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Abstract. The Near-Bipartiteness problem asks for a partition of the vertex set
of a graph G = (V,E) into two subsets S and F , where S forms an indepen-
dent set and F induces a forest. Despite its NP-completeness, even for graphs
with a diameter three, we explore this problem on graphs with a dominating
edge or small dominating sets. Our work presents a polynomial-time algo-
rithm for Near-Bipartiteness on graphs with a dominating edge, a particular
case of graphs with diameter three. In addition, we prove that Connected Near-
Bipartiteness, the variant where the forest must be connected, is NP-complete
on the same class. Moreover, we also establish the NP-hardness of Indepen-
dent Feedback Vertex Set and Acyclic Vertex Cover on this class of graphs. In
addition, by extending our approach to graphs with bounded dominating sets,
we achieve a huge improvement, obtaining an O(n2 · m)-time algorithm for
Near-Bipartiteness on P5-free graphs, improving upon the current state-of-the-
art time complexity of O(n16).

1. Introduction
In 1972, Richard Karp presented the NP-completeness proof of 21 fundamental

problems for Computer Science [Karp 1972]. FEEDBACK VERTEX SET, INDEPENDENT
SET and VERTEX COVER are three of these classical problems. FEEDBACK VERTEX
SET consists of finding a minimum set of vertices such that its removal eliminates all
cycles of the input graph, INDEPENDENT SET consists of determining a maximum set of
pairwise nonadjacent vertices (also known as a independent set), and VERTEX COVER
is the problem of determining a minimum set of vertices intersecting all edges (called
vertex cover) of the input graph. Note that if S is a independent set of G = (V,E) then
F = V (G) \ S is a vertex cover of G.

An independent feedback vertex set (IFVS) of a graph G is a set of vertices that
is independent and also a feedback vertex set of G. Defined by Yang A. and Yuan J.
in [Yang and Yuan 2006], a graph G = (V,E) has a near-bipartition (S,F) if there
exist S ⊆ V and F = V \ S such that S is a independent set, and F induces a for-
est. Furthermore, S and F can be empty sets. A graph that admits a near-bipartition is
a near-bipartite graph. Note that the class of near-bipartite graphs is exactly the class
of graphs having independent feedback vertex sets. Also, a graph G has an indepen-
dent feedback vertex set S if and only if it has an acyclic vertex cover F , i.e., a ver-
tex cover F such that G[F ] is acyclic (a vertex cover inducing a forest). The problem
of recognizing near-bipartite graphs, so-called NEAR-BIPARTITENESS, is NP-complete
even when restricted to graphs with maximum degree four [Yang and Yuan 2006], graphs



with diameter three [Bonamy et al. 2018], line graphs [Bonamy et al. 2019], and planar
graphs [Bonamy et al. 2017; Dross et al. 2017].

On the other hand, Brandstädt et al. [Brandstädt et al. 2013] proved that
NEAR-BIPARTITENESS is polynomial-time solvable on cographs. Yang and
Yuan [Yang and Yuan 2006] showed that NEAR-BIPARTITENESS is polynomial-time
solvable for graphs of diameter at most two and that every connected graph of maxi-
mum degree at most three is near-bipartite except for the complete graph on four vertices
(K4). Besides, Bonamy et al. [Bonamy et al. 2019] proved that NEAR-BIPARTITENESS
on P5-free graphs can be solved in O(n16) time. FPT algorithms parameterized by
k for finding an independent feedback vertex set of size at most k can be found
in [Agrawal et al. 2017; Li and Pilipczuk 2020; Misra et al. 2012]

A coloring for a graph G is an assignment of colors (labels) to all vertices of G.
A proper coloring for G is an assignment of color c(u), for each vertex u ∈ V , such that
c(u) ̸= c(v) if uv ∈ E(G). A graph G is k-colorable if there exists a proper coloring for
G with at most k colors. The chromatic number of G, χ(G), is the smallest number k for
G being k-colorable. A clear necessary condition for a graph to be near-bipartite is:
Proposition 1. If a graph G is near-bipartite then G is 3-colorable.

By Proposition 1, it holds that K4 is a natural forbidden subgraph for near-bipartite
graphs. A graph G is called perfect if for every induced subgraph H of G holds that its
chromatic number equals the size of its largest clique, χ(H) = ω(H). In particular,
ω(G) = χ(G).

However, the complexity of 3-COLORING and NEAR-BIPARTITENESS are not
necessarily the same, depending on the graph class being explored. Grötschel, Lovász
and Schrijver [Grötschel et al. 1984] proved that COLORING is solved in polynomial time
for perfect graphs, while Brandstädt et al. [Brandstädt et al. 2013] proved that NEAR-
BIPARTITENESS is NP-complete in the same graph class. NEAR-BIPARTITENESS can
also be seen as a variant of 2-COLORING. For an input graph G, the question is
whether its vertex set can be colored with two colors (not necessarily properly color-
ing) such that one color class is K2-free (a independent set), and the other is cycle-
free (i.e., induces a forest). Other 2-COLORING variants have already received atten-
tion in the literature. In [Achlioptas 1997], Achlioptas studied the problem of deter-
mining if there exists a bipartition of V (G) where each part (color class) is H-free for
some fixed graph H . He showed that for any graph H on more than two vertices, the
problem is NP-complete. Another variant was considered by Schaefer [Schaefer 1978],
who asked whether a given graph G admits a 2-coloring of the vertices such that each
vertex has exactly one neighbor with the same color as itself. Schaefer proved that
such a problem is NP-complete even for planar cubic graphs. The problem studied
by Schaefer [Schaefer 1978] is a particular case of a defective coloring called (2, 1)-
coloring. A (k, d)-coloring of a graph G is a k-coloring of V (G) such that each ver-
tex has at most d neighbors with the same color. Some studies on (2, 1)-coloring in-
clude [Borodin et al. 2013; Cowen et al. 1997; Lima et al. 2021]. In addition, the prob-
lem of finding a bipartition where each part induces a subgraph of minimum degree at
least k (for a given integer k) was studied in [Bang-Jensen and Bessy 2019]. Also, the
problem of partitioning the edge set of a graph into a independent set of edges (matching)
and a forest has been studied in [Lima et al. 2017; Protti and Souza 2018].



2. Near-Bipartiteness Problem and Related Variations
In the master’s thesis, driven by studies on variants of 2-coloring and the natural

relevance of independent feedback vertex sets, we focused on the NEAR-BIPARTITENESS
problem and its variants, which we define as follows:

Instance: A simple undirected graph G = (V,E).
Question: Does G have a near-bipartition (S,F)?

NEAR-BIPARTITENESS

Instance: A simple undirected graph G = (V,E).
Goal: Find (if any) a minimum independent feedback vertex set of G,

i.e., a near-bipartition (S,F) that minimizes |S|.

INDEPENDENT FEEDBACK VERTEX SET

Instance: A simple undirected graph G = (V,E).
Goal: Find (if any) a minimum acyclic vertex cover of G, i.e., a near-

bipartition (S,F) of G that minimizes the size of F .

ACYCLIC VERTEX COVER

Recall that the complement of an acyclic vertex cover is an independent feedback
vertex set. So, the reader can assume that we are also dealing with the maximization ver-
sion of both problems. Besides, we consider the problem of determining whether a graph
G can have its set of vertices partitioned into a independent set and a tree, called CON-
NECTED NEAR-BIPARTITENESS, which was shown to be NP-complete even on bipartite
graphs of maximum degree four [Brandstädt et al. 1998].

Instance: A simple undirected graph G = (V,E).
Question: Does G have a near-bipartition (S,F) such that G[F ] is con-

nected?

CONNECTED NEAR-BIPARTITENESS

Motivated by the fact that NEAR-BIPARTITENESS remains NP-complete on
graphs with diameter three [Bonamy et al. 2018], we first analyse the problem on graphs
having a dominating edge, a natural subclass of graphs with diameter 3. In such a case, we
show that NEAR-BIPARTITENESS can be solved in polynomial time, but CONNECTED
NEAR-BIPARTITENESS is NP-complete. We also prove the NP-hardness of finding a
minimum independent feedback vertex set or a minimum acyclic vertex cover on graphs
having a dominating edge. Finally, we present a O(n2 · m)-time algorithm to solved
NEAR-BIPARTITENESS on P5-free graphs, improving the current O(n16)-time state of
the art [Bonamy et al. 2019].

The mathematical proofs were crafted using reduction techniques to prove their
complexity. Problems like 2-Satisfiability (2SAT), a polynomial problem, and 1-in-3-
SAT, an NP-complete variation, were crucial for these reductions. Additionally, the
Positive-Min-Ones-2SAT problem, also NP-complete, played a significant role. Due to
space limitations, only proofs for Theorem 1 and 2 are presented in detail, while oth-
ers are briefly mentioned with proof strategies outlined. All proofs can be found in
[da Cruz 2023].



3. On graphs having a dominating edge
In this section, we consider the problem of partitioning a graph having a dom-

inant edge into a independent set and a tree (CONNECTED NEAR-BIPARTITENESS),
as well as the problem of partitioning it into a independent set and a forest (NEAR-
BIPARTITENESS).

Theorem 1. CONNECTED NEAR-BIPARTITENESS is NP-complete even when restricted
to graphs having a dominating edge.

Proof. The proof is based on a reduction from 1-IN-3SAT, a well-known NP-complete
problem [Garey and Johnson 1979]. In such a problem we are given a formula φ in con-
junctive normal form where each clause is limited to at most three literals, and asked
whether there exists a satisfying assignment so that exactly one literal in each clause is
set to true. Given an instance φ of 1-IN-3SAT, we construct a graph G such that φ has a
truth assignment such that each clause has exactly one literal set to true if and only if G
is partitionable into a independent set and a tree. From φ we construct G as follows:

1. first consider G = ({u, v}, {uv});
2. add a chordless cycle C of size 4 in G induced by {k1, k2, k3, k4}, and add edges

from u for all vertices in C;
3. add a chordless cycle C ′ = l1,m, l2, n1, n2;
4. add the edges ul1, ul2, vm, vn1 and vn2;

At this point, notice that every (S, T )-partition of G has v ∈ S and u ∈ T .
5. for each variable xi of φ create vertices vxi

and vxi
and add edges vxi

vxi
, uvxi

and
uvxi

;
6. for each clause Cj of φ create a vertex cj in G and add the edge vcj;
7. Finally, add an edge cjvxi

if the clause Cj contains the literal xi, and add an edge
cjvxi

if the clause Cj contains the literal xi.

Figure 1 shows a graph G constructed from a 3-CNF formula as previously de-
scribed. Furthermore, it presents an (S, T )-partition of G derived from a 1-in-3 truth
assignment of φ. In this representation, the white vertices form the independent set, while
the black vertices form the tree.

If φ is a 3-CNF formula having a truth assignment A such that each clause has
exactly one literal set as true, then we can construct an (S, T )-partition of G by setting
S = {k1, k3, l1, v} ∪ {vxi

: xi = false ∈ A} ∪ {vxi
: xi = true ∈ A} (clearly S

is a independent set). Since A defines a 1-in-3 truth assignment then each vertex cj has
exactly one neighbor in G[V \ S] then T = V \ S induces a tree. Conversely, if G
admits an (S, T )-partition then, by construction, it holds that v ∈ S and u ∈ T . This
implies that every vertex cj belongs to T , and that for each pair vxi

, vxi
exactly one of

these vertices belongs to T . Also, since T is connected each cj has at least one neighbor
in T , thus as T is acyclic each vertex cj has exactly one neighbor in T (each cj must be a
leaf in T ). Therefore, we can construct a 1-in-3 truth assignment by setting xi = true iff
vxi

∈ T .

Contrasting with Theorem 1, we show that when we remove the connectivity con-
straint, i.e., we look for a forest instead of a tree, the problem becomes polynomial-time
solvable.



Figure 1. Example of graph G and an near-bipartition representation from the
formula φ = (x1 + x2 + x4) · (x2 + x3 + x4) · (x2 + x3 + x4),

.

Theorem 2. Given a graph G and a dominating edge of G, one can determine in O(n2)
time whether G is a near-bipartite graph.

Proof. Let u, v ∈ V (G) be two vertices of G such that uv is a dominant edge of G.
Suppose that G has a near-bipartition (S,F). Without loss of generality, we may assume
that G does not have vertices with degree one. At this point, we may consider just two
cases:

Case 1. Suppose that u, v ∈ F . As uv ∈ E(F ), then N(u) ∩ N(v) ⊆ S , otherwise
F has cycles. Thus, N(u) ∩ N(v) must be a independent set. For a remaining vertex w
belonging to either N(u) \ N(v) or N(v) \ N(u): if it has a neighbor in S then it must
belong to F ; if it has a neighbor z (z ̸= u and z ̸= v) that must be in F , then w must
belong to S, otherwise, the edge wz together with uv induces a cycle in F . Thus, by
checking if N(u) ∩ N(v) is independent and then successively applying the operations
previously described according to a Breadth-First Search from N(u) ∩ N(v), in linear
time, we can either conclude that such a near-bipartition with u, v ∈ F does not exist, or
build a partition (S ′, F ′, U) of V (G) such that S ′ is independent, F ′ ⊇ {u, v} induces a
forest, and U is the set of unclassified vertices. Note that, by construction, no vertex in U
has neighbors in S ′ ∪ F ′ \ {u, v}. Since any pair of adjacent vertices together with u and
v induces a cycle, G has a near-bipartition (S,F) with {u, v} ⊆ F if and only if G[U ]
has an independent vertex cover, which is equivalent to U inducing a bipartite graph.

Case 2. Suppose that u ∈ S and v ∈ F . If u ∈ S and v ∈ F then N(u) ⊆ F . Thus,
N(u) must induce a forest and N(u) ∩ N(v) must be a independent set. At this point,
only the vertices belonging to N(v) \ N [u] are unclassified. Let B = N(v) \ {u}. If
G has a near-bipartition (S,F) then G[B] must be bipartite, so that its vertices can be
partitioned into two sets (B1, B2) such that B1 ⊆ S and B2 ⊆ F . Thus, we must find



a bipartition of B that satisfies the following conditions: N(u) ∩ N(v) ⊆ B2; and, for
each component T of G[N(u) \ N [v]] (which is a tree) it holds that: For each w ∈ B2,
|NT (w)| ≤ 1 (otherwise {w} ∪ V (T ) induces a cycle); and, T has at most one neighbor
in B2 (otherwise F has cycles). Note that any bipartition (B1, B2) satisfying the above
restrictions is sufficient to form a near-bipartition such that B1 ∪ {u} = S. Now, we can
reduce the problem of finding such a bipartition of G[B] to the 2SAT problem by building
a 2-CNF formula φ as follows:

1. for each vertex w ∈ B create a variable xw;
2. for each vertex w ∈ N(u) ∩N(v) create a clause (xw);
3. for each edge w1w2 ∈ E(G[B]) create the clauses (xw1 + xw2) and (xw1 + xw2);
4. for each vertex w ∈ B with at least two neighbors in the same component T of

G[N(u) \N [v]], create a clause (xw);
5. For each component T of G[N(u) \N [v]], and for each pair of vertices w1, w2 in

the neighborhood of T , create a clause (xw1 + xw2).

At this point, it is easy to see that φ is satisfied if and only if G[B] has a partition
(B1, B2) as requested (variables equal to true correspond to the vertices of B2). Since φ
can be built in O(n2) time with respect to the size of G[B] and 2SAT can be solved in
linear time [Aspvall et al. 1982], a near-bipartition (S,F) of G can be found in O(n2)
time (if any). Now, let {u, v, x} ⊆ V (G) be a dominating set of G which induces a
triangle. If G has a near-bipartition (S,F) then |{u, v, x} ∩ S| = 1. Suppose that G has
a near-bipartition (S,F) with x ∈ S and u, v ∈ F . Clearly N(u) ∩ N(v) ∩ N(x) = ∅,
otherwise G has a K4. Also, N(u)∩N(v) ⊆ S. Therefore, as described in case 1, we can
either conclude that such a near-bipartition does not exist, or build a partition (S ′, F ′, U)
of V (G) where S ′ ⊆ S and F ′ ⊆ F . Without loss of generality, we can assume that
N(x) ⊆ F ′, and N(x) ∩ N(u) as well as N(x) ∩ N(v) are independent sets. Notice
that vertices in U have only neighbors in U ∪ N(x). To classify the vertices in U , let
B = N(u)∪N(v)\{u, v}. Similar to case 2, we must find a bipartition of B that satisfies
the following conditions: B ∩ S ′ ⊆ B1 and B ∩ F ′ ⊆ B2; and, for each component T
of G[N(x) \ (B ∪ {u, v})] (which is a tree) holds that: For each w ∈ B2, |NT (w)| ≤ 1
(otherwise {w}∪V (T ) induces a cycle); and, T has at most one neighbor in B2 (otherwise
F has cycles). Finally, it is easy to see that, as in case 2, we can find such a bipartition of
G[B] (if any), in linear time, using 2SAT.

Theorem 3. INDEPENDENT FEEDBACK VERTEX SET is NP-hard when restricted to
graphs having a dominating edge.

First, it is noted that the Positive Min-Ones-2SAT problem [Misra et al. 2013]
is equivalent to the Minimum Vertex Cover problem [Karp 1972], a well-known NP-
complete problem. Given an instance φ of Positive Min-Ones-2SAT, we can construct a
graph G using the same construction as Theorem 1 (disregarding negative literals). At
this point, the variables xi defined as true are equivalent to the vertices vxi

assigned to S.
Therefore, φ has a value assignment to its variables with at most k variables set as true
such that φ is satisfied if and only if G is partitionable into an independent set S and a
forest F such that |S| ≤ k + 4.

Theorem 4. ACYCLIC VERTEX COVER is NP-hard when restricted to graphs having a
dominating edge.



The proof constructs a reduction from the NP-complete POSITIVE MIN-ONES-
2SAT problem to ACYCLIC VERTEX COVER problem. Initially, is defined a construction
algorithm transforms a given CNF formula into a graph with a dominating edge. (sim-
ilar to the one used in Theorem 1) . This algorithm incorporates modifications to adapt
to ACYCLIC VERTEX COVER’s requirements, adding edges between clause vertices and
variable vertices based on the literals present in the clauses of the CNF formula. The proof
establishes the equivalence between satisfying assignments of the CNF formula and near-
bipartitions of the graph, where true literals form one set (F) and false literals the other
(S). Conversely, given a near-bipartition of the graph, the proof shows how to construct
a satisfying assignment for the CNF formula. This involves selecting variables to be true
or false based on their presence in the F or S sets, respectively. Lastly, it ensures the
constructed graph’s acyclic nature and validates the transformation between satisfying as-
signments and near-bipartitions, affirming the NP-hardness of ACYCLIC VERTEX COVER
in graphs with a dominant edge.

4. On P5-free graphs
In 2019, Bonamy, Dabrowski, Feghali, Johnson, and Paulusma showed that

NEAR-BIPARTITENESS and INDEPENDENT FEEDBACK VERTEX SET can be solved in
O(n16) time. In 1990, Bacsó and Tuza [Bacsó and Tuza 1990] showed that any connected
P5-free graph has a dominating clique or a dominating P3. In 2016, Camby and Schaudt
generalized this result and showed that such a dominating set can be computed in polyno-
mial time.

In this section, using the same approach presented in Theorem 2, we show how to
handle NEAR-BIPARTITENESS on graphs having a dominating clique or a dominating P3.
Our results imply a faster algorithm to solve NEAR-BIPARTITENESS on P5-free graphs in
time O(n4). Interestingly, we can observe that the same technique combined with Bacsó
and Tuza’s result is not very useful to get a more efficient algorithm for INDEPENDENT
FEEDBACK VERTEX SET on P5-free graphs, due our Theorem 3 showing that this
problem remains NP-complete on graphs having a dominating edge.

Theorem 5. Given a graph G and a dominating triangle of G, one can determine in
O(n2) time whether G is a near-bipartite graph.

For this proof, initially, a dominating set u, v, z ⊆ V (G) inducing a triangle
is considered. The proof assumes z belongs to set S while u and v belong to set F .
Next, it’s noted that N(z), the neighbors of z, must form a forest within F , as z belongs
to S . Moreover, the common neighbors of u and v cannot be in N(z) to avoid the
formation of a K4. Further analysis focuses on the unclassified vertices, denoted as
B = N(v) ∪ N(u) \ u, v, z. As G[B] must be bipartite, the goal is to partition its
vertices into sets (B1, B2), with B1 ⊆ S and B2 ⊆ F , satisfying specific conditions.
These conditions ensure that G maintains its near-bipartite structure. Any bipartition
(B1, B2) meeting the specified criteria is deemed sufficient to form a near-bipartition,
where B1 ∪ z = S. The problem of finding such a bipartition is then reduced to the 2SAT
problem, concluding the proof.

Theorem 6. Given a graph G and a dominating induced P3 of G, one can determine in
O(n4) time whether G is a near-bipartite graph.



This proof involves the analysis of four cases. Each of them considers different
configurations of the dominating set {u, v, z} and the relationships between the vertices.
− Case 1: The vertices u and v belong to F while z is in S. The proof begins by ob-
serving that N(z) forms a forest, and N(u) ∩ N(v) ∩ N(z) = ∅ to prevent cycles. The
unclassified vertices (B) are partitioned into sets B1 and B2, respecting certain conditions,
and the problem is reduced to a 2SAT problem to find a bipartition of B. In this case the
proof is similar to that of Theorem 5. The same holds if {v, z} ∈ F and {u} ∈ S.
− Case 2: Only vertex v ∈ F , while {u, z} ∈ S. To maintain the independence of S,
the neighborhood of u and z, N(u) ∪ N(z), must belong entirely to F , ensuring that S
remains edge-free. Consequently, N(u)∪N(z) must form a forest, and G[N(u)∪N(z)]
must not contain any path between vertices of N(v) ∩ (N(u) ∪ N(z)) to prevent cycles
in F . Additionally, the vertices in N(v) \ (N(u) ∪ N(z)) must induce a bipartite graph.
Also, for a vertex w in this set, if it has a neighbor p ̸= v that reaches v in G[N(u)∪N(z)],
then p must be in S. At this point, similarly to Theorem 2, a 2SAT formula can be used
to decide which unclassified vertices of N(v) \ (N(u) ∪N(z)) must be in F and S, with
a time complexity of O(n2).
− Case 3: All vertices of the induced P3 are in F . In this scenario, any vertex with at least
two neighbors in u, v, z must belong to the independent set S. After that, we need observe
that the set (N(v)\ (N(u)∪N(z)))∪ (N(z)\ (N(u)∪N(v)))∪ (N(u)\ (N(v)∪N(z)))
forms a bipartite graph B. By iteratively applying a 2-coloring process from (N(v) ∩
N(z)) ∪ (N(u) ∩ N(v)) ∪ (N(u) ∩ N(z)), for any remaining vertex w in this bipartite
graph, (determining whether it belongs to F or S based on its neighbors) in linear time,
it determines whether a near-bipartition of G with v, u, z ∈ F exists. If so, a partition
(S ′, F ′, U) of V (G) is constructed, where S ′ is independent, F ′ ⊇ v, u, z induces a for-
est, and U represents unclassified vertices. Thus, we conclue that G has a near-bipartition
(S,F) with v, u, z ⊆ F if and only if G[U ] has an independent vertex cover, which can
be checked in linear time by verifying if U induces a bipartite graph.
− Case 4: u and z belong to the dominating set F , while vertex v belongs to the in-
dependent set S. This case is divided into two subcases. In case A, it is investigated
whether u and z are in the same tree of F , while in case B, the scenario where u and z are
disconnected in F is considered.

In case A, when u and z are in the same tree of F , pairs of vertices (au, az) where
au and az are neighbors of u and z, respectively, are explored. We have O(n2) pairs
au, az, and in O(m) time we can check if {au, az} ∪ N(v) induces a forest having a tree
containing u and z. For each pair, it is verified whether (N(u) ∪N(z)) \ (au, az ∪N [v])
forms a bipartite graph B. If yes, a bipartition of B satisfying certain conditions can be
found, allowing to construct a near-bipartition of G with au, az ∪ N(v) ⊆ F . Such a
bipartition can be found using a 2SAT formula. The overall running time for case A is
O(n4), because we consider O(n2) pairs and for each one the described procedure can be
performed in O(n2) time. In case B, when u and z are disconnected in F , it is examined
whether N(u) ∩N(z) is an independent set and whether G[N(u) ∪N(z)] is bipartite. If
yes, the 2SAT method is used to classify the vertices of N(z) ∪ N(u) into S and F . In
both cases, techniques of bipartite graphs and 2SAT are used to find a near-bipartition of
G. The total time to examine all cases is O(n4), where n is the number of vertices in G.

Next, we improve the Bonamy, Dabrowski, Feghali, Johnson, and Paulusma’s
result [Bonamy et al. 2019] concerning NEAR-BIPARTITENESS on P5-free graphs.



Corollary 1. NEAR-BIPARTITENESS on P5-free graphs can be solved in O(n2 · m) time.

Near-bipartite graphs are K4-free and K4’s can be found in O(m2) time. Also,
near-bipartite P5-free graphs have either a dominating triangle or a dominating P3 due to
Bacsó and Tuza’s result [Bacsó and Tuza 1990]. Hence, it is enough to apply Theorem 5
and Theorem 6. Since G is P5-free then Case 4A of Theorem 6 can be performed in
O(n2 ·m) time, since either au = az or auaz is an edge of G.

5. Concluding remarks
The master’s dissertation explores the NEAR-BIPARTITION problem and its vari-

ants in graphs with dominating edges and P5-free graphs, offering polynomial-time al-
gorithms for NEAR-BIPARTITENESS and investigating the NP-completeness of CON-
NECTED NEAR-BIPARTITENESS. Moreover, it extends the analysis to graphs with
bounded dominating sets, presenting an improved O(n2 · m)-time algorithm for NEAR-
BIPARTITENESS in P5-free graphs. Additionally, it is noted in [Bacsó and Tuza 1990] that
every connected P5-free graph contains a dominating clique or a dominating P3. Thus,
given a connected P5-free graph G, to determine if it admits a near-bipartition can be
achieved by: verifying the existence of a dominating K4 in O(n4) time; confirming the
existence of a dominating P3 or K3 in O(n3) time; and executing the algorithm described
in Theorem 5 or Theorem 6 in O(m.n2) time.
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