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Abstract. Recent years have seen significant developments in license plate
recognition through the integration of deep learning techniques and the in-
creasing availability of training data. Nevertheless, reconstructing license
plates from low-resolution surveillance footage remains a challenge. To ad-
dress this issue, we propose an attention-based super-resolution approach that
incorporates sub-pixel convolution layers and an Optical Character Recogni-
tion (OCR)-based loss function. We trained the proposed architecture using
synthetic images created by applying heavy Gaussian noise followed by bicu-
bic downsampling to high-resolution license plate images. QOur results show
that the proposed approach for reconstructing these low-resolution images sub-
stantially outperforms existing methods in both quantitative and qualitative
measures. QOur source code is publicly available at https://github.com/
valfride/lpr-rsr—ext/.

1. Introduction

Super-resolution (SR) is widely used to enhance image or video quality by increasing
resolution, particularly in domains such as medical imaging and surveillance [Liu et al.
2023]. Recent advancements in interpolation-based, example-based, and deep learning-
based methods have significantly improved the capability to enhance low-resolution (LR)
images and videos [Wang et al. 2021, Zhang et al. 2021b, Santos et al. 2022].

Despite these advances, SR remains challenging due to its ill-posed nature, where
multiple solutions can exist in the high-resolution (HR) space [Wang et al. 2021]. Ad-
ditionally, as the upscale factor increases, the computational complexity grows, and LR
images may lack the necessary information for reconstructing desired details [Liu et al.
2023]. This study focuses on single-image super-resolution applied to license plate recog-
nition, addressing the common occurrence of low-resolution and poor-quality images in
real-world surveillance systems. While challenging conditions are typical in forensic ap-
plications, recent research in license plate recognition has primarily addressed scenarios
with easily legible plates [Gong et al. 2022, Silva and Jung 2022, Laroca et al. 2023b].

Many researchers have proposed convolutional neural network-based approaches
to tackle the SR problem [Lucas et al. 2019, Mehri et al. 2021, Liu et al. 2023]. Al-
though these methods have demonstrated exceptional results, they often rely on compu-
tationally expensive deep architectures and prioritize increasing the Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index Measure (SSIM) metrics without consider-
ing the specific application. In the context of license plate recognition, such approaches
do not effectively address confusion between closely resembling characters like ‘Q’ and
‘O’, “T” and ‘7’, ‘Z’ and ‘2°, among others.

This work is a summary of a master’s dissertation [Nascimento 2023].
The second author served as an informal co-advisor for this work.


https://github.com/valfride/lpr-rsr-ext/
https://github.com/valfride/lpr-rsr-ext/

In this study, we propose a novel approach to enhance license plate super-
resolution by integrating sub-pixel convolution layers and a Pixel Level Three-Fold Atten-
tion Module (PLTFAM). Our method extends [Mehri et al. 2021] by taking into account
not only the image’s pixel intensity values but also structural and textural information. To
boost performance, we integrate an auto-encoder that extracts shallow features by squeez-
ing and expanding the network with PixelShuffle (PS) and PixelUnshuffle (PU) layers. Ad-
ditionally, we employ an Optical Character Recognition (OCR) model [Gongalves et al.
2018] to extract features from license plate images during training, leading to enhanced
SR performance and recognition rates.

In summary, the main contributions of this work are: (i) a SR approach that incor-
porates subpixel-convolution layers in combination with a PLTFAM; (ii) a novel percep-
tual loss that combines features extracted by an OCR model with L1 loss to reconstruct
characters with the most relevant characteristics. This loss function allows the use of any
OCR model for license plate recognition; and (iii) the datasets we built for this work, as
well as the source code, are publicly available to the research community.

The rest of this work is structured as follows. Section 2 details our proposed
network architecture and the new perceptual loss function. In Section 3, we present the
experiments conducted and the corresponding results. Finally, Section 4 summarizes the
findings, concluding this study.

2. Proposed Approach

This section presents our SR approach for enhancing feature extraction from low-
resolution license plates. We incorporate ideas from [Zhang et al. 2023] to better capture
structural and textural information from the license plate images. We also introduce a
novel perceptual loss function that leverages an OCR model.

2.1. Network Architecture Modifications

As illustrated in Figure 1, the proposed approach for license plate SR builds upon the
network architecture of [Mehri et al. 2021] and [Zhang et al. 2023]. It includes a Shallow
Feature Extractor (SFE), Residual Dense Blocks (RDBs), a Feature Module (FM) module,
and a Reconstruction Module (RM). In a nutshell, the RM combines the output of the FM
module with two long-skip connections, one from the end of the SFE module and the other
from the input image, to produce the high-resolution output. Our specific modifications
are discussed in the following paragraphs.
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Figure 1. The proposed architecture, which incorporates an autoencoder con-
sisting of PS and PU layers for feature compression and expansion, re-
spectively. This design aims to eliminate less significant features. The
Two-fold Attention Module (TFAM) modules were replaced with PLTFAM
modules throughout the network. PS = PixelShuffle; PU = PixelUnshuffle;
RDL = Residual Dense Layers; SFE = Shallow Feature Extractor.
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The SFE block includes a 5 x 5 kernel convolution layer followed by an autoen-
coder that employs Depthwise-separable convolutional layers (DConvs), PU, and PS op-
erations instead of conventional convolution layers, pooling, and upscale operations. The
output of the layers is then combined with a skip connection from the initial convolution
layers and processed by the RDBs.

In Figure 2, we present our modifications to the Multi-Path Residual Net-
work (MPRNet)’s TFAM [Mehri et al. 2021] to create the PLTFAM. The design of this
module is based on the following insights: (i) images are composed of the relationship
between channels, where each channel contributes unique characteristics to form the final
image, therefore, the extraction of these features is crucial for proper image restoration;
(ii) the positional information of these essential features from the channels composing the
images is required; (iii) traditional downscale and upscale operations rely on translational
invariance and interpolation techniques, which are not able to learn a custom process for
different tasks; and (iv) the module captures salient structure from the character fonts of
the license plate, highlighting both structure and textural features in the image.
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Figure 2. Comparative illustration of the (a) TFAM in MPRNet [Mehri et al. 2021],
(b) PixelShuffle Two-Fold Attention Module in our previous work [Nasci-
mento et al. 2022], and (c) PixelShuffle Three-Fold Attention Module (ours).
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The Channel Unit (CA) module identifies and preserves relevant inter-channel
relationship features by utilizing two parallel convolution layers. Their outputs are then
concatenated and processed through convolution, PU, PS and DConv layers, summarizing
features and enhancing image restoration.

The Positional Unit (POS) complements the CA module by determining the loca-
tion of important features in the image. It extracts first-order statistics through pooling
operations, combines the results, and processes them through DConvs and PS layers to re-
store the original feature map dimensions, highlighting relevant inter-channel relationship
features and improving image restoration.

To extract critical structural, textural, and geometric features from the license
plate, we incorporated the Geometrical Perception Unit (GP) branch. Inspired by [Zhang
et al. 2023], it employs global average pooling in both vertical and horizontal directions.
The output undergoes point-wise convolution and sigmoid function operations, followed
by element-wise multiplication to obtain the final output.

The CA, POS, and GP units’ outputs are combined through element-wise sum and
multiplication operations, forming the attention mask. This mask enhances the input to
the PLTFAM, effectively emphasizing key image features like inter-channel relationships,
positional information, and structural details. This leads to improved image restoration.



The Residual Concatenation Blocks (RCBs) were improved by adding the PLT-
FAM and dilated convolution layers to the bottleneck path of the adaptive residual blocks.
This modification incorporates a wider context with an increased receptive field and pre-
serves fine details in license plate images. Additionally, as shown in Figure 1, a recon-
struction module was added to better aggregate fine details, consisting of two PS with a
scale factor of 2, followed by DConv layers and consecutive RDBs.

2.2. Perceptual Loss

The proposed approach integrates a perceptual loss function to improve the accuracy of
the SR method for license plate recognition. This loss function is tailored to consider the
features anticipated by an OCR model, enhancing the system’s accuracy.
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The perceptual loss function, as defined in Equation (1), consists of two terms:
the Mean Squared Error (MSE) term and the feature extraction term. The MSE term
measures the pixel value difference between the HR (H;) and SR (5;) license plate images,
while the feature extraction term compares their representations from an OCR model
(focr(+)). This loss function is adaptable to various OCR models, providing flexibility
to incorporate novel models as they become available. We utilize the multi-task model
proposed by [Gongalves et al. 2018] due to its effectiveness in previous studies.

The MSE term penalizes significant errors between the expected and generated
images, effectively improving overall image quality and preserving important structural
information. Conversely, the feature extraction term, measured using the L1 loss, pro-
motes robustness to noise and outliers while preserving sharp edges in the generated im-
ages. This dual approach enables a balanced evaluation, maintaining structural integrity
while minimizing errors.

3. Experiments

Here, we describe the experiments carried out to validate the proposed method. We first
discuss our experimental setup in Section 3.1. Subsequently, we provide a comprehensive
analysis of the results obtained in Section 3.2. Finally, in Section 3.3, an ablation study is
conducted to assess the contribution of each module integrated into the architecture.

3.1. Setup

We made use of license plate images obtained from two popular datasets: PKU [Yuan
et al. 2017] and RodoSol-ALPR [Laroca et al. 2022a]. To the best of our knowledge,
there is currently no public dataset that provides paired LR and HR images from real-
world settings. Hence, we opted for these two datasets since they provide a wide range of
scenarios under which the images were acquired.

The RodoSol-ALPR dataset consists of 20,000 images, including vehicles with
Brazilian license plates and Mercosur license plates'. It offers a diverse range of scenar-
ios, including variations in license plate colors, lighting conditions, and character fonts

1Following [Laroca et al. 2022b,Nascimento et al. 2022, Silva and Jung 2022], we use the term ‘“Brazil-
ian” to refer to the layout used in Brazil prior to the adoption of the Mercosur layout.



(see Figure 3a). We followed the standard protocol defined in [Laroca et al. 2022a], allo-
cating 40% of the images for training, 20% for validation, and 40% for testing purposes.

(b)

Figure 3. a) Some license plate images from the RodoSol-ALPR dataset. The
first two rows show Brazilian license plates, while the last two rows show
Mercosur license plates. For scope reasons, we conduct experiments on
license plates that have all characters arranged in a single row (i.e., 10K
images); b) Examples from the PKU dataset, which also includes license
plates with seven characters, albeit featuring varying layouts.

The PKU dataset includes images grouped into G1-G5 representing various sce-
narios in mainland China, such as highways during the day (G1) and crosswalk intersec-
tions during the day or night (G5). Our experiments focused on G1-G3, totaling 2,253
images with annotated license plate text [Zhang et al. 2021a]. The license plate images
in the PKU dataset demonstrate high quality and legibility, as shown in Figure 3b. We
followed the approach of [Zhang et al. 2021a, Laroca et al. 2022b], splitting 60% of the
images for training and validation, and the remaining 40% for testing.

The HR images used in our experiments were created as follows. For each image,
we first cropped the license plate region using the annotations provided. Afterward, we
used the same annotations to rectify each license plate image so that it becomes more
horizontal, tightly bounded, and easier to recognize. The rectified image is the HR image.

To generate LR versions of each HR image, we simulated lower-resolution effects
based on [Zhang et al. 2021b]. We applied iterative random Gaussian noise to each HR
image until reaching the desired degradation level for an LR image (i.e., SSIM < 0.1).
To maintain the aspect ratio of the LR and HR images, we apply padding before resizing
them to 20 x 40 pixels, resulting in an output shape of 80 x 160 pixels for an upscale
factor of 4. Examples of the generated license plate images for the RodoSol-ALPR and
PKU datasets are shown in Figure 4a and Figure 4b, respectively.
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Figure 4. a) Some HR-LR image pairs created from the RodoSol-ALPR dataset.
b) Examples of HR-LR image pairs created from the PKU dataset.

Our experiments were conducted using the PyTorch and Keras frameworks on a
high-performance computer featuring an AMD Ryzen 9 5950X CPU, 128 GB of RAM,
and an NVIDIA Quadro RTX 8000 GPU with 48 GB of memory. We used the Adam
optimizer with a learning rate of 107*. The learning rate decreased by a factor of 0.3



(down to 10~7) when no improvement in the loss function was observed. The training
process was terminated after 20 epochs without any decrease in the loss function.

3.2. Experimental Results

In the literature, models are typically evaluated by the ratio of correctly recognized license
plates to the total number of license plates in the test set [Wang et al. 2022, Silva and
Jung 2022, Laroca et al. 2023a]. A license plate is considered correctly recognized if
all characters are identified accurately. Considering our focus on low-resolution license
plates, which are very common in forensic applications, we also report the recognition
results considering partial matches (when at least 5 or 6 of the 7 characters are correctly
recognized) as they may be useful in narrowing down the list of candidate license plates
by incorporating additional information such as the vehicle’s make and model.

The results of the license plate recognition experiment are shown in Table 1. The
table demonstrates the recognition accuracy of HR and LR license plate images degraded
by bicubic downsampling and recursive Gaussian noise. The difficulty of the task can be
seen from the SSIM score, which ranges from 0 to 0.10, as illustrated in Figure 4a, where
the license plate characters are barely distinguishable.

Table 1. Results of our experiments. “All” refers to license plates where all char-
acters were recognized correctly; > 6 and > 5 refer to license plates where
at least 6 or 5 characters were recognized correctly, respectively.

RodoSol-ALPR PKU
All >6 >5 Al >6 >5

OCR (%) [Gongalves et al. 2018] — no SR

HR 96.6 98.6 99.0 994 999 999
LR 0.8 46 127 0.0 00 0.0

OCR (%) [Gongalves et al. 2018] — with SR

Proposed 39.0 599 742 720 903 97.3
[Nascimento et al. 2022] 10.5 254 422 355 653 82.5
[Mehri et al. 2021] 145 70 174 22.5 49.2 70.6

Average PSNR (dB) and SSIM

PSNR SSIM PSNR SSIM
Proposed 21.2 0.59 18.3 0.61
[Nascimento et al. 2022] 21.3 0.52 18.1 0.54
[Mehri et al. 2021] 16.8 0.38 16.4 0.41

The proposed SR network outperformed the baseline models [Mehri et al.
2021, Nascimento et al. 2022] (see the second section of Table 1). The multi-task
OCR model [Gongalves et al. 2018] demonstrated remarkable improvement when ap-
plied to images reconstructed by our SR approach in both datasets, particularly in the
PKU dataset, with a 14.8% higher recognition rate compared to the method proposed in
our preliminary method [Nascimento et al. 2022] and a 26.7% higher accuracy compared
to MPRNet [Mehri et al. 2021] for license plates with more than five correct characters.

For completeness, we detail in Table 1 the PSNR and SSIM obtained by each
approach. Similar to what was observed in [Zhang et al. 2018, Lin et al. 2021], the PSNR
metric seems inappropriate for this particular application, as our approach and the one
proposed in [Nascimento et al. 2022] reached comparable values, despite ours leading to



significantly better results achieved by the OCR model. The SSIM metric, on the other
hand, seems to better represent the quality of reconstruction of license plate images, as
the proposed method achieved considerably better SSIM values in both datasets.

The improved OCR network performance can be attributed to the effective extrac-
tion of textural and structural information enabled by the proposed GP unit, along with
the optimized channel scaling and reorganization facilitated by the CA and POS units,
which utilize pyramid and PS layers.

The variation in accuracy between the two datasets can be attributed to the diver-
sity present in the RodoSol-ALPR dataset, which includes a range of layouts, lighting
conditions, and character fonts, while PKU largely comprises license plates with a uni-
form layout, with less variation in the conditions under which the images were collected.

The visual comparison of the generated SR images using our technique and the
baselines [Mehri et al. 2021, Nascimento et al. 2022] supports the results of the recog-
nition experiments. Figure 5a and Figure 5b present four pairs of LR and corresponding
SR images, along with the original HR image for reference. These images clearly demon-
strate that our proposed approach outperforms its preliminary version [Nascimento et al.
2022] and MPRNet [Mehri et al. 2021] in terms of perceptual quality.
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Figure 5. a) Typical examples of the images generated by the proposed approach
and baselines in the RodoSol-ALPR dataset. b) Representative samples of
the images generated by the proposed approach and baselines in the PKU
dataset. GT = Ground Truth.

Common issues observed in images produced by MPRNet include blurriness,
where character edges blend into the license plate background, resulting in artifacts. This
blurriness can also cause multiple characters’ edges to blend together, leading to visual
distortions. In contrast, the architecture proposed in [Nascimento et al. 2022] success-
fully reconstructs characters but introduces strong undulations, making them appear as
part of the license plate background in some cases (as seen in the first row of Figure 5a).
Our proposed model, however, consistently generates clear character edges, accurately
reconstructs the original font, and avoids missing characters or incomplete lines.

When uncertain about character reconstruction, our model tends to generate char-
acters most congruent with the LR input, as seen in the last row of Figure 5a and Figure 5b
(e.g., “3” reconstructed as “J” and “Z” reconstructed as “2”). Incorporating a lexicon or
vocabulary could address this issue by guiding the network to recognize characters based
on specific license plate layouts. Furthermore, the network tends to generate similar back-
ground colors for different images, as observed in the second row of Figure 5a and the
first row of Figure 5b; however, our analysis indicted that this has minimal impact on the
achieved recognition results.



Finally, it is noteworthy that our model exhibits superior adaptability and ease
of training when compared to approaches relying on generative adversarial networks,
which often present instability and fall into mode collapse [Li et al. 2021, Saharia et al.
2023]. The attention-based design allows for more straightforward training, making it
accessible to a broader range of practitioners and researchers in the field. Moreover,
although we did not conduct specific experiments related to execution time, we anticipate
that our approach delivers enhanced efficiency when contrasted with architectures based
on diffusion models, which are known for being computationally expensive.

3.3. Ablation Study

We conducted an ablation study to assess the individual contributions of each unit in our
integrated architecture. Four baselines were established: 1) replacing the autoencoder with
a b x 5 DConv layer for shallow feature extraction [Mehri et al. 2021]; ii) omitting the
TFAM module and adjusting the output shape of the preceding layer; iii) substituting PS
and PU layers with transposed and strided convolution layers [Shi et al. 2016]; and iv)
replacing the perceptual loss with MSE, commonly used in SR [Wang et al. 2021, Liu
et al. 2023]. The results are summarized in Table 2.

Table 2. Recognition rates (%) achieved in the ablation study.

Approach RodoSol-ALPR PKU
pproac Al >6 >5 All >6 >5

Proposed (w/o autoencoder) 32.7 55.0 70.1 73.8 90.2 96.6

Proposed (w/o TFAM) 33.3 55.0 69.6 73.1 90.1 96.6

Proposed (w/o PS and PU layers) 34.3 54.8 68.5 70.4 89.9 96.7
Proposed (w/o perceptual loss) 35.6 57.3 719 724 914 971

Proposed 39.0 599 742 720 90.3 97.3

The experiments on the RodoSol-ALPR dataset showed that each component of
the proposed system significantly contributed to its performance. The complete system
achieved a recognition rate of 39.0%, while the best version without one of the compo-
nents achieved 35.6%. Removing the autoencoder unit had the most detrimental effect,
resulting in a recognition rate of 32.7%, as it plays a crucial role in extracting shallow
features and guiding the network’s reconstruction process.

On the other hand, the recognition rates on the PKU dataset were primarily im-
proved by incorporating the PS and PU layers. We hypothesized that the other units are
not necessary for this dataset, as it contains less complex images compared to RodoSol-
ALPR. This might explain why some authors focused their ablation studies exclusively
on the largest and most diverse dataset used in their experiments [Zhang et al. 2021a, Qin
and Liu 2022, Wang et al. 2022].

4. Conclusions

This work proposes a novel super-resolution approach to enhance the recognition of low-
resolution license plates. Our method combines subpixel-convolution layers (PS and PU)
with PLTFAM and introduces a novel perceptual loss function that integrates OCR fea-
tures with L1 loss and MSE. Through this approach, it reconstructs characters with dis-
tinctive attributes while simultaneously enhancing the overall image quality.



Our approach, utilizing PS and PU layers for custom scale operations, outperforms
conventional methods by leveraging both structural and textural features. An autoencoder
with PS and PU layers extracts shallow features and generates an attention mask, empha-
sizing relevant information during the super-resolution process.

We achieve superior recognition rates compared to notable baselines on two pub-
licly available datasets from Brazil and mainland China. Notably, on the RodoSol-ALPR
dataset, our method enables a recognition rate of 39.0% to be achieved by the OCR model,
outperforming baseline methods by a significant margin. Similarly, on the PKU dataset,
our approach surpasses the baselines with an OCR recognition rate of 72.0%.

All datasets and source code used in our experiments are made available to en-
courage further research and development in license plate recognition super-resolution.

Last but not least, this work has generated the following contributions:

* A preliminary version of the proposed method was published at the 2022 Confer-
ence on Graphics, Patterns and Images (SIBGRAPI) [Nascimento et al. 2022];

* The proposed super-resolution method was published in the Computers & Graph-
ics journal [Nascimento et al. 2023];

e This study was recently honored at the Workshop of Theses and Dissertations,
hosted by the committee of the 2023 Conference on Graphics, Patterns, and Im-
ages (SIBGRAPI), as the best master’s thesis completed in 2023;

* This study was recently awarded the Prémio UFPR de Exceléncia Académica,
being recognized by the Postgraduate Program in Informatics at the Federal Uni-
versity of Parand (UFPR) as the best master’s thesis completed in 2023.
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