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Abstract. Convolution is one of the most computationally intensive machine
learning model operations, usually solved by the traditional Im2Col + BLAS
method. This work describes SConv: a novel direct-convolution algorithm to
improve upon Im2Col + BLAS by introducing compile-time and execution time
components to tile, vectorize and optimize the computation. SConv’s speed-up
over an Im2Col + BLAS method based on current BLAS implementations for
end-to-end machine-learning model inference is in the range of 11% – 27% for
Intel x86 and 11% – 34% for IBM POWER10 architectures. The total convolu-
tion speedup for model inference is 13% – 28% on Intel x86 and 23% – 39% on
IBM POWER10. SConv also outperforms oneDNN in 6 out of 7 models.

1. Introduction
The world is becoming increasingly connected, and the volume of data to be processed in
many applications is constantly expanding. In this context, machine learning algorithms,
specifically deep learning and neural networks, are rapidly becoming important and pow-
erful tools for building computational models that can represent non-analytically complex
problems involving many variables in a multidimensional hyperspace.

Convolutional Neural Networks (CNN) are useful tools for addressing problems
with huge data sets captured from real-world sensors. The steady increase in the adop-
tion of CNNs is driven mostly by applications in the Computer Vision domain, where
it addresses problems like Object Recognition [He et al. 2016, Zhou et al. 2014], Object
Detection [Girshick et al. 2014], and Video Classification [Karpathy et al. 2014].

Since their origins, the size and complexity of state-of-the-art CNNs have grown
significantly. It is well-known that convolution is the most expensive operation of a CNN
[Chellapilla et al. 2006]. Furthermore, this operation is also important for other applica-
tions, such as image processing and other types of signal processing. Bigger CNN models
contain larger convolutions that not only demand more computational power but also re-
sult in a significant increase in data movement between different levels of the memory
hierarchy. Consequently, improving convolution performance requires attention to hard-
ware throughput and memory access.

Convolution is usually solved with a method called Im2Col + BLAS
[Chellapilla et al. 2006], consisting of a transformation to a GEMM (Generic Matrix Mul-
tiplication) problem followed by an efficient solution from a BLAS library. This method
has two packing steps: the Im2Col transformation and the BLAS GEMM packing rou-
tine. This approach, combined with the GEMM-specific cache blocking solution, is not



ideal for convolution [Zhang et al. 2018]. In certain conditions, direct convolution can
outperform the traditional Im2Col reduction.

Even though GPUs and other accelerators have been growing in popularity in the
past few years, ML inference in CPUs is still important for many applications ranging
from smaller models to executing in general consumer hardware. Newer ISA extensions
are improving performance of vector and matrix operations without the need for dedicated
accelerators, with less power consumption requirements and lower price.

This research project had the goal of exploring direct convolution, its properties,
and generalizations to support ISA extensions such as the IBM POWER10 MMA engine
[Moreira et al. 2021], to improve convolution (and consequently, machine learning infer-
ence) performance in different architectures with more complex SIMD and matrix units.
Better performance can be achieved by improving on some of the previously described
limitations of Im2Col + BLAS.

Goto and van de Geijn [Goto and Geijn 2008] introduced a macro-kernel/micro-
kernel structure for GEMM, used by BLAS libraries, and this can be adapted to construct
a novel convolution algorithm with specific cache blocking, reduced data movement, and
good hardware usage.

This project’s main contribution is the introduction of SConv: a direct-convolution
algorithm that uses architectural information to improve convolution’s cache utilization
and ISA extensions to accelerate data packing and computation, suitable for SIMD ar-
chitectures. The algorithm can leverage Instruction Set Architecture (ISA) acceleration
extensions (e.g. IBM POWER10 MMA) to compete with optimization libraries such as
BLAS [Xianyi et al. 2011]. SConv itself provides four major contributions:

• A compiler-based solution for convolution code generation that does not depend
on linking with math optimization libraries such as BLAS;

• Convolution Slicing Analysis (CSA), a generic compiler analysis pass that can
be used to determine a tiling strategy for convolution in different types of CPU
architectures, given convolution and hardware information;

• Convolution Slicing Optimization (CSO), a code-generation pass that results in
a direct convolution macro-kernel that improves performance when compared to
Im2Col+BLAS for two CPU architectures (Intel x86 and IBM POWER10) using
specialized micro-kernels;

• Vector-Based Packing, an input-tensor packing solution that leverages shift in-
structions in vector registers for better performance in unitary stride convolutions.
The original thesis covers all these contributions in detail, as well as a deep explo-

ration of the micro-kernel and a large experimental evaluation of SConv in both a realistic
machine-learning setup and individual convolution unit tests.

This project led to a presentation at CASCON x EVOKE 2021, a poster at PACT
’22 [Ferrari et al. 2023a], and a full-length article in ACM TACO [Ferrari et al. 2023b],
presented at HiPEAC 2024. Additionally, it resulted in a presentation at the Open MLIR
Meeting (March 9, 2023) and a RFC [Ferrari 2023].

2. Related Work
Chellapilla et al. proposed the computation of convolution using the Im2Col
transformation to reduce the problem to GEMM and solve it using a BLAS li-



brary [Chellapilla et al. 2006]. The BLAS’s GEMM routine already contains packing
steps. Thus two separate steps require data manipulation: expansion (Im2Col) and pack-
ing. This approach has a large memory footprint because of the large matrix result-
ing from Im2Col. Other authors address the memory footprint issue while still using
BLAS GEMM as a foundation to solve the convolution problem [Anderson et al. 2020,
Cho and Brand 2017].

Zhang et al. [Zhang et al. 2018] discuss the limitations and inefficiencies of the
Im2Col + BLAS convolution algorithm and present an argument for using direct con-
volution instead. They use a model architecture with fused multiply-add instructions to
explore cache blocking and data reuse, given a friendly memory layout.

Goto and van de Geijn [Goto and Geijn 2008] introduce the idea of exploiting an
optimized micro-kernel (called ”inner-kernel”) by tiling the problem in an external macro-
kernel. These tiles are then packed to a friendly layout for the micro-kernel. The CSA
algorithm resembles the algorithm proposed by Goto and de Gejin in its functionalities,
but it applies the strategy to convolution instead of applying it to GEMM.

Li et al. [Li et al. 2021] proposes a tiling algorithm that initially assesses how
different permutations (loop orders) of the nested tiling loops may affect data move-
ment. This analysis results in eight different permutations that are evaluated through
a cost model that uses a non-linear optimization problem (min-max) to produce tile
sizes and tries to reduce the data movement between each cache level. Tollenaere et
al. [Tollenaere et al. 2023] design a solution that selects up to two micro-kernels which
together are divisible by the output height dimension, as a way to avoid partial tiling.

Juan et al. [Juan et al. 2020] modify the BLIS library’s GEMM routine to apply
Im2Col in its packing step. The result is a convolution and GEMM hybrid named Con-
vGEMM, which takes advantage of Goto and van de Gejin’s GEMM tiling and structure
with the Im2Col transformation applied on the fly, eliminating the double-packing prob-
lem. This process is similar to Packing on Demand, but the tiling is still GEMM-based,
and therefore has different cache usage, tile reuse, and packing patterns.

Korostelev et al. [Korostelev et al. 2023] combine the ideas of modify-
ing the GEMM routine and decomposing convolution into multiple GEMM opera-
tions [Anderson et al. 2020] to create a new method that avoids packing redundancy while
keeping the overall GEMM structure (tiling, packing, micro-kernel).

Following the work from Zhang et al. [Zhang et al. 2018], Barrachina et al.
[Barrachina et al. 2023] propose two new direct-convolution algorithms for the NHWC
layout (batch N , height H , width W , and channels C) on ARM processors. Like SConv,
they tile in the channel dimension and use a BLAS micro-kernel.

This project follows the work done by Sousa et al. [Sousa et al. 2021] in tiling 3D
convolutions for NPUs, by generalizing its tiling analysis for CPUs in the CSA pass. In
that work, scheduling strategies are used in a different context, and the modeling focuses
on taking advantage of memory bursts while loading data to the scratchpad memories.

An adaptation of the GEMM routine to a convolution algorithm by lazy Im2Col
packing was made for GPU hardware by Chetlur et al. [Chetlur et al. 2014]. Adapting
SConv to GPUs would require a different tiling analysis focusing on the SIMT (Single



Instruction Multiple Threads) properties of the hardware and memory coalescing, instead
of CPU cache hierarchies. This variation would require fundamental changes to the al-
gorithm described in this work, but it may preserve the compilation flow described in the
following section.

3. SConv Overview

SConv is a solution to convolution that mixes compile-time data transformation for filter
packing and efficient code generation to better utilize memory and architecture resources.
This compilation flow was created to fit in most machine learning frameworks based on
compiling models for inference, such as ONNX-MLIR [Le et al. 2020]. The compilation
flow is described in Figure 1.
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Figure 1. Compilation flow in a machine-learning compiler using SConv to opti-
mize convolutions.

In order to attain peak hardware performance, a hand-optimized outer-product-
based micro-kernel is used to compute a single tile of the convolution output. This micro-
kernel is architecture-specific, leveraging ISA acceleration extensions such as IBM MMA
[Moreira et al. 2021] and Intel AVX-512. The outer product is generally useful due to
its versatility for computing higher-rank operations and high throughput, computing n2

output elements from 2n input elements. For those reasons, it is widely used in high-
performance linear algebra libraries, and it is being incorporated in CPU ISA extensions
such as IBM POWER10 MMA. This process is extensively detailed in Chapter 5 of the
original thesis.
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Figure 2. Convolution loop nest macro-kernel generated by CSO using CSA’s
tiling parameters. Illustrates the process for Input Stationary scheduling.

Convolution Slicing Optimization (CSO), as shown in Figure 2, is a code-
generation pass that generates the macro-kernel responsible for ensuring the best usage of
the micro-kernel by tiling, packing and scheduling the convolution data according to the
tiling strategy.

The tiling strategy, comprised of convolution tile size definition, tile scheduling
and distribution over the cache hierarchy [Sousa et al. 2021] are defined by Convolution
Slicing Analysis (CSA) so to leverage faster access to cache memory and tile reuse. The
tile sizes are selected based on micro-kernel information and cache size, so that one tile
of the input tensor, filter and output fit in the L1 cache at the same time. These tiles are
then split into sets that indicate a tile distribution (Figure 3) over the higher cache levels
based on these cache sizes, and scheduled for computation in an order that maximizes tile
reuse. Scheduling can be Input Stationary or Weight Stationary, and the decision is made
based on a cost model that analyzes data movement cost for each option.

By creating a convolution-specific tiling strategy, SConv can pack the input tensor
data right before the tile is used in the micro-kernel, in a single step. We call this approach
Packing On Demand. The two main problems of Im2Col + BLAS: multiple packing steps
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Figure 3. CSA tile distribution over a three-level cache hierarchy with Input Sta-
tionary scheduling.

and suboptimal tiling, are therefore improved upon with SConv.

Packing is a way to connect the tiling process to the micro-kernel. The low level
routine reads data from memory sequentially, and this access pattern does not match the
starting convolution data layout. Therefore, in order to correctly use the micro-kernel
each tile needs to be reordered in memory, and in the process loaded to cache for faster
access. This step is called packing, and its layout is defined by the micro-kernel, which is
architecture-specific.

As packing can be a bottleneck, a unique and faster routine is defined to rearrange
the data of the input tensor to the format required for its computation. This process can
also use hardware-specific shift instructions for better performance when the convolution
has unitary stride, as described in Section 7.2.2 of the original thesis. When packing the
filter set, a different optimization can be leveraged when used within a machine-learning
compiler setting, targeting inference. In such cases, the filter set is fixed, constant and part
of the model information, so this packing step can be performed as a data transformation
optimization pass at compile time, as shown in Figure 1.

The tiling process (CSA + CSO) uses architecture information as parameters, but
is otherwise generic. The micro-kernel and packing steps are highly hardware-specific,
and should be developed separately for each architecture target.

4. Experimental Results
A SConv prototype was integrated as a library in the ONNX-MLIR [Le et al. 2020]
framework for testing. The results were compared with the same framework using the
standard Im2Col + BLAS method, composed by Caffe’s [Jia et al. 2014] implementation
of Im2Col and OpenBLAS’s [Xianyi et al. 2011] GEMM routine, henceforth called Base.
Seven well-known machine learning models with different sizes and convolution shapes
were used for evaluation on two CPU architectures: Intel Cascade Lake x86 and IBM
POWER10, both with the same cache hierarchy and cache sizes (Thesis Section 8.1).

As shown in Table 1, SConv out-performs the baseline in every model and on



Model
Convolution

Speedup
Model

Speedup
Convolution
Time Share

x86 P10 x86 P10 x86 P10
GoogleNet 1.20 1.26 1.11 1.11 0.48 0.45
InceptionV2 1.23 1.28 1.18 1.19 0.77 0.64
ResNet-18 1.28 1.39 1.27 1.34 0.94 0.85
ResNet-50 1.16 1.28 1.16 1.22 0.90 0.75
ResNet-152 1.18 1.24 1.17 1.19 0.93 0.78
SqueezeNet 1.13 1.23 1.11 1.16 0.75 0.60
VGG-16 1.28 1.28 1.17 1.13 0.70 0.51
Geo Mean 1.21 1.28 1.17 1.19 0.76 0.64

Table 1. SConv performance speedup over Base in machine-learning models.

both architectures. The convolution speedup range from 23% to 39% on POWER10 and
from 13% to 28% on x86. These results include every convolution from each model.
Since machine learning models contain many different layer types, the SConv end-to-
end model relative performance against Base is lower than the convolution performance.
Speedup results range from 11% to 34% on POWER10 and from 11% to 27% on x86.

As expected, the most improved step of the convolution algorithm was packing,
with an average performance improvement of 2.9x on x86 and 4.7x on POWER10. Faster
hardware-supported micro-kernel makes the packing time more significant in the overall
execution, so the more powerful IBM POWER10 architecture with MMA support allows
for better speedup results (Thesis Section 8.3.5).

SConv achieves speedup against Base in most of the 393 total convolutions from
the seven models, more specifically 89% of the convolutions on POWER10 and 90% on
x86. Our approach speeds-up individual convolutions up to 2.17x on POWER10, and
2.14x on x86 (Thesis Section 8.3.3).

POWER10 has a theoretical peak throughput of 249.6 GFLOPS/s, and the x86
architecture can reach up to 67.2 GFLOPS/s. SConv reaches 78% of this theoretical peak
(194.8) in POWER10 and 90% (60.2) in x86. The actual values vary greatly depending on
the convolution sizes. Since POWER10 has a faster micro-kernel, packing time is more
significant and responsible for a larger share of the execution time.

SConv also reduces cache misses in all levels. In SConv, around 90% of all loads
resolve in the L1 cache, compared with 83% in Base — a 1.9× improvement. The dif-
ference between the methods increases at lower cache levels: on average, SConv has 5.8x
fewer L2 misses and 9.9x fewer L3 misses, though both represent a small percentage of
the total number of loads. SConv also performs fewer total loads in 63% of the tests.

The performance of other state-of-the-art convolution routines from the Intel
OneAPI library [Intel 2022] against Base was tested in the x86 architecture, for com-
parison with SConv: (a) the Caffe Im2Col transformation followed by oneMKL GEMM,
and (b) the forward convolution routine from oneDNN. As shown in Figure 4, across all
models, SConv surpasses oneMKL, achieving a speedup difference ranging from 14% to
29%. Similarly, when comparing with oneDNN, SConv exhibits a speed advantage be-
tween 8% and 23% in all models except for VGG16, for which it performs 5% slower
when comparing to Base (Thesis Section 8.3.8).
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Therefore, the research and development of SConv allowed for an improvement
on the most important problems of the Im2Col + BLAS method while maintaining porta-
bility and exploiting novel ISA extensions and SIMD units. This resulted in a significant
performance increase, outperforming both the original baseline and other state-of-the-art
implementations of convolution solutions. It can be perceived as the generalization of the
optimized direct convolution algorithm from [Zhang et al. 2018] for better micro-kernels
and different CPU architectures, without the requirement for a different input memory lay-
out and the modification of other operators. SConv can be integrated into any machine-
learning compiler or framework seamlessly, with only two target-specific routines that
need to be implemented for each architecture to achieve the best performance.

5. Future Work

SConv was developed as a single-threaded algorithm for CPUs. However, to be competi-
tive in practical situations, the algorithm should be altered to leverage parallelism, which
would change how CSA handles the cache structure. In this case, shared caches between
cores would need to be modeled.

Currently, the CSA tiling analysis pass creates tiles based solely on micro-kernel
information (number of windows and filters) and the number of input channels. More
robust space exploration can be done by relaxing the spatial constraints of the tiles to
better utilize the L1 cache in convolutions with few channels. At the current state, the
spatial dimensions of the tiles are constrained by the micro-kernel shape. If this can be
surpassed, a larger tiling space could be available for exploration, and better heuristics
could be developed to maximize cache usage.

Generating code at the IR level can be both a significant advantage and a hin-
drance. The result of the compilation process has a fully sequential and unrolled code
format, which can underutilize the L1 instruction cache and require many page reads.
Solving this problem can improve performance in the fully code-generated version of
SConv. Furthermore, micro-kernel portability is a research path that should be explored
for an improved version of SConv. If a common abstraction for architectures with differ-
ent features is provided [Vasilache et al. 2022], a fully generic version of the algorithm
can be implemented without the need for direct support for every architecture.
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Barrachina, S., Castelló, A., Dolz, M. F., Low, T. M., Martı́nez, H., Quintana-Ortı́, E. S.,
Sridhar, U., and Tomás, A. E. (2023). Reformulating the direct convolution for high-
performance deep learning inference on arm processors. Journal of Systems Architec-
ture, 135:102806.

Chellapilla, K., Puri, S., and Simard, P. (2006). High Performance Convolutional Neu-
ral Networks for Document Processing. In Lorette, G., editor, Tenth International
Workshop on Frontiers in Handwriting Recognition, La Baule (France). Université de
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