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Abstract. Network clustering tackles the problem of identifying sets of nodes
(clusters or communities) that have similar connection patterns. However, in
many modern scenarios, nodes also have attributes that are correlated with the
network structure. Thus, network information (edges) and node information
(attributes) can be jointly leveraged to design high-performance clustering al-
gorithms. Under a general model for the network and node attributes, this thesis
establishes an information-theoretic criterion for the exact recovery of commu-
nity labels and characterizes a phase transition determined by the Chernoff-
Hellinger divergence of the model. The criterion shows how network and at-
tribute information can be exchanged in order to yield exact recovery (e.g., more
reliable network information requires less reliable attribute information). This
thesis also presents two iterative clustering algorithms that greedily maximizes
the joint likelihood of the model under the assumption that the probability dis-
tribution of network edges and node attributes belong to exponential families.
Extensive analysis of the two algorithms on both synthetic datasets and real
benchmarks highlights their accuracy and performance with respect to other
state-of-the-art approaches.

1. Introduction
Community detection or network clustering–the task of identifying sets of similar nodes in
a network–is a fundamental problem in network analysis [Abbe 2017, Fortunato and Hric 2016],
with applications in diverse fields such as digital humanities, data science and biology. In
the classic formulation, a set of communities must be determined from the connection
patterns among the nodes of a single network. A simple random graph model with com-
munity structure, the Stochastic Block Model (SBM), has been the canonical model to
characterise theoretical limitations for detecting communities and evaluate different com-
munity detection algorithms [Abbe 2017].

However, nodes of many real-world networks have attributes or features that can
reveal their identity as an individual or within a group. For example, the age, gender
and ethnicity of individuals in a social network [Newman and Clauset 2016], the title,



keywords and co-authors of papers in a citation network [Sen et al. 2008], or the longitude
and latitude of meteorological stations in weather forecast networks [Braun et al. 2022].
In some scenarios, such attributes can be leveraged alone to identify node communities
(clusters) without even using the network.

Thus, a modern formulation for community detection must consider both net-
work information (edges) and node information (attributes). Indeed, recent works have
addressed this problem by designing community detection algorithms that can effectively
leverage both sources of information to improve performance, including techniques based
on modularity optimisation [Combe et al. 2015], belief propagation [Deshpande et al. 2018],
spectral clustering [Abbe et al. 2022] and iterative likelihood based methods [Braun et al. 2022].

A fundamental problem in this new formulation is fusing both sources of in-
formation: how important is network information in comparison to node information
given a problem instance? Intuitively, this depends on the noise associated with net-
work edges and node attributes. For example, if edges are reliable then the clustering
algorithm should prioritize edges when determining the communities. However, most
prior approaches adopt some form of heuristic when merging the two sources of infor-
mation [Combe et al. 2015, Deshpande et al. 2018]. A rigorous approach to this problem
requires a mathematical model, and one has been recently proposed.

The Contextual Stochastic Block Model (CSBM) is a generalization of the classic
SBM where nodes and edges can have random attributes that depend on their communi-
ties. While the model formulation is general, CSBM has only been rigorously studied in
the restrictive setting where edges are binary (present or not) and node attributes follow a
Gaussian distribution [Abbe et al. 2022, Braun et al. 2022, Deshpande et al. 2018].

However, real networks often depart from binary edges and Gaussian attributes.
Indeed, in many scenarios network edges have weights that reveal information about
their interactions and nodes have discrete or non-Gaussian attributes. This work tack-
les this scenario by considering a CSBM where edges have weights and nodes have at-
tributes that follow arbitrary distributions. Under this general model, this thesis is the
first to characterise the phase transition for the exact recovery of community labels. In
particular, the Chernoff-Hellinger (CH) divergence, initially defined just for binary net-
works [Abbe and Sandon 2015], is extended to this more general model. This divergence
effectively captures the difficulty of distinguishing different communities and thus plays
a crucial role in determining the limits of exact recovery. The analysis reveals an addi-
tional term in the divergence that quantifies the information provided by the attributes of
the nodes. Moreover, it quantifies the trade-off between network and node information in
meeting the threshold for exact recovery.

Characterizing the threshold for exact recovery is important because it provides
a theoretical lower bound for recovering the communities with a fraction of errors that
goes to zero as the network size increases. This means that no algorithm (independent
of running time) can exactly recover the communities if the problem at hand has a CH
divergence value below the threshold. However, the knowledge threshold does not lead
to an algorithm that can exactly recover communities when the problem at hand has a
CH divergence value above the threshold. Thus, designing efficient algorithms to recover
algorithms in this scenario is paramount.



As it was first proposed, the CSBM generates weighted complete networks (all
possible edges are present) when edge weights follow a continuous distribution. How-
ever, most real weighted networks are sparse (only a very small fraction of all possible
edges are present). To model sparse weighted networks and to provide a practical com-
munity detection algorithm, we consider a CSBM whose weights belong to zero-inflated
distributions. This means that edges can be absent with some probability (that depends
on the communities), and in case an edge is present, its weight follows a distribution from
the exponential family. Similarly, node attribute distributions (that also depend on the
community) are also assumed to belong to an exponential family.

Assuming edge weights and node attributes follow distributions from the exponen-
tial family is motivated by two factors. Firstly, the exponential family encompass a broad
range of parametric distributions, including the commonly used Bernoulli, Poisson, Gaus-
sian, and Gamma distributions. Secondly, there exists an intricate connection between
distributions in the exponential family and Bregman divergences, which has proven to be
a powerful tool in designing algorithms across a variety of problems such as clustering,
classification, and dimensionality reduction [Banerjee et al. 2005].

This connection between Bregman divergences and exponential family has been
previously explored in the context of clustering dense networks (all possible edges are
present) [Long et al. 2007]. In contrast, this thesis proposes two iterative algorithms
also based on Bregman divergences but that can be directly applied to both dense and
sparse networks. This is a key difference with most prior works which either study dense
weighted networks [Mariadassou et al. 2010] or sparse binary networks with Gaussian
attributes [Abbe et al. 2022, Deshpande et al. 2018, Stanley et al. 2019]. The lgorithms
here proposed attempt to maximize the likelihood function through greedy iterations
that lead to changes in the community assignment of nodes. The hard and soft ver-
sions of the algorithm reflect how community assignment are treated within the itera-
tions of the algorithm. In hard clustering, at each iteration nodes are assigned to a single
community, while in soft clustering, nodes are assigned a distribution over the set of
communities. Hard and soft clustering are common approaches in the clustering litera-
ture [Long et al. 2007, Abbe et al. 2022], and thus our contribution is to apply them to the
model under consideration using Bregman divergence.

Iterative algorithms for community detection such as the ones proposed in this
thesis must start with some initial community assignment (either hard or soft). However,
this initial assignment often has immense influence on the communties identified by the
algorithm. In fact, starting from random community assignments often leads to very
poor results. Thus, another important consideration is determining the initial assignment.
Another contribution of this thesis is a methodology to generate an initial community
assignment from the data.

Last, the performance of the proposed algorithms along with the proposed ini-
tialization are assessed using synthetic datasets generated by the CSBM model under
consideration. Interestingly, results indicate that the hard clustering algorithm can re-
cover communities effectively and close to the theoretical threshold for exact recovery.
Moreover, the performance of the proposed algorithms are compared with state-of-the-art
alternatives showing superiority in different scenarios. The proposed algorithms are also
applied to real benchmark datasets for sparse networks with node attributes.



2. Related Work
2.1. Exact recovery in SBM with edge weights and node attributes
Community detection in classic SBM (binary edges) is a well-understood problem with
strong theoretical results concerning exact recovery and efficient algorithms with guaran-
teed accuracy [Abbe 2017]. However, extending the classic SBM to weighted networks
(non-binary edges) with arbitrary distributions is an ongoing research area. Most existing
work in this scenario has been restricted to the homogeneous model (aka. planted parti-
tion model), where edge weights within and across communities are determined by two
respective distributions.

In non-homogeneous models, a more complex divergence called the Chernoff-
Hellinger (CH) divergence is the appropriate information-theoretic quantity for exact
community recovery [Abbe and Sandon 2015]. However, the expression of the Chernoff-
Hellinger divergence as originally defined in [Abbe and Sandon 2015] for binary net-
works does not have an intuitive interpretation, and its extension to non-binary (weighted)
networks is challenging.

Another generalization of the SBM allows for nodes to have attributes that provide
information about their community, such as the Contextual SBM (CSBM) [Deshpande et al. 2018].
CSBM has only been rigorously studied in the setting where edges are binary and node
attributes follow a Gaussian distribution. In this scenario, the phase transition for exact re-
covery for the community labels has been established [Abbe et al. 2022, Braun et al. 2022,
Deshpande et al. 2018]. A natural generalization is to investigate the model where net-
work edges have weights and nodes have attributes that follow arbitrary distributions. In-
deed, this is one of the main contributions of this thesis: Expression (3.4) gives a straight-
forward yet crucial formula for the phase transition for exact recovery, also providing a
natural interpretation for the influence of both the network and node attributes. Moreover,
Expression (3.4) also applies when no node attribute is available, thus providing the exact
recovery threshold for a non-homogeneous model and arbitrary edge weight distribution,
a significant advancement in the state of the art.

2.2. Algorithms for clustering weighted networks with node attributes
Algorithms leveraging different approaches have been proposed to tackle community de-
tection in networks with edge weights and node attributes. A common principled ap-
proach is to determine the community assignment that maximizes the likelihood func-
tion of a model for the data. However, optimizing the likelihood function is compu-
tationally intractable even for binary networks. Thus, approximation schemes such as
variational inference and pseudo-likelihood methods are often adopted. For instance,
[Mariadassou et al. 2010] introduced a variational-EM algorithm for clustering non-homogeneous
weighted SBM with arbitrary distributions. Another approach for clustering node-attributed
SBM whose edge weights and attribute distributions belong to exponential families is [Long et al. 2007].
These two approaches assume that the network is dense (all edges are present and have
non-zero edge weight). However, most real networks are very sparse (most node pairs do
not have an edge) and this work focuses on this scenario. Another very recent approach
tackling sparse networks is the IR sLs algorithm [Braun et al. 2022], although its theoret-
ical guarantees assume binary networks with Gaussian attributes. The performance of the
algorithms here proposed are directly compared to IR sLs, illustrating their superiority in
different scenarios.



3. Model and Exact Recovery in CSBM

3.1. Model definition

Consider n nodes partitioned into K ≥ 2 disjoint sets, called blocks or communities.
A node-labelling vector z = (z1, · · · , zn) ∈ [K]n represents this partitioning so that
zi ∈ [K] indicates the block (label) of node i. The block of nodes are random variables
assumed to be independent and identically distributed such that P(zi = k) = πk for
some vector π ∈ (0, 1)K verifying that

∑
k πk = 1. The nodes interact in unordered

pairs giving rise to undirected edges, and X is the measurable space of all possible edge
weights. Additionally, each node has an attribute that is an element of a measurable space
Y . Let X ∈ XN×N denote the symmetric matrix such that Xij represents the edge weight
between node pair (ij), and by Y = (Y1, · · · , Yn) ∈ Yn the node attribute vector.

Assume that edge weights and attributes are independent conditionally on the
community labels of the nodes. Let fkℓ(x) denote the probability that two nodes in blocks
k and ℓ have an edge x ∈ X , and hk(y) denote the probability that a node in block k ∈ [K]
has an attribute y ∈ Y . Thus,

P (X, Y | z) =
∏

1≤i<j≤n

fzizj(Xij)
n∏
i=1

hzi(Yi). (3.1)

In the following, the spaces X ,Y might depend on n, as well as the respective
probabilities f, h. The number of nodes n will increase to infinity while K and π are
constant. For an estimator ẑ ∈ [K]n of z, we define the classification error as

(z, ẑ) = min
τ∈SK

(z, τ ◦ ẑ),

where SK is the set of permutations of [K] and (·, ·) is the hamming distance between two
vectors. An estimator ẑ = ẑ(X, Y ) achieves exact recovery if P ((z, ẑ) ≥ 1) = o(1).

3.2. Exact recovery threshold

The difficulty of classifying empirical data into one of K possible classes is traditionally
measured by the Chernoff information. More precisely, in the context of network clus-
tering, let CH(a, b) = CH(a, b, π, f, h) denote the hardness of distinguishing nodes that
belong to block a from block b. This quantity is defined by

CH(a, b) = sup
t∈(0,1)

CHt(a, b), (3.2)

where

CHt(a, b) = (1− t)

[
K∑
c=1

πcDt (fbc∥fac) +
1

n
Dt (hb∥ha)

]
(3.3)

is the Chernoff coefficient of order t across blocks a and b, and Dt(f∥g) = 1
t−1

log
∫
f t(x)g1−t(x)dx

is the Rényi divergence of order t between two probability densities f, g [Van Erven and Harremos 2014].
The key quantity assessing the possibility or impossibility of exact recovery in SBM



is then the minimal Chernoff information across all pairs of clusters. We denote it by
I = I(π, f, h), and it is defined by

I = min
a,b∈[K]
a̸=b

CH(a, b). (3.4)

The following Theorem provides the information-theoretic threshold for exact recovery
in node-attributed SBM.
Theorem 3.1. Consider model (3.1) with πa > 0 for all a ∈ [K]. Denote by a∗, b∗

the two hardest blocks to estimate, that is CH(a∗, b∗) = I . Suppose that t ∈ (0, 1) 7→
lim
n→∞

n
logn

CHt(a
∗, b∗) exists and is strictly concave. Then the following holds:

(i) exact recovery is information-theoretically impossible if lim
n→∞

n
logn

I < 1;

(ii) exact recovery is information-theoretically possible if lim
n→∞

n
logn

I > 1.

The proof for Theorem 3.1 is provided in our paper [Dreveton et al. 2023].

4. Bregman hard clustering of sparse weighted node-attributed networks

In this section, we will propose an algorithm for clustering sparse, weighted networks with
node attributes. When present, the weights are sampled from an exponential family, and
the node attributes also belong to an exponential family. In Section 4.1, we provide some
reminder of exponential families. We derive the likelihood of the model in Section 4.2,
and present the algorithm in Section 4.3.

4.1. Exponential family

An exponential family Eψ is a parametric class of probability distributions whose densities
can be canonically written as pθ,ψ(x) = e<θ,x>−ψ(θ), where the density is taken with
respect to an appropriate measure, θ ∈ Θ is a function of the parameters of the distribution
that must belong to an open convex space Θ, and ψ is a convex function.

We consider the model defined in (3.1), such that fab are zero-inflated distributions
and are given by

fab(x) = (1− pab)δ0(x) + pabf
∗
ab(x), (4.1)

where pab ∈ [0, 1] is the edge probability between blocks a and b, δ0(x) is the Dirac delta
at zero, and f ∗

ab is a probability density with no mass at zero. Note that this model can
represent sparse weighted networks, as edges between nodes in blocks a and b are absent
with probability 1− pab.

Finally, suppose that the distributions {f ∗
ab} and {ha} belong to exponential fami-

lies. More precisely,

f ∗
ab(x) = e<θab,x>−ψ(θab) and ha(y) = e<ηa,y>−ϕ(ηa), (4.2)

for some parameters θab, ηa and functions ψ, ϕ.



4.2. Log-likelihood
Given a convex function ψ, the Bregman divergence dψ : Rm × Rm → R+ is defined by

dψ(x, y) = ψ(x)− ψ(y)− < x− y,∇ψ(y) > .

The log-likelihood of the density pψ,θ of an exponential family distribution is linked to the
Bregman divergence by the following relationship

log pψ,θ(x) = −dψ∗(x, µ) + ψ∗(x), (4.3)

where µ = Epψ,θ(X) is the mean of the distribution, and ψ∗ denotes the Legendre trans-
form of ψ, defined by ψ∗(t) = supθ{< θ, t > −ψ(θ)}.

Suppose that X, Y follow the model (3.1) with probability distributions given
by (4.1)-(4.2). Let A be a binary matrix such that Aij = 1(Xij ̸= 0). We have

− logP(X, Y | z) =
∑
i

{
1

2

∑
j ̸=i

[
dKL(Aij, pzizj) + Aijdψ∗

(
Xij, µzizj

)]
+ dϕ∗(Yi, νzi)

}
+ c,

where the additional term c is a function of X, Y but does not depend on z. Denoting
Z ∈ {0, 1}n×K the one-hot membership matrix such that Zik = 1(zi = k), observe that
pzizj =

(
ZpZT

)
ij

where p is a symmetric matrix with the edge probabilities between
different blocks, µzizj =

(
ZµZT

)
ij

where µ is a symmetric matrix with the expected
value of the edge weights between different blocks, and νzi =

(
ZTν

)
i

where ν is a vector
with the expected value of the attribute for different blocks. Thus, up to some additional
constants, the negative log-likelihood − logP(X, Y |Z) is equal to∑

i

{
1

2
dKL

(
Ai·,

(
ZpZT

)
i·

)
+

1

2
d′ψ∗

(
Xi·,

(
ZµZT

)
i·

)
+ dϕ∗

(
Yi,

(
ZTν

)
i

)}
+ c, (4.4)

where d′ψ∗(B,C) =
∑n

j=1 1(Bj ̸= 0)dψ∗(Bj, Cj) for two vectors B,C ∈ Rn.

4.3. Clustering by iterative likelihood maximisation
Following the log-likelihood expression derived in (4.4), we propose an iterative clus-
tering algorithm that places each node in the block maximising P (X, Y | z−i, zi = a) for
1 ≤ a ≤ K, the likelihood that node i is in community a given the community labels of
the other nodes, z−i. Let Z(ia) denote the membership matrix obtained from Z by plac-
ing node i in block a, and let Lia(Z(ia)) denote the contribution of node i to the negative
log-likelihood when node i is placed in block a. Equation (4.4) shows that

Lia(Z) =
1

2
dKL

(
Ai·,

(
ZpZT

)
i·

)
+

1

2
d′ψ∗

(
Xi·,

(
ZµZT

)
i·

)
+ dϕ∗

(
Yi,

(
ZTν

)
i

)
, (4.5)

where the p, µ and ν in the equation above must be estimated from X , Y , and the com-
munity membership matrix Z. Let p̂ = p̂(A,Z), µ̂ = µ̂(X,Z), and ν̂ = ν̂(Y, Z) denote
the estimators for p, µ and ν, respectively. Their values can be computed as follows:

p̂(A,Z) =
(
ZTZ

)−1
ZTAZ

(
ZTZ

)−1
,

µ̂(X,Z) =
(
ZTAZ

)−1
ZTXZ,

ν̂(Y, Z) =
(
ZTZ

)−1
ZTY.

(4.6)



Algorithm 1 Bregman hard clustering for CSBM.
Input: Edge weights X ∈ X n×n, node attributes Y ∈ Yn, convex functions ψ∗, ϕ∗ (dis-

tributions), initial clustering Z0

1 Let Z = Z0

repeat
2 Compute p̂, µ̂, ν̂ according to (4.6)

Let Z = 0n×K
for i = 1, . . . , n do

3 Let Z(ia) be the membership matrix obtained from Z by placing node i in com-
munity a
Find k∗ = argmax

a∈[K]

Lia
(
Z(ia)

)
, where Lia

(
Z(ia)

)
is defined in (4.5);

Let Zik = 1(k = k∗) for all k = 1, . . . , K

4 Let Z = Z

5 until convergence;
Return: Node-membership matrix Z

Note that the matrix inverse
(
ZTZ

)−1 can be easily computed since ZTZ is a K-by-K
diagonal matrix. This approach is described in Algorithm 1.

Due to space limitations, the reader is referred to the thesis [Fernandes 2023] for
the description of the soft clustering algorithm.

4.4. Initial membership assignment

A fundamental aspect of many likelihood maximization iterative algorithms such as Al-
gorithm 1 is the initial membership assignment, Z0. This thesis proposes the following
novel procedure to determine the initial assignment. Consider matrix W ∈ Rn×2K where
the first K columns of W are the first K eigenvectors of the network normalised Lapla-
cian (with edge weights), while the last K columns of W are the first K eigenvectors of
the Gram matrix Y Y T . This matrix is clustered using k-means algorithm to provide the
initial membership assignment. More details can be found in the thesis [Fernandes 2023].

5. Numerical experiments

5.1. Exact recovery of Algorithm 1

Figure 1 shows the performance of Algorithm 1 in terms of exact recovery (fraction of
times the algorithm correctly recovers the community of all nodes) with the theoreti-
cal threshold for exact recovery proved in the paper (red curve in the plots) in two set-
tings: Figure 1a shows binary weight with Gaussian attributes, and Figure 1b shows zero-
inflated Gaussian weights with Gaussian attributes. A solid black (resp., white) square
means that over 50 trials, the algorithms failed 50 times (resp., succeeded 50 times) at
exactly recovering the block structure.

5.2. Comparison with other algorithms

The Adjusted Rand Index (ARI) between the predicted clusters and the ground truth is
used to evaluate the performance of the algorithms.
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(a) Binary weights with Gaussian at-
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Figure 1. Phase transition of exact recovery. Each pixel represents the empir-
ical probability that Algorithm 1 succeeds at exactly recovering the clus-
ters (over 50 runs), and the red curve shows the theoretical threshold. (a)
n = 500, K = 2, = Ber(αn−1 log n), = Ber(n−1 log n). The attributes are 2d-
spherical Gaussian with radius (±r

√
log n, 0) and identity covariance ma-

trix. (b) n = 600, K = 3, = (1− ρ)δ0 + ρNor(µ, 1), = (1− ρ)δ0 + ρNor(0, 1) with
ρ = 5n−1 log n. The attributes are 2d-spherical Gaussian whose means are
the vertices of a regular polygon on the circle of radius r

√
log n.

The following algorithms are considered for comparison: IR sLs algorithm [Braun et al. 2022]
is one of the most recent algorithms for node-attributed SBM and it comes with theoretical
guarantees (for binary networks with Gaussian attributes); attSBM [Stanley et al. 2019] is
an EM algorithm designed for binary networks with Gaussian attributes; EM-GMM refers
to fitting a Gaussian Mixture Model via EM on attribute data Y alone (no network); and
sc refers to spectral clustering on network data X alone (no node information).

Figure 2 shows the results for binary networks with Gaussian attributes. Algo-
rithm 1 successfully learns from both the signal coming from the network and the at-
tributes, even in scenarios where one of them is non-informative. Moreover, Algorithm 1
has better performance than the two other node-attributed clustering algorithms, and those
algorithms also show a large variance. Note that IR sLs and attSBM are both tailor-made
for binary edges and Gaussian attributes. Even in such a setting, Algorithm 1 outperforms
them. When the network is weighted and the attributes non-Gaussian, IR sLs and attSBM
perform poorly (see paper [Dreveton et al. 2023] or thesis [Fernandes 2023]).

Due to space limitations, evaluation on real datasets have been suppressed and can
be found in the related paper [Dreveton et al. 2023] or thesis [Fernandes 2023].
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