenta os resultados de um estudo experimental

que quantifica os efeitos de diferentes fontes de OS Jitter em um sistema

operacional Linux. Verificou-se que, o número de fases computacionais do

algoritmo é significativamente mais importante que o número de processos

distribuídos ou nós de computação.

1. Introduction

The advances in many areas of society have been demanding more computational power

to perform complex simulation models. This scenario has forced an increasing demand

for high performance computing (HPC). The concept of distributed processing is

fundamental because it enables to divide a task in many smaller subtasks and run them,

in parallel, on different computing nodes [Garg and De 2006]. Clusters of computers

have been increasingly used for high performance distributed processing as alternative

for supercomputers. In a typical cluster-based HPC environment, each computing node

executes its own operating system. Thus, in addition to the user’s application running on

the node, there are also operating system (OS) internal routines being executed regularly

on the same node. This means that OS routines such as hardware interrupt handlers,

kernel threads and timers, and administrative processes, all of them compete with the

user application for the node computing resources. This scenario leads to a situation

where during the user application runtime it suffers periodically from interferences

caused by the OS internal routines. These interferences have been studied (e.g., [Jones et

al. 2003], [De et al. 2007]) and reported in the literature as OS Jitter. HPC cluster-based

applications are typically designed to run in a paradigm of parallel processing, where

instructions are programmed to be executed in many computational phases [Garg and

De 2006]. In this approach, after all distributed processes finish a given computational

phase they all synchronize and then start executing the subsequent phase ([Gioiosa et al.

2004], [Agarwal et al. 2005] and [Tsafrir et al. 2005]). Since a new phase only starts

after all distributed processes conclude the current phase, synchronizing the computing

time of all application processes is critical. The last process that terminates a given

phase determines the time length of the phase. So, reducing the runtime variability in

47

each node is a major requirement, given that the occurrence of unexpected delays in a

node will spread along other nodes involved in the same computational phase, bringing

a longer time to complete the whole task. In this paper, we present an experimental

study that quantifies the effect of different sources of OS Jitter in the Linux operating

system. We choose the Linux OS because it is used in more than 90% of the HPC

clusters listed on the Top500 supercomputer website.

2. Methodology

We adopt the design of experiments (DOE) method [Montgomery 2000] to conduct our

study. This method requires the execution of several tests, where controlled changes are

made on selected factors of the system, in order to observe and measure the effect of

these changes on response variables. Each investigated factor is evaluated with respect

to a predetermined set of values (levels). A factor at a specified level is called a

treatment. The DOE method allows us to quantify the influence of a factor, individually

or combined with other factors, on a specific response variable, we apply it to measure

the impact of different sources of OS Jitter on the execution time of a typical HPC

application. The HPC application used is a CPU-bound program that performs a matrix

multiplication algorithm. Thus, our control group is composed of all treatment

executions where the sources of OS Jitter are present. The experimental groups are those

treatments where we control the presence and levels of each OS Jitter source

investigated. Each treatment test is executed following a protocol: i) configure the test

bed according to the treatment specification; ii) collect the start time (T1); iii) execute

the matrix multiplication routine; iv) collect the end time (T2); v) replicate steps two to

four 53 times; vi) write all computation times, (T2 - T1)i=1..53, into a log file. We replicate

every treatment test 53 times in order to have a sample size large enough to ensure a

proper estimation of experimental errors and to determine if the differences among

treatments are statistically significant. The turnaround time of step three is

approximately 10 minutes. To avoid that a treatment test influences the execution of the

subsequent treatment, we restart the OS kernel right before starting the execution of a

new treatment. For each treatment, we discard the first three replications considering

that their results are more likely to suffer influences from file system and processor

caches. Thus, our final dataset, per treatment, is composed of 50 run times. To analyze

the experimental results we use different statistical techniques. First, we identify which

treatments are statistically different. We do not use a parametric approach, such as

analysis of variance (ANOVA), because the dataset obtained does not fit the necessary

assumptions, especially regarding to independent and identically distributed (i.i.d.)

observations. Thus, we use the non-parametric Kruskal-Wallis test [Vam and Vidakovic

2007], which allows us to use ranks of observations, providing statistics equivalent to

those obtained with parametric tests. We compare all treatments and the difference

between their response variables (run times) are statistically significant if the p-value is

less than 0.05 (α=5%). For the setup of treatment combinations, and sequence of runs,

we adopt the signal matrix method [Jain 1991], which was arranged according to the

Yates’ order [Montgomery 2000]. Solving the signal matrix, we have a ranking of

individual and combined factors that are sorted by their influence degree on the

application runtime. Supported by this ranking we can identify the OS Jitter sources

with more impact on the test application.

48

3. Experimental Study

In order to conduct the tests, we use a test bed based on a computer composed of two

quad-core sockets (Intel Xeon E5620 2.40GHz), 24 GB memory, and 1 TB SATA disk.

The computer microarchitecture has a three-level cache per CPU socket, being the last

level (L3) of 12MB and shared by all cores of the same socket. Each core has two

individual levels of cache, L1 (32KB) and L2 (256KB). Figure 1 illustrates the

processors topology. For the sake of simplicity, we refer to each core as PU #0 to PU #7,

where PU stands for processor unit. The test program runs only on PU #1, where we

rigorously control the enabling and disabling of OS Jitter sources. The remaining cores

are used according to each treatment specification. Our experimental plan is created to

evaluate quantitatively the effects of different sources (factors) of OS Jitter on the total

run time of the HPC test application. We encode each evaluated factor using upper case

letters. Each factor assumes two levels represented by symbols (+) and (-). The level (-)

means that the OS Jitter source (factors) is disabled, and (+) means enabled.

3.1. Experiment #1

In Exp. #1, we evaluate five factors. Factor A represents the operating system runlevel.

At level (-) the runlevel is 5, which means a higher number of service loaded.

Differently, the level (+) sets a minimal number of services loaded. This factor is related

to the number of system processes running concurrently with the user application.

Factor B represents the kernel timers. Kernel timers are used to allow the execution of

kernel or user level routines at a given future time. The level (-) of this factor indicates

that we disable the execution of timers on the same processor (PU #1) that executes the

test application. The level (+), the timers can be programmed to run on the processor PU

#1. We always move timers from PU #1 to PU #0, where PU #0 is the processor we

defined to run all timers from PU #1 when this factor is at level (-). This allows us to

observe the direct interference of timers. Factor C represents the hardware interrupt

request (IRQ). This factor at level (-) indicates that the processor PU #1 does not receive

interrupt requests (except from the timer interrupt); All IRQs are redirected to PU #0.

On the other hand, this factor at level (+) all IRQs are handled only by the PU #1. This

allows us to observe the direct interference of IRQs. Factor D represents the processor

affinity of the system processes. This factor at level (-) means that processor affinity is

disabled, and thus all system processes can be executed in any processor. This factor at

level (+) means that we enable the processor affinity and set all system processes to run

only on PU #0. This allows us to observe the direct interference of system processes.

Factor E represents the timer interrupt. This factor at level (-) indicates that we disable

this interrupt on processor PU #1, where the test application is running. For this

experiment, the results show that 91.23% of the test application run time variation is

caused by factor E (timer interrupt) and the other factors did not show important

contributions when compared with the timer interrupt. After comparing all pairs of

treatments, we notice that every treatment where factor E (timer interrupt) is disabled is

considered statistically different from the treatments with this factor enabled.

3.2. Experiment #2

This experiment consists of six factors. The first five factors (A..E) are the same used in

Exp. #1, and we introduce the factor F that represents a CPU-bound workload running

49

in background. A process also running a matrix multiplication program implements this

background workload. The factor F at level (-) means that the application performing

the background workload is running in a processor (PU #5) that is not sharing L3 cache

with the processor PU #1. This factor at level (+), the background workload is running

in a processor (PU #2) that shares the L3 cache memory with PU #1. This allows us to

observe the interference of other processes sharing processor cache memory with the

test application. The test application has an average working set size of 12248 kB (11.96

MB), and the process performing the background workload has 12228 kB (11.94 MB).

When evaluating the scenario with shared cache (level +), both processes compete for

the entire L3 cache memory. We split the results in four groups (G1 to G4). Since G1

and G2 reproduce the treatments evaluated in Exp. #1, the results obtained were

practically the same discussed in previous subsection. The factor F is disabled in all

treatments of G1 and G2. On the other hand, this factor is enabled in all treatments of

G3 and G4, where in G3 the factor E (timer interrupt) is disabled and in G4 is enabled.

All treatments of G3 the test application did not suffer influence of timer interrupts, but

from sharing the L3 cache. In G4 both influences, timer interrupts and sharing processor

cache, are present. That the individual contribution of factors E (timer interrupt) and F

(shared processor L3 cache) on the application run time are very similar, the results

show that 33.90% of the test application run time variation is caused by factor F and

24.76% is caused by factor E. We observe that 32.84% of the total variability could not

be explained by our factorial design. This may be due to experimental errors introduced

with the activation of factor F.

3.3. Experiment #3

This experiment introduces a network workload in addition to the factors evaluated in

Exp. #1. This background network workload allows us to observe the interference of

network interrupts on the test application. For all evaluated treatments, the network

workload runs on PU#2. The network workload is based on an application receiving

500-byte UDP datagrams in a continuous way. Some treatments tested in experiments

#1 and #2 were not evaluated, which are related to the IRQ factor in level (+) and timer

interrupt factor in level (-). This is necessary because disabling the timer interrupt on

PU#1 makes the kernel routines, responsible for the datagram packet processing, work

improperly, which causes the loss of network packets. It occurs because these routines

use kernel timers that require the timer interrupt enabled. The same applies to the IRQ

with respect to the network card interrupt handling. Based on the results, we observe

that the joint contribution of factors C (IRQ) and E (timer interrupt) on the application

run time is high. The numerical analysis, showed that the average run time is: G1 (9.98

minutes), G3 (10.01), and G4 (14.54), note that we also organized the treatments in four

groups. So, when the hardware interrupt request and timer interrupt factors are enabled

simultaneously on PU#1, the average run time increases significantly (45%). The

network interrupts may have a greater impact than the worst case of sharing cache. We

observe that factor C and the iteration CE have very close contributions (approx. 46%)

and only 0.003% of the total variability could not be explained by our factorial design.

3.4. Simulation

50

Figure 1. Processor topology

2350

2400

2450

2500

2550

2600

2650

0 50 100 150 200 250 300 350 400 450 500

of Processes

T
im

e
 (

se
co

n
d
s)

1150

1200

1250

1300

1350
200 Phases 100 Phases

Figure 2. Effect for 100 and 200 phases

0

500

1000

1500

2000

2500

3000

0 40 80 120 160 200

of phases

T
im

e
(s

ec
on

ds
)

500 Processes

Figure 3. Effect for 500 processes

Figure 4. Summary of the simulation

We simulate the impact of the OS Jitter on a HPC application running in multiple

compute nodes and composed of multiple computational phases. First, we select two

treatments (T10 and T23) from Exp. #1. In T10 all investigated factors are disabled and

in T23 they are all enabled. Based on these treatments, we generated a third dataset with

the differences between T23 and T10. This new dataset is used to obtain the probability

density function (pdf) of the run time delay caused by the OS Jitter. We conduct a

goodness-of-fit test, with 95% of confidence level, and found that this sample follows a

normal distribution. Next, we use this pdf to simulate the delay occurrences on each

computational phase of each instance of the application running on multiple computing

nodes. We vary the number of computational phases per process (1 to 200) and the

number of processes (1 to 500). We consider only one application process running per

node, so varying the number of processes means changing the number of compute

nodes. The simulation results show that when we vary the amount of processes (or

compute nodes), to any amount of phases, the application execution time growth

logarithmically. In Figure 2, for different number of computational phases, we observe

that for few processes (e.g., < 20) the growth of the curve is quite sharp. For more than

that, the increase in the application time tends to moderate. This happens because with

few processes taking part at each phase, there is a smaller probability that in a given

phase some of these processes suffer from OS Jitter influences whose delay is close to

the highest possible values. If the amount of processes rises (e.g. > 20), then increases

the probability of delays caused by OS Jitter, per phase, to be close to the highest

observed delays. Thus, the average delay is close to the highest possible delay. When

raising the number of phases the application run time rose linearly (see Figure 3).

Increasing the number of phases, the probability of delays caused by OS Jitter inside of

each cluster node also increases. Since the nodes are working in parallel, the summation

of these increased probabilities explains this linear behavior. Summarizing the

simulation results, in Figure 4 we present the sensitivity analysis of the runtime delay

with respect to the number of processes and number of phases. We conclude that in

order to reduce the effects of OS Jitter on the runtime of distributed applications, it is a

major requirement to reduce the number of computational phases per processes, even

though it would require a significant increase on the number of processes (or nodes).

51

5. Final Remarks

The recent advances in areas such as power saving and processor topology have changed

the way the OS kernels work. These changes consequently affect how the OS routines

interfere on the user applications. The controlled use of features such as CPU frequency

scaling and tickless kernel have not been considered in the previous studies, requiring

update. In addition to including these aspects, we also use a comprehensive

methodology based on robust statistical techniques that allow us to analyze the

experimental data in a rigorous way. Several previous works have indicated the timer

interrupt as the most influential source of OS Jitter. However, we found that sharing

processor cache has a similar impact on the application run time than timer interrupts, or

even more, when these two factors are combined. We also observe that the number of

computational phases in a distributed application has a higher impact on the runtime

delay, due to OS Jitter, than the number of processes running across the cluster. In the

future works, we will evaluate the OS Jitter to other types of workloads, including I/O-

bound and hybrids (CPU-bound and I/O-bound).

References

[Agarwal et al. 2005] Agarwal, S., Garg, R., and Vishnoi, N. K. (2005): The impact of

noise on the scaling of collectives: a theoretical approach. In Proc. of IEEE Int’l

Conf. on High Performance Comp., Goa, India, Dec. 280–289.

[De et al. 2007] De, P., Kothari, R., and Mann, V. (2007): Identifying sources of

operating system jitter through fine-grained kernel instrumentation. In Proc. of the

IEEE International Conference on Cluster Computing, Washington, USA, 331–340.

[Garg and De 2006] Garg, R. and De, P. (2006): The impact of noise on the scaling of

collectives: an empirical evaluation. In Proc. of 13th IEEE International Conference

on High Performance Computing (HiPC), Bangalore, India.

[Gioiosa et al. 2004] Gioiosa, R., Petrini, F., Davis, K., and Lebaillif-Delamare, F.

(2004): Analysis of system overhead on parallel computers. In Proc. of IEEE

Symposium of Signal Processing and Information Tech, 387–390.

[Jain 1991] R. Jain (1991): The Art of Computer Systems Performance Analysis:

Techniques for Experimental Design, Measurement, Simulation, and Modeling.

Wiley-Interscience, New York, NY.

[Jones et al. 2003] Jones, T. R., Brenner, L. B., Fier, J. M. (2003): Impacts of operating

systems on the scalibility of parallel applications. Tech. Rep. UCRL-MI-202629,

Lawrence Livermore National Laboratory.

[Montgomery 2000] D. C. Montgomery (2000): Design and Analysis of Experiments.

John Wiley, 3rd edition.

[Tsafrir et al. 2005] Tsafrir, D., Etsion, Y., Feitelson, D. G., and Kirkpatrick, S. (2005):

System noise, os clock ticks, and fine-grained parallel applications. In Proc. of Int’l

Conf. on Supercomputing, New York, NY, USA 303–312.

[Vam and Vidakovic 2007] Vam, P.H. and Vidakovic, B. (2007): Nonparametric

Statistics With Applications to Science and Engineering. Wiley-Interscience.

52

	CTD - XXVI Concurso de Teses e Dissertações
	Trabalhos Aceitos
	113483_3

