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Abstract. Video stabilization removes shaky camera motion from videos. In our

thesis, we presented an extensive review, including a formal problem defini-

tion, meta-analysis, and other elements, resulting in two survey papers. We

introduced new measures for stability assessment and studied the correlation

between them and human perception. We also proposed a novel evaluation ap-

proach for 2D camera motion estimation. We then introduced NAFT, a semi-

online DWS method with a neighborhood-aware mechanism to stabilize without

an explicit stability definition. We supervised NAFT with SynthStab, our pro-

posed synthetic dataset. NAFT closed the quality gap with non-DWS methods

while reducing the number of parameters and model size by 14×.

1. Introduction

The goal of video stabilization is to obtain a stabilized video by changing the camera

motion of a shaky video. This can be done entirely through software (digital video sta-

bilization), eliminating the need for hardware stabilizers and making it a cost-effective

solution. Additionally, it is the only option for improving videos that have already been

recorded.

Different approaches to digital video stabilization are categorized by how they

utilize video data. Online stabilization analyzes only the current and preceding frames

to make adjustments. This is proper for situations where you need to stabilize videos

during recording, such as live streaming. In contrast, offline stabilization analyzes the

entire video simultaneously, allowing for a more comprehensive understanding of motion

patterns, typically resulting in superior stabilization quality. However, this method re-

quires access to the entire video beforehand and would not work for some applications.

Finally, semi-online stabilization bridges the gap between these two. It relaxes the offline

stabilization by processing a set of frames at once. This allows for better utilization of

the available data while still enabling some online-like processing. Offline, online, and

semi-online methods can operate either in real-time or not, representing a distinct classi-

fication.

Video stabilization traditionally relies on a three-step process to smooth out shaky

footage: camera motion estimation, unwanted motion determination and stabilized view

rendering. The first stage involves calculating the camera’s path during recording. Next,

unwanted shakes are identified and removed from this path, resulting in a smoother tra-

jectory. Finally, the video frames are repositioned based on the refined camera path,

creating the final stabilized video. Recently, a new approach called direct warping sta-

bilization (DWS) has emerged, which directly predicts the necessary transformation to

stabilize each shaky frame. This essentially combines the steps of motion estimation and



unwanted motion determination into a single process. Researchers argue that DWS per-

forms better on low-quality videos and requires fewer computational resources compared

to traditional methods [Zhao and Ling 2020].

Our research delves into both traditional and DWS approaches to video stabi-

lization. For traditional methods, we advocate for a deeper understanding by analyzing

each step independently. To achieve this, we propose a new evaluation method specifi-

cally focused on the motion estimation stage. For DWS methods, we developed a new

stabilization technique that adheres to this proposed framework. Our research aimed to

identify and address critical weaknesses in current video stabilization research, while also

proposing new techniques and methodologies. Due to time constraints, we prioritized ad-

dressing three key issues: (i) the lack of well-organized literature, for which we provided

a comprehensive review and organization of existing research on video stabilization; (ii)

inadequate rigor in assessments and limited knowledge about the effectiveness of the met-

rics, for which we discussed and expanded the current knowledge regarding stabilization

assessment; and (iii) the fact that DWS does not achieve the same stability quality as

traditional approaches, so we improved the effectiveness and efficiency of DWS methods.

The thesis yielded the following main products: (i) a critical and detailed re-

view of digital video stabilization methods (first survey) [Souza et al. 2022]; (ii) a crit-

ical and detailed review of video stabilization assessment and datasets (second sur-

vey) [Souza et al. 2023c]; (iii) a metric for assessing the two-dimensional camera motion

estimation (Section 2) [Souza et al. 2023b]; (iv) new evaluation measures for the final sta-

bilization quality based on the kinematics of pixel profiles (Section 2); (v) a new synthetic

dataset with paired stable and unstable videos (Section 3) [Souza et al. 2023a]; and (vi) a

new direct warping stabilization method (Section 4) [Souza et al. 2023a]. Because of the

textual nature and length of the first two products, they can be consulted in the thesis but

are not included in this summary.

2. Video Stabilization Assessment

Figure 1 shows the steps that could be assessed following the classical stabilization ap-

proach. Most literature works only perform the final stabilization assessment (Step 4).

We conjecture that each step must be followed by a specific assessment, conducted as

independently as possible, besides a final overall evaluation. Besides, each step could

have its own datasets with proper ground-truth data. A possible approach is to evaluate

automatically the first three steps according to relevant physical properties. In our ideal

scenario, this final assessment may play an additional role by guiding the physical-based

measures from Steps 2 and 3. The end user is typically a human, so the final evaluation

should focus on human perception. In this work, we only proposed an assessment strategy

for the motion estimation step, presented as follows.

2.1. Rethinking 2D Camera Motion Assessment

While significant advancements have been made in camera motion estimation, there is a

lack of thorough evaluation of 2D methods, which are crucial for traditional video stabi-

lization. To bridge this gap, we introduce a novel evaluation method using a pixel-by-pixel

comparison of camera motion fields. Our experiments demonstrate the robustness of our

metrics across various situations, outperforming conventional image similarity metrics.
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Figure 1. Diagram of our ideal process proposed for the video stabilization as-

sessment. Source: Author’s Thesis.

As presented in Figure 2, our evaluation process involves several steps. First, we

establish the ground-truth camera motion field using: (i) the relative 3D motion between

frames in the video, (ii) the depth information, and (iii) the camera’s intrinsic parameters

(refer to Subfigure 2a). It is important to note that this evaluation method requires datasets

with this comprehensive information. In contrast, the method being evaluated only utilizes

RGB frames as input (refer to Subfigure 2b). In this case, we calculate the camera optical

flow from the estimated motion. Finally, we perform a pixel-by-pixel comparison using

established metrics from the field of optical flow analysis. We choose the representation

with the highest level of detail to enable a comprehensive comparison across different

representations and degrees of freedom.
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Figure 2. Main steps of the two-dimensional motion estimation assessment

method. Source: Author’s Thesis.

2.1.1. Experimental Results

In Table 1, we show the relationship between established image similarity metrics (PSNR

and SSIM) and our proposed metrics (AEPE and Fl), as detailed in Chapters 2 and 5



of the thesis. Due to the opposing interpretations of these metrics (higher similarity vs.

lower error for EPE), we aimed for a correlation of approximately -1. This analysis is

particularly relevant since the few works that assess 2D camera motion use similarity

measures.

Table 1. Correlation between image similarity and EPE-based metrics for test

splits.

Dataset
Image

Similarity
AEPE Average Fl

PLCC SROCC PLCC SROCC

TartanAir
PSNR -0.2789±0.29 -0.6350±0.19 -0.5535±0.16 -0.5439±0.17
SSIM -0.2918±0.29 -0.7032±0.13 -0.6990±0.18 -0.6935±0.18
PSNR -0.2390±0.01 -0.4286±0.01 -0.3528±0.01 -0.4060±0.01

MVS-Synth SSIM -0.3605±0.06 -0.5886±0.03 -0.6571±0.03 -0.6311±0.02

KITTI
PSNR -0.2598±0.19 -0.6609±0.23 -0.5740±0.26 -0.5627±0.28
SSIM -0.2847±0.19 -0.7272±0.26 -0.6238±0.28 -0.5694±0.30

Our findings revealed a weak correlation between traditional similarity metrics

and our proposed approach. To understand this, we analyzed specific cases where EPE-

based and similarity metrics diverged. Table 2 delves into these scenarios, highlighting

situations where similarity metrics failed while our method succeeded. Our approach

consistently demonstrated accurate performance in these discrepancies, likely due to its

superior ability to isolate motion, unlike similarity metrics which can be influenced by

various factors.

Table 2. Description of main cases where similarity metrics do not seem to be

adequate to assess the quality of camera motion estimation.

Case Description Expected Behavior

Low-textured Frames Frames where neighboring

pixels are very similar.

Similarity metrics do not show much differ-

ence when we change the camera motion.
High-textured Frames Frames where neighboring

pixels are very different.

Similarity metrics can be very distinct, even

with low changes in the camera motion.
Abrupt Camera Motion Relative camera motion for

two frames is very large.

Borders generated on warped images signifi-

cantly reduce the similarity value of images.
Large Moving Objects Many pixels are covered by

moving objects.

Compensating for camera motion results in

low similarity in pixels of moving objects.
Lighting Variation Pixels are affected by a

change in lighting.

Low values in similarity metrics in regions

affected by lighting variation.

A key limitation of our method is its dependence on controlled datasets. However,

we argue that this limitation is acceptable for rigorous quality assessment, especially with

access to a large amount of high-quality data. Additionally, it is important to acknowledge

challenges with reflective surfaces, where camera motion effects differ from those on non-

reflective surfaces.

2.2. An Analysis on Final Stability Assessment

In this section, we introduce novel kinematic measures using the first, second, and third

derivatives from pixel profiles [Liu et al. 2014]. The inspiration for investigating these

measures originated from visual observations: we found that, in simple videos, techniques

based on kinematic principles [Grundmann et al. 2011] outcome videos with better sta-

bility than those relying on high-frequency attenuation [Liu et al. 2013]. Later, we used



these measures and other statistics to compose a feature vector and train a regressor to

predict stability scores based on human perception.

We named our three kinematic measures from the pixel profiles as Velocity of

Camera Pixel Profiles (VCP2), Acceleration of Camera Pixel Profiles (ACP2) and Jerk

of Camera Pixel Profiles (JCP2). For them, we used a segmentation mask between static

regions and moving objects to ignore the latter. The utilization of pixel profiles instead of

feature trajectories was driven by two primary reasons: (i) pixel profiles offer a dense rep-

resentation that encompasses all pixels within each frame, and (ii) their implementation is

more straightforward, as we do not need to track features across the entire video, avoiding

complications such as temporal discontinuity and features leaving the image domain.

Later, we hypothesized that stability assessment should encompass multiple as-

pects. We defined the aspects based on existing methodologies in the literature: (i) image

similarity, (ii) frequency analysis, (iii) the geometry, and (iv) the kinematic measures. We

defined distinct measures for each aspect. Typically, these measures output a value per

pixel or frame. In this way, we used six statistical metrics to synthesize these values:

average, standard deviation, median, interquartile range, kurtosis, and skewness.

2.2.1. Experimental Results

Table 3 presents the correlations between the human perception stability scores (LIVE-

Qualcomm and MIND-VQ datasets), as well as (i) different methods of evaluating the

stability from the literature, (ii) the kinematic measures, and (iii) different regression

methods that use multiple measures as input. We reported the averages of the correla-

tion values across the 10 test subsets (even for untrainable measures). We experimented

with five regressors as well as a Linear Fit, where we fit a simple straight line on the fea-

tures. For each regressor, we perform a 3-fold cross-validation for a hyperparameter grid

search.

Table 3. Correlation between human perception of stability scores and different
strategies for assessing stability.

Measure
LIVE-Qualcomm MIND-VQ
PLCC SROCC PLCC SROCC

LHR 0.388 0.404 0.538 0.489
ITF (PSNR) 0.015 0.024 0.317 0.308
ITF (SSIM) 0.081 0.072 0.200 0.196

IGC 0.626 0.614 - -
VCP2 0.204 0.405 0.546 0.555
ACP2 0.710 0.720 0.781 0.769
JCP2 0.636 0.755 0.753 0.747

Linear Fit 0.142 0.181 0.706 0.767
SVR - - 0.853 0.815
RF - - 0.880 0.839

GBM - - 0.884 0.843
XGBoost - - 0.884 0.842

In most instances, ACP2 exhibited the highest correlation values among the stabil-

ity measures, but for SROCC in the LIVE-Qualcomm dataset. The commonly used met-

rics (LHR and ITF) achieved low correlations. These outcomes with our meta-analysis



suggest that the quantitative results reported in the literature (typically relying on LHR)

not only demonstrate limited consensus with each other but also lack robust alignment

with human perceptions of stability. The other results refer to trained regression models to

predict the stability score from the features of multiple aspects. As LIVE-Qualcomm has

few videos, it easily overfits, even fitting a straight line in the data (Linear Fit). Concern-

ing MIND-VQ, we increased the correlation values by 10.3 percentage points compared

to the highest-performing non-machine learning-based evaluation measure. Nevertheless,

this approach exhibited limited robustness in inter-dataset experiments.

3. SynthStab

This section presents SynthStab, a novel synthetic dataset featuring paired videos de-

signed for training models using camera motion as supervision, rather than solely relying

on pixel-level similarity. We achieve this by leveraging the principles of kinematics to

generate realistic camera movements. We utilize the environments available within Un-

real Engine, and AirSim to create videos showcasing a spectrum of realistic and dynamic

scenarios (Figure 3). We retain control over camera motion throughout the process. All

frames are rendered at a resolution of 512×256 pixels. For each pair of stable and un-

stable videos, we provide RGB frames, dense depth maps, and motion fields between

each frame pair. With over 102,400 frames, SynthStab provides a substantial pool of

data to train deep learning models, a critical component for DWS methods. We randomly

partition our dataset into training and validation sets. Figure 4 outlines the process of

constructing SynthStab.

Figure 3. Environments present in

our dataset. We have simple,

complex, indoor and outdoor

environments. Source: Au-

thor’s Thesis

2. Unstable Trajectory Generation

3. Rendering by Unreal + AirSim 4. Motion Field Computation

RGB Sequences Depth maps

Camera Parameters
B

T K

1. Stable Trajectory Generation

Figure 4. Overview of the construc-

tion process of our dataset.
Source: Author’s Thesis.

The core principle involves generating stable camera trajectories that encompass

the six degrees of freedom (6-DoF) of 3D camera movement. We calculate each of these

six variables independently, with trajectory segments categorized into constant position

segments (CPS), constant velocity segments (CVS), and constant acceleration segments

(CAS), similar to the kinematics concepts used by Grundmann et al. 2011. Next, we

define unstable trajectories by introducing random keypoints and establishing a random

path between them, all while staying consistent with the core elements of the stable tra-

jectory. After generating a predetermined number of trajectories, we render video pairs

for each trajectory and environment using Unreal Engine and AirSim. Finally, we com-

pute dense camera motion fields by performing an inverse projection process, utilizing the



stable frame’s depth map, the relative 3D motion matrix between frames, and the intrinsic

camera parameters.

4. NAFT

We introduce Neighborhood-aware recurrent All-pairs Field Transforms (NAFT), a novel

technique for video stabilization that leverages direct warping in a semi-online manner.

NAFT adapts the RAFT algorithm for this purpose and incorporates a neighborhood-

aware update mechanism called IUNO. Through a training process on SynthStab data

combined with IUNO, the model learns to identify characteristics of video stability di-

rectly from the data patterns, without relying on predetermined stability definitions. Fur-

thermore, we demonstrate how a pre-existing video inpainting method can be combined

with NAFT to achieve full-frame stabilization. Our experiments show that NAFT achieves

superior stabilization performance even under significant camera motion, outperforming

other direct warping methods and approaching the state-of-the-art. Notably, our small-

est network variant (NAFT-S) requires only around 7% of the model size and trainable

parameters compared to the smallest model among competing methods.

4.1. Proposed Method

Figure 5 illustrates our training pipeline. We denote a sequence of unstable RGB frames as

Vi = {Fi−dΩ
,Fi−dΩ−1

, · · · ,Fi, · · · ,Fi+dΩ−1
,Fi+dΩ

}, where each frame Fω ∈ [0, 1]H×W×3

and d = {d1, · · · , dΩ−1, dΩ} represents the displacements of the input sequences. Simi-

larly, we define M
ngb
i

= {Mi−dΩ
,Mi−dΩ−1

, · · · ,Mi+dΩ−1
,Mi+dΩ

} as a sequence of motion

fields corresponding to neighboring frames, where Mω ∈ R
H

8
×

W

8
×2 warps its correspond-

ing unstable frame Fω into a stable version F̄ω. Given Vi and M
ngb
i

, our objective is to

predict the optical flow Bi of size H×W×2, which transforms the unstable frame Fi into

a stabilized version F̃i.
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The training stage is divided into four steps (Figure 5): (1) generating feature

maps for each frame in Vi and a contextual feature for Fi; (2) calculating Fi-oriented

correlation maps; (3) initial iterative decoding of Bi; and (4) final iterative refinement

of Bi incorporating information from neighboring motion fields Mngb. We employ two

terms for supervision during training: a pixel-wise loss between the predicted optical

flows and the ground truth motion fields, and a smoothness loss. Notably, both decoders

are trained with the same loss function despite their slightly different tasks. This strategy

allows the network to implicitly learn full video stabilization from the data, predicting

stabilized 3D motion from 2D frame information without requiring explicit assumptions

or simplifications.

Figure 6 illustrates the inference stage. We represent the input unstable video

as V = {F0,F1, · · · ,FN}. Our objective is to compute the sequence of optical flows

B = {B0,B1, · · · ,BN}. These optical flows are then used to stabilize the frames in V,

generating the initial stabilized video estimate Ṽ
0
= {F̃

0

0, F̃
0

1, · · · , F̃
0

N
}. Optionally, frame

boundary masks M = {M0,M1, · · · ,MN} can also be computed. These masks and the

warped frames are then fed into a video inpainting method to produce the final stabilized

video Ṽ = {F̃0, F̃1, · · · , F̃N}.

During inference, unlike the training stage, we compute a contextual map and

correlation maps for each frame, arranging them in sequential batches. The second de-

coder in each iteration uses the neighboring optical flows predicted in the previous it-

eration instead of relying on the fixed motion fields used during training. These pre-

dicted optical flows are then used to warp the unstable frames, generating stabilized ver-

sions. Optionally, masks can be computed, and the video is inpainted to refine the fi-

nal results. Our method operates in a semi-online fashion, processing frames in subsets

V′ = {Fi−anc, · · ·Fi, · · · ,Fi+s+la} using a sliding window approach. The window size is

denoted by s, and the number of anchor frames and lookahead frames is represented by

anc and la, respectively. The anchor frames provide context for the current frame, while

the lookahead frames allow the model to predict future motion.

4.2. Experimental Results

We assessed the performance of our novel method against five existing techniques. All

tests were conducted on NUS Dataset [Liu et al. 2013], containing 144 unstable video

clips categorized into six groups based on camera movements and scene characteristics.

We classified the existing methods based on their underlying approach. Table 4 summa-

rizes the results, highlighting the best performing methods in terms of frames per second

(FPS), model size, and number of learnable parameters.

NAFT achieved FPS comparable to DUT and NAFT-S (smaller version) outper-

formed it. Additionally, NAFT and NAFT-S exhibited the smallest model size and fewest

parameters among all competitors. Compared to existing techniques, NAFT was roughly

20% smaller than the smallest reported DWS method (StabNet) and required approxi-

mately 18% fewer parameters. When compared to the overall best performing methods,

NAFT’s model size was about 63% that of Deep3D, and its parameter number was about

59% that of DIFRINT. Our model size and parameter number were only about 2.3% and

2.1% of those required by StabNet, respectively. Similarly, for the smaller version, the

model size and parameter number were approximately 7.5% and 7% of the lowest val-



Table 4. Statistics of

Computational Re-
sources.

Methods FPS Size Params

Deep3D 0.8 36.0 37.2
DIFRINT 10.6 38.0 9.9

O
th

er
s

DUT 4.9 54.4 10.0
PWStab. 30.0 186.0 48.5
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Source: Author’s Thesis.

ues reported for Deep3D and DIFRINT, respectively. These results demonstrate that our

DWS method achieves comparable performance to non-DWS methods while significantly

reducing computational resource consumption in terms of both model size and parame-

ters, especially compared to DWS methods.

We further evaluated the NAFT effectiveness using various neighborhood ranges

and compared it with existing methods (Figure 7). Our method consistently outperformed

two prior DWS methods (StabNet and PWStableNet) at all neighborhood ranges tested.

Notably, NAFT’s performance improved as the neighborhood range increased, approach-

ing the stability achieved by the best offline methods (Deep3D and DUT).

An analysis of video stability per category within the dataset revealed that our

method consistently outperformed other DWS techniques. The best performing method

overall depended on the specific metric used. For instance, based on the LHR-H metric,

NAFT achieved the best overall results for videos in the Quick Rotation and Regular cat-

egories. According to the LHR-OF metric, NAFT achieved the best results in the Regular

and Running categories. In terms of image distortion, our method yielded results similar

to those obtained by DUT and Deep3D without using inpainting. However, when in-

painting was employed, NAFT achieved the best results in most categories. Additionally,

our method produced cropping rates comparable to those achieved by DUT and Deep3D.

Detailed results are provided in the full text of the thesis, with a supplementary video

available in the following link: https://github.com/marcoosrs/NAFT.

Figure 8 shows a visual comparison of our results with those of literature meth-

ods (DIFRINT and FuSta), which revealed that NAFT introduced fewer artifacts while

preserving a more realistic appearance.

We identified three main limitations related to video quality: (a) NAFT may intro-

duce spatial distortions in certain frames, particularly in videos with significant instability

(Running category); (b) in some cases, NAFT may not correct instabilities as effectively

as classical methods; (c) when dealing with large holes or fast video motion, the inpaint-

ing process can produce poor results. This is a known limitation of E2FGVI and other

video inpainting methods. Additionally, our method was not the fastest among DWS

https://github.com/marcoosrs/NAFT


(a) DIFRINT (b) FuSta (c) Ours

Figure 8. Subjective comparison of the sequence of frames filled by FuSta,

DIFRINT, and E2FGVI (with fine-tuning). Source: Author’s Thesis.

methods, and memory usage was high, potentially causing issues with processing high-

resolution videos. Furthermore, our current implementation involves two passes through

the network, which is inefficient and can be improved to significantly reduce runtime.

5. Conclusions

This work aimed to improve digital video stabilization by addressing the major gaps in

existing research. First, we established a structured framework and taxonomy, and ana-

lyzed methods and evaluation metrics, revealing inconsistencies. Second, we proposed a

framework for assessing stabilization quality, introducing a method for motion estimation

assessment and kinematic measures. We also found recent methods like DWS sometimes

performed worse than classical approaches. To address this, NAFT, a stabilization net-

work based on RAFT, was introduced, outperforming other methods while reducing pa-

rameters and model size by up to 93%. The training was done on SynthStab, our proposed

dataset of over 100K synthetic videos.
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