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Abstract. Creating models from previous observations and ensuring
effectiveness on new data is the essence of machine learning. However,
selecting models that generalize well to future data remains a challenging
task. In this work, we investigate how models perform across datasets with
distinct underlying data generation functions but constitute co-related tasks.
The key motivation is to study the Rashomon Effect, which appears whenever
the learning problem admits a set of models that all perform roughly equally
well. Real-world problems often exhibit multiple local structures in data space,
leading to a non-convex error surface and multiple high-performing models
which literature suggests to be subject to the Rashomon Effect. Our approach
is to stratify, during training, the solution space into model groups that are
either coherent or contrasting given both performance and explanations. From
these Rashomon groups, we build an ensemble ensuring that each constituent
covers a distinct region of the solution space. We validate our approach by
performing a series of experiments in both open and closed real-world datasets.
Our method outperforms state-of-the-art techniques, improving AUROC by up
to 0.20+ when the Rashomon ratio is large.

Resumo. Criar modelos a partir de observações e garantir sua eficácia em
novos dados é a essencia do aprendizado de máquina. No entanto, selecionar
modelos que generalizem bem para dados futuros continua sendo uma tarefa
desafiadora. Neste trabalho, investigamos como os modelos se comportam
em conjuntos de dados com funções de geração de dados distintas mas ainda
correlacionadas. A motivação é estudar o Efeito Rashomon, que ocorre
quando um problema admite a existência de vários modelos distintos com
desempenho semelhante. Problemas do mundo real frequentemente exibem
múltiplas estruturas locais nos dados, resultando em múltiplos modelos de
alto desempenho sujeitos ao Efeito Rashomon. Propomos estratificar durante
treino o espaço de soluções em grupos de modelos coerentes ou contrastantes.
A partir desses grupos de Rashomon, contruimos um comitê onde cada
constituinte cobre uma região distinta do espaço. Validamos nossa abordagem
em conjuntos de dados abertos e reais. Nossa abordagem supera o estado-
da-arte, melhorando a AUROC em até 0,20+ nos cenários onde a razão de
Rashomon é alta.



1. Introduction

Model selection is crucial in both industry and research, and the widely adopted approach
is cross-validation. Although cross-validation generally provides robust risk estimation,
it may fail for specific problems depending on the model selection goal. The empirical
risk on a test set might not always correlate with real-world performance. Particularly, the
empirical risk can be significantly influenced when different models perform similarly on
the test set (Hinns et al. 2021).

The Rashomon Effect, also known as the multiplicity of good models
(Breiman 2001), presents a phenomenon where many models perform equally well,
yet they process data in substantially different ways, making it challenging to draw
reliable conclusions or automate decisions based on a single model fit (Zuin et al. 2020;
Zuin et al. 2023b). In this study, we investigate model performance in datasets with
different underlying generator functions while constituting correlated tasks. A significant
challenge arises when a cross-validated model, carefully selected during training,
encounters data drawn from a different distribution during production. Cross-validation
guarantees no longer apply to out-of-distribution data, resulting in unpredictable model
behavior and rendering held-out performance an unreliable risk estimation. To address
this issue, we extend our analysis beyond empirical risk.

Our main hypothesis posits that some models exhibit similar behavior only when
data is drawn from the same distribution as seen during training. Instead of relying on
a single model, which may struggle with complex datasets containing multiple local
structures, we assemble contrasting models from different sub-populations of the solution
space. We propose leveraging the Rashomon set and dividing it into subspaces, using
the explanation of each model as a driver for the partitioning. Combining individuals
from each subspace produces ensembles with varied perspectives, offering insights into
the different facets of the problem. As each constituent offers a different explanation for
the target phenomenon, the ensemble’s output is directly linked to the trustworthiness
of its prediction. Consensus among constituents indicates a match between the data
distribution and the one seen during training, with all cross-validation guarantees holding.
Disagreement suggests that the properties cannot be trusted.

We believe that diversity among individual models is crucial for gaining an
understanding of any phenomenon. Further, we assume that problems are not tied
to a single factor. The Rashomon Effect suggests the existence of multiple potential
explanations for a given problem, all consistent with the data. To encourage diversity
and identify patterns, we group models based on the similarity of their explanations.
Ideally, this leads to dense groups where models share common explanatory factors. For
each group, we select the most distinct models, also evaluating cohesion in a simulated
dataset with perturbation. This results in an ensemble that is diverse in its constituents,
incorporates high-performing models, summarizes the entire Rashomon set and solution
space, and allows for an approximation of a risk metric under new data distributions based
on constituent agreement. We coin this idea as the Rashomon Ensemble. Our approach
involves the following steps:

1. Sample models from a pre-defined Rashomon subspace (set of models with
equivalent empirical risk).



2. Compute the explanation vector of the sampled models and their pairwise
similarity.

3. Perturbate a held-out test data through some data transformation.
4. Compute the pairwise distance in the transformed test set.
5. Split the Rashamon set into subgroups based on models’ explanation vectors and

distances.
6. Select a set of models with contrasting explanations and divergent predictions on

the transformed data.
7. Build an ensemble and evaluate agreement to estimate reliability.

We validate our approach on a set of public datasets for reproducibility and
demonstrate its robustness in simulated scenarios. Our results show that Rashomon
ensembles consistently outperform state-of-the-art ensemble learning approaches if the
Rashomon set is large enough. When exposed to data drift, our approach remained the
performant one in most evaluated scenarios providing further evidence of its reliability.
We proceed to employ the Rashomon ensembles in three real-world applications partnered
with various industries and institutions, studying the impact of our approach.

2. Related Work

Many methods exist for capturing model uncertainty and improving prediction robustness,
including ensemble modeling (Madras et al. 2020). Recent focus has centered on Neural
Networks (NNs) and their intermediary features, particularly for Out-of-Distribution
(OoD) detection (Chen et al. 2021). The main difference in our work lies in the
analysis of additional unexplored axes, such as the decision-making process of a
model via their explanatory factors (Lundberg and Lee 2017). A second key idea is
to exploit the Rashomon Effect to look for models with similar performance during
training. The Rashomon Effect defines a set of close-to-optimal models sharing similar
performance (Fisher et al. 2019). We leverage the Rashomon set, defined relative to
a reference model and allowing comparison based on performance and explanation
proximity. Another fundamental aspect of our work and for comprehending the
Rashomon set is the Rashomon ratio, as introduced by (Semenova and Rudin 2019). It
represents the portion of models in the overall solution space that belong to a specific
Rashomon set for a given problem. A high ratio suggests numerous diverse solutions,
enabling the location of less complex and more robust models. A much more detailed
discussion about related work can be found in (Zuin 2023).

3. Problem Formulation

We consider a supervised learning scenario and formulate a classification model as a
function f(X, Y ; θ) parameterized by θ that maps inputs xi ∈ X to labels yi ∈ Y .
During cross-validation, we train models on data Dtrain coming from a distribution T .
To estimate the predictive risk of each function, we employ additional data Dtest from the
same distribution T and evaluate fn ∈ F on this independent and identically distributed
data. The standard model selection step involves selecting the function that minimizes
the empirical predictive risk, providing performance guarantees when future data follows
the same distribution T . However, these guarantees do not hold when dealing with data
coming from other distributions, such as in the case of data drift.



Our main objective is to build a diverse ensemble comprising different and
contrasting explanations for the same problem. Additionally, we aim to estimate the
reliability of our predictions under uncertainty arising from an unknown data distribution
U , which may contain drift compared to the training data distribution T . To achieve this,
we explore how models behave when the differences between different executions are
only minor. We consider θ to encompass any choices made during training that lead to
virtually similar models exhibiting contrasting performances. We then introduce drift to
the test data and evaluate its effects on each model.

Instead of simply mixing multiple different structures into a single model and
minimizing the objective function f(x), we sample the model space by minimizing
different functions f(x′), where x′ ⊆ x and |x′| < |x| (Zuin et al. 2020). This
sampling strategy resembles the Rashomon set concept, as it acknowledges the existence
of multiple valid and diverse models that perform well in different regions of the
data space. By exploring the Rashomon set and considering models with contrasting
explanations (Zuin and Veloso 2019; Zuin et al. 2020), we can identify subgroups of
correlated features and build ensembles with diverse models that contribute unique
explanations for different facets of the data. This approach enhances the robustness of
our solution by considering the multiplicity of performant models.

4. Rashomon Ensembles

We build our ensemble exploiting two concepts: diversity between individual models
and stability between model explanation and empirical predictions (Shmueli 2010).
Diversity is crucial for gaining a general understanding of a phenomenon, assuming
that problems are not tied to a single explanatory factor, and explanatory factors may
vary depending on factors that might not be directly intuitive. We can understand an
explanatory factor as a vector obtained after using some explainability framework, such
as SHAP (Lundberg and Lee 2017) and feature importance, to understand what drives
model predictions. To promote diversity while finding patterns, we cluster models in F ′

based on the distance between their explanation vectors. Ideally, this creates numerous
groups of models that are internally dense and separated from other models in terms of
their explanatory factors. Stability, on the other hand, refers to models within a cluster
being associated with the same explanatory factors and performing similar predictions.

To assess prediction-explanation stability, we consider this distance between the
explanation vectors and project the found clusters into the prediction space. This allows us
to locate different Rashomon subgroups inside the Rashomon set and select models from
each subspace. If we evaluate one constituent model at a time, the remaining constituents
of the ensemble serve as hint models to address new data distribution. Following our
aforementioned hypothesis, if a candidate constituent agrees with the remainder of the
ensemble, this is indicative of prediction stability. However, to study the Rashomon set
for a given problem, we need to sample models from the complete model space (see
Algorithm 1 for our ensemble learning approach).

Deriving an Ensemble: We assume a factorial combinatorial space encompassed by all
feature combinations constrained to a single learning algorithm. To induce the Rashomon
set, we aim to find a set of relevant features K that characterize an evaluated subspace.
These features show complex correlations among a specific set of features and the target



Input: Set of available features F , train dataset Z, number of models to sample n,
maximum model width m, and error margin ϵ

Output: List of models constituting the ensemble

initialize pool P with n models containing random combinations of features from F
Href ← choose a reference model to establish the Rashomon set
set R as an empty list
for each Hi ∈ P do

if E[L(Hi, Z)] ≤ E[L(Href , Z)] + ϵ then
R.insert((Hi, explanation(Hi))

end
end
cluster R into C given the explanation of each Hi ∈ R
find the D clusteroids of C
set E as an empty list
for each cluster c ∈ C do

Hc ← the candidate model for expansion
while |Hc| ≤ m do

find the feature f that minimizes E[L({Hc, f}+
∑D−Hc

Hd
{Hd}, Z)]

assert {Hc, f} ⊂ c
Hc.insert(f)

end
E.insert(Hc)

end
return E

Algorithm 1: Rashomon ensemble algorithm.

label, and the same correlations are not necessarily observed strongly in other regions
of the data space, thus inducing a Rashomon subspace. The complete model space is
characterized by models from size s = 1 to |F |, this being the set of all possible features.
If we also consider the ∅ model to be a part of the complete model space, then there are
FC0 + FC1 + ... + FCF models. We limit our scope to problems where |K| << |F |,
as otherwise it is unlikely that there exist multiple Rashomon subsets. If we sample
an arbitrary model from the complete model space, the probability of this model not
containing K is (FCK − 1)/FCK .

Splitting the Rashomon Set: To split the Rashomon set into clusters, we represent how
a model f ′ explains a phenomenon as a d-dimensional vector S(f ′) = [e1; e2; ...; ed]
showing which features [x1, x2, ...xd] drive the model’s prediction. We use K-Means
clustering with a suitable number of clusters, identified by maximizing the silhouette
value. This splits the Rashomon set into well-divided clusters based on their explanatory
factors, leading to concise and distinguishable clusters.

Prediction Distance: We compare models within the Rashomon set to estimate the
risk under an unknown distribution U . We compute the Jensen-Shannon distance (JSD)
(Endres and Schindelin 2003) as our metric of choice for a measure of risk, indicating
how similar the predictions of the two models are. Let P be the probability distributions
returned from a model fp, and we wish to compute a metric that estimates the risk of



selecting it in production. Further, let Q be the probability distribution from a model fq
that ideally behaves similarly to fp, and M be the mean of P and Q. The Jensen-Shanon
distance can be computed as the mean Kullback–Leibler divergence (DKL) between
DKL(Q||M) and DKL(P ||M).

Constituent search: Not all variables are relevant for prediction, and some features
may even be detrimental. To find a set of relevant features to induce the Rashomon
set, we represent the model space as a directed acyclic graph (DAG) in which each
node represents a distinct feature subset, and vertex A → B is connected if B can be
reached by simple feature addition from A, thus representing a transitive reduction of the
more complex combinatorial complete model space (Zuin et al. 2021; Zuin et al. 2022a;
Zuin et al. 2022b; Zuin et al. 2023a). This modeling approach presents two desirable
properties: the first being that any vertex is reachable from the [∅] model, the second
being that there exists a topological ordering, an ordering of all vertices into a sequence
such that for every edge, the start vertex occurs earlier in the sequence than the ending
vertex of the edge for any feature set path. These properties imply a partial ordering
of the graph starting from the root node, which allows us to search it in an orderly
manner. It has been shown that this modeling approach is effective for the task at hand
(Zuin et al. 2021; Zuin et al. 2022a). This allows us to search the F ! combinatorial space.

5. Empirical Results
We assess the statistical significance of our measurements through a pairwise t-test with
p-value ≤ 0.05 and 5-fold cross-validation. No hyperparameter tuning was performed in
any of the algorithms employed, opting to keep their default values across all datasets. We
evaluate the performance of both classical and state-of-the-art algorithms. In the presence
of problems with many possible contrasting or competing explanations, employing the
Rashomon sets as a method for obtaining ensemble constituents can be useful. Even in
the absence of such structures, diversity is a desirable characteristic for any ensemble
as it allows the end model to cover a wider region of the solution space. To support
this statement and to verify whether Rashomon sets provide a suitable tool for model
space partitioning, we propose splitting the Rashomon space into clusters, grouped by
the explainability vectors of each model, and creating ensembles from the clusteroids.
We compute the SHAP feature importance of each model and then run the K-Means
algorithm to find a partition of the model space.

Open datasets: We include in our benchmark suite datasets from the UCI
machine learning repository (Asuncion and Newman 2007) and the OpenML database
(Bischl et al. 2017) on binary classification tasks. Table 1 summarizes a comparison
between the proposed Rashomon ensemble and classic and state-of-the-art algorithms.
For a fair comparison to the ensemble and boosting methods, we only employed decision
trees as base constituents. In our experiments, we sampled 100, 000 decision trees to
guarantee a minimum subset diversity and trained a meta-model to combine constituent
outputs in a stacking ensemble. We verify that whenever the Rashomon ratio is relatively
high (≥ 5%), our proposed approach outperforms the alternatives.

To evaluate the robustness of Rashomon ensembles to distribution drift, we
conducted experiments related to out-of-distribution data. We considered two scenarios:
the addition of Gaussian noise and shuffling feature values to evaluate the reliance on core



Table 1. AUROC Benchmark suite results on binary classification tasks.

Benchmark Baseline Algorithm Rashomon
Dataset Instances Features DT AdaBoost Random XGB LGBM CatBoost Ensemble Ratio

Forest
APS 76000 172 .866 .824 .869 .835 .853 .888 .911 12.4%
Diabetes 101766 1691 .544 .614 .599 .615 .616 .619 .618 17.4%
Heart 303 171 .748 .787 .826 .796 .830 .834 .839 50.3%
MADELON 2000 502 .764 .598 .694 .828 .832 .852 .746 < 0.5%
MAGIC 19020 102 .808 .830 .857 .837 .850 .850 .848 19.4%
Nursery 12630 784 .999 .999 .999 .991 .999 .999 .999 83.2%
Speeddating 8378 123 .650 .673 .630 .639 .642 .668 .632 < 0.5%
WDBC 569 903 .949 .973 .967 .963 .967 .974 .974 21.5%
Wine 4898 13 .762 .722 .802 .755 .764 .782 .805 8.9%

Table 2. Performance of Random Forest , LightGBM , CatBoost and
Rashomon ensembles . Mean AUROC after 30 repetitions.

Data Drift (σ2) Data Shuffle (n)
0.4 0.8 1.2 1.6 2.0 10% 30% 50% 70% 90%

APS Failure

Heart

MAGIC

Nursery

WDBC

key features. In the first scenario, we added Gaussian noise with increasing σ2 values to
the datasets, mimicking shifts in the data distribution. We then evaluated the performance
of Rashomon ensembles and other models under these perturbations. The results of this
data drift scenario are summarized in Table 2, where each approach’s performance is
represented as a ring plot ordered by performance. The mean AUROC after 30 repetitions
is provided as a measure of performance. In the second scenario, we shuffled the feature
values within the datasets, disrupting the relationship between features and the target
variable. We aimed to evaluate whether models could extrapolate from global information
rather than relying on specific local patterns. The results can also be found in Table 2.

Unique collaborative datasets: To validate the effectiveness of our approach in real-
world scenarios, we present the results of our evaluation across three distinct applications
conducted in collaboration with various companies and institutions: stainless steel
surface defects detection, COVID-19 hemogram detection from blood counts, and energy
consumption forecasting. In all cases, new unique handcrafted datasets were created to
explore each of the mentioned problems. Although these problems may seem vastly
different, they share a common characteristic: the absence of a clear consensus among
specialists on the best solution. Instead, they appear to exhibit multiple possible and
effective solutions without a definitive optimal model or explanatory factors. This implies
the presence of a large Rashomon set, fit for the application of our approach. Figure 1
showcases the Rashomon groups found in some of these studies. Further, as discussed in



((a)) Brazilian Energy. ((b)) COVID-19.

Figure 1. Example of Rashomon groups. We cannot observe a clear relationship
between model performance and cluster assignment.

(Zuin 2023), our approach also enables detecting drift per instance and is easily adopted
by domain experts, who can filter explanation groups to better align with the business.

The quality of duplex stainless steel is often threatened by the presence of surface
defects. Slivers increase production costs as they remain undetected in intermediate
processing stages, being observed only during the final inspection of the finished product.
In partnership with APERAM South America we created a dataset containing the chemical
compositions and metallurgical process variables of 122 duplex stainless steel production
runs, from which 71 presented at least one defective plate. This corresponds to a
dataset with nearly 500 stainless steel plates for studying the slivering problem, to
which we applied our Rashomon ensemble technique and achieved a .839 AUROC
in (Zuin et al. 2021). The task was formulated as a binary classification problem to
predict which component combinations are likely to be associated with sliver formation.
Once representative models were separated, we asked for insights from the metallurgical
experts. The main lesson was that there were cases where some conclusions did not
fit with realistic scenarios. After filtering those patterns, the most relevant ones were
turned into production rules and employed in the 2019 and 2020 steelmaking process.
A reduction of over 50% in the occurrence of heating slivers was reported, showing the
potential of this strategy in real-world problems and validating the proposed framework.

In late 2019, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) emerged in Wuhan, China, sparking a global outbreak in the subsequent weeks.
Collaborating with Grupo Fleury, we amassed data from 900, 220 unique individuals,
including 809, 254 Complete Blood Counts (CBC) and 1, 088, 385RT − PCR exams.
Among these, 21% (234, 466) tested positive for COVID-19, with fewer than 0.2%
(1, 679) yielding inconclusive results. We also collected 120 807 CBCs performed
between 2016 to 2019 of 16 940 individuals who tested positive for other respiratory
viruses. Leveraging our Rashomon Ensemble technique, we predicted COVID-19 RT-
PCR outcomes solely from CBC data, achieving an AUROC of 0.917 (Zuin et al. 2022a).
Our method repurposed the readily available and cost-effective CBC test, enabling a fast
and cheap preliminary diagnosis while accounting for potential confounding diseases. To
the authors’ knowledge, this study developed the most extensive COVID-19 dataset.

In our last case study, in collaboration with Stanford University, we developed a
counterfactual model to identify the drivers of energy consumption in Brazil, culminating
in multiple studies (Zuin et al. 2022b; Zuin et al. 2023a; Sun et al. 2023). Employing



the Rashomon approach, we achieved a MAPE of 2.69 and an R2 value of 0.848, also
enabling quantitative assessments of extreme events’ impacts, such as the COVID-19
pandemic, blackouts, and heatwaves. An unprecedented heatwave occurred in October
2020, breaking century-old temperature records. Our method detected anomalous climate
data as early as May, showcasing its robustness and potential.

6. Conclusion and Final Remarks
In this study, we proposed a novel approach for ensemble learning based on explainability
that enables estimating the prediction risk in production. We address the challenge of
model selection by identifying a Rashomon subset of models that perform similarly but
process data differently. By inducing perturbations on a held-out test set, we simulate out-
of-distribution data and assess ensemble loss of predictive power as constituent models
diverge. Our approach relies on ensemble diversity, leveraging that our constituent’s
behavior may diverge when faced with data from distributions that do not match the
one seen in training. We demonstrate consistent gains in AUROC compared to other
techniques in tasks where we verify the existence of multiple local structures in data. We
validated our approach to real-world problems, achieving high performance in COVID-
19 prediction and energy consumption forecasting. We also highlight the importance
of expert inputs in refining the final model (Veloso et al. 2023), as demonstrated in
a stainless steel case study which led to significant improvements in the production
processes. Future work includes exploring ensembles with different algorithms and
refining model selection methods for improved performance across more diverse datasets,
as preliminarily explored in one of our most recent studies (Zuin et al. 2023b).
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