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Abstract. The ultimate goal of machines is to help humans to solve prosl
Such problems range between two extremes: structuredgarabior which the
solutionis totally defined (and thus are easily programmgddmans), and ran-
dom problems for which the solution is completely undefiaed (hus cannot
be programmed). Problems in the vast middle ground haveisakithat cannot
be well defined and are, thus, inherently hard to program. IMiae Learning is
the way to handle this vast middle ground, so that many tedand difficult
hand-coding tasks would be replaced by automatic learniathods. There are
several machine learning tasks, and this work is focused mjar one, which
is known as classification. Some classification problemdard to solve, but
we show that they can be decomposed into much simpler sbteprs. We also
show that independently solving these sub-problems bygakio account their
particular demands, often leads to improved classificapierformance. This is
shown empirically, by solving real-world problems using tomputationally
efficient algorithms that we present in this work. Significamprovements in
classification performance are reported for all these pesb$, under a compar-
ative study involving a broad repertoire of representatgorithms. Further,
theoretical evidence supporting our algorithms is alsovided.

1. Introduction

Learning is a fundamental ability of many living organisitseads to the development of
new skills, values, and preferences. Improved learningloidipes catalyze the evolution,
and may distinguish entire species with respect to theiiesuthey are able to perform.
The importance of learning is, thus, beyond question. Liagroovers a broad range of
tasks. Some tasks are particularly interesting becauyecirebe mathematically mod-
eled. This makes natural to wonder whether machines migliprdagrammed to learn,
leveraging one of the fastest growing research areas todaghine learning.

A prominent approach to machine learning is to repeatediyatestrate how the
problem is solved, and let the machine learn by example,aottgeneralizes some rules
about the solution and turn these into a program. This psoseknown as supervised
learning. Specifically, the machine takes matched valuaésprits (instantiations of the
problem to be solved) and outputs (the solution), and absbdiever information their
relation contains in order to emulate the true mapping afiigpo outputs. When outputs
are drawn from a fixed and finite set of possibilities, the pesds known as classification.

The relationship between inputs and outputs may be exgt@sse mapping func-
tion, which takes an input and provides the correspondinigudu Since this function is
unknown, the classification problem can be essentiallydtas a function approxima-
tion problem: given as examples some inputs for which thpust(i.e., the classes) are
known, the goal is to extrapolate the outputs associatduatiiter inputs as accurately as
possible. Several classification algorithms follow thiadtion approximation paradigm,

89



as discussed in [Poggio and Girosi 1998]. The limiting factiothese algorithms is the
accuracy of the mapping functions they can provide in a mreasie time. Dramatic gains
cannot be achieved through minor algorithmic modificatjdms require the introduction
of new strategies and approaches. The key approach we &xpinithis work is to de-
compose a hard classification problem into possibly easkepsoblems, where each sub-
problem is defined by inputs that are similar somehow. Thepegaific mapping function
for each sub-problem is built independently from each othera demand-driven basis,
according to particularities of each sub-problem. Thisrapph leads to a finer-grained
approximation, in which multiple mapping functions arelbupecifically, each function
provides an optimized approximation of the target functama specific input. Although
this strategy is very intuitive, some key questions mustrissvared:

e How sub-problems are defined? Which particularities of apablem can be
used to improve function approximation?

¢ Is there a suitable way to search for mapping functions, shiahthe space for
candidate functions is constrained?

¢ Does indenpendently solving sub-problems lead to betigmoxpmations than di-
rectly solving the entire problem?

e What is the computational cost associated with our algmsth Are there polyno-
mial time, efficient algorithms? Are they more effectiverttexisting algorithms?

This work is mainly devoted to answer these questions. 8pecintributions include:

e We introduce an approach that constrains the space fordatednapping func-
tions to only those functions that are likely to be accur&edso et al. 2006b],
leading to algorithms that need few examples to build ad¢edranctions.

¢ We show that different sub-problems demand different mapfinctions, and we
propose polynomial-time algorithms for demand-driverssifcation.

e We present extensions to demand-driven associative fitasgin, and we show
that most of our conclusions in the classification scenalso &old for these
extensions, such as multi-label classification [Velosd.e2@07a], multi-metric
classification [Veloso et al. 2009a], calibrated classiitza[Veloso et al. 2008b],
self-training [Veloso et al. 2009d], and ranking [Velos@kt2008a].

¢ \We demonstrate the effectiveness of the proposed algaithraugh an extensive
set of experiments. In addition to typical benchmarks, wso ahvestigated
various real-world application scenarios, including doemt categoriza-
tion [Veloso et al. 2006a], gene functional analysis [Velasd Meira 2005],
Email/Web spam detection [Veloso etal. 2009b], revenue imiZa-
tion [Veloso etal. 2009c], name disambiguation [Velosolep@09d], and
ranking [Veloso et al. 2007b, Veloso and Meira 2007].

2. Related Work

Many prior efforts have been devoted to the developmentsisilication algorithms. Par-
ticularly noteworthy algorithms include Perceptrons [Radslatt 1958], Nearest Neigh-
bors (kNNs [Cover and Hart 1967]), decision trees (DTs [Biaa 1984]), and Support
Vector Machines (SVMs [Boser et al. 1992]). For several yeareven decades, many
modifications and improvements have been proposed to thgsetiams, leading to al-
gorithms such as [Joachims 2006, Quinlan 1986], which a@grthe baselines we used
for comparison against the algorithms to be presentedsmtbrk. A much more detailed
discussion about related work can be found in [Veloso 2009].
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3. The Classification Problem

In this section we present the definitions necessary to statet the algorithms to be
introduced in this work. These definitions are presentedarendetails in [Veloso 2009].

Training Data and Test Set — In a classification problem, there is a set of input-output
pairs of the form;=(z;, y;) (i.e., examples). Each input is a fixed-length record of the
form < aq,...,a; >, where each, is an attribute-value. Each outpytdraws its value
from a discrete and finite set of possibilitigs= {c,, ..., ¢,}, and indicates the class to
which z; belongs. Cases whefg =7 indicate that the correct class gfis unknown.
There is a fixed but unknown conditional probability distition Ry |x) (the relationship
between inputs and outputs is fixed but unknown). The setio$ maexplicitly divided
into two partitions, the training data (denoted®9sand the test set (denoted A%

S={s1=(x1, 1) 50 = (Tn,Yn)} T ={ti =(@ps1,7), s tm = (Tpym, 1)}
Further, it is assumed that pairsTnare in some sense related to pairssSinand
that{si,...,s,} and{ty,...,t,} are sampled from the same distributiofy ).

Classification Algorithm — A classification algorithm takeS and7 as input, and re-
turns a mapping functiorfs : =z — y that represents the relation between inputs and
outputs inS, that is, the mapping functioris is a discrete approximation of(#x).
Many possible functions can be derived fré&n The hypothesis spac¥ is the space

of functions explored by the algorithm in order to sel¢et The selected functioffis is
finally used to estimate outpugsyiven inputsr, for eachz; € 7. The classification task

is that of selecting, from all functions iH, those that best approximaté/fr).

Expected and Empirical Errors — The expected error of a functigfz is defined as:

0 if fs(z;) =w
1 otherwise (prediction is wrong)

Trlfs] = /( s, R ) wherel(fs. ) ~ {

Ideally, the selected functiofy should provide the lowest expected er¥ot| fs|.
However,Z|fs| cannot be computed becausgR) is unknown, and thus such an opti-
mal function cannot be directly selected. On the other htrempirical error of's can
be easily computed using;

Is(fs] = % > Ufs,si)

Efficient Algorithms — The empirical error can be considered an approximationef th
expected error. It can be shown [Cucker and Smale 2001] tiea¢mpirical error con-
verges uniformly to the expected error whel} — oo. An efficient classification algo-
rithm ensures that this convergence occurs with high ratem&lly, given two constants

e and ¢ (with values between 0 and 0.5), a classification algorithrefficient if it se-
lects, in polynomial time and with a polynomial number of exdes, with probability

(1 —9), afunctionfs € H for whichZs[fs] < €, andZs[fs] ~ Zr[fs]. Obviously, the
more accuracy (lowert values) and the more certainty (loweéwvalues) one wants, the
more examples (i.en) the classification algorithm needs. As shown in [Valiang4]9
the expected error can be bounded by:

1 1
€> E(ln |H| + ln(g)) 1)
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4. Demand-Driven Associative Classification

We start this section with a simple, eager algorithm, whiobdpces a single mapping
function fs. Then, we present a more sophisticated, demand-drivemithigo which
produces multiple functions. Finally, we employ powerfuhtion approximation tech-
niques in order to boost the effectiveness of the demaneualgorithms.

4.1. Classification using Association Rules

The hypothesis spacg{, may contain a huge number of functions. Randomly producing
functions, in the hope of finding one that approximates wedl target function g|z),

is unlikely to be an efficient strategy. A better alternais¢o directly exploit associa-
tions between inputs and outputs. Such associations aa#iyibidden in the examples,
and, when uncovered, they may reveal important aspecteoang the underlying phe-
nomenon that generated these examples. These aspects eguidieed for the sake of
producing only functions that provide potentially good apgmations of Ry|x). This
strategy has led to algorithms which are referred to as agsacalgorithms, since they
produce functions that are composed of rules- ¢;, indicating an association between
attribute-values it C z, and a class; € y. Next, we discuss properties of these rules.

Support and Confidence — The support of a rulet — ¢;, denoted ag (X — ¢;),
indicates the number of examplesdnin which X andc; co-occur. The confidence of
aruleX — ¢;, denoted a¥(X — ¢;), is an indication of how stronglyt’ andc¢; are
associated. Support and confidence are defined in Equatimd 2:

o(X — ¢j) = |(z;,y;) € S| suchthatX C z; and y; = ¢; 2

o(X — )

¥ =a) |(z;,y:) € S| suchthatX C z;

©)

Complexity — Often, the length of an explanation can be an indicationsoéamplex-
ity [Kolmogorov 1965]. A ruleX — ¢; can be viewed as an explanation that leads to
classe;. In this case, the cardinality &f — ¢; (i.e.,|X|) is regarded as its complexity.

Usefulness — A rule X — ¢; matches an input; iff X C z;. Since the prediction
provided by a rule is based on all the attribute-values thatraX’, only rules matching
inputz; are used to estimate the corresponding ougplVe say that a rule is useful if it
matches at least one input™, otherwise the rule is said to be useless.

Hereatfter, it will be denoted &8 a set of rules extracted fro®. Also, it will be
denoted agk* the subset ofR which contains only rules matching an inpyt Finally,
it will be denoted ask?’ the subset oR** which contains only rules predicting class

4.2. Eager Algorithms

The simplest algorithm to be presented, referred to as ERE-Berforms the typical
eager rule extraction strategy, and produces a fungfionsing frequent rules i5. In
this caseR contains all rules extracted fromS such that (r) > 0,,:,, Whereo,,;,, is a
user-specified minimum support threshold. Then, given bitrary inputz;, fs(x;) gives
the predicted output far;, which is the class associated with the strongest rufé’in

fs(z;) = ¢; such tha¥(X — c;) is argmaxd(r)) ¥ r € R @)

!EAC-SR stands foEager Associative Classification using a Single Rule.
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4.3. Demand-Driven Algorithms

Although simple, EAC-SR suffers from two problems: (i) afréguent, but useful rule
may be not extracted fron§ (possibly hurting classification effectiveness), and &ii)
frequent, but useless rules may be extracted fifincurring unnecessary overhead).
Figure 1 (left) illustrates these problems. It shows thedeapace for rules, where black
balls represent useful rules, and white balls represei¢ssaileso,,;, induces a border
which separates frequent from infrequent ruless,lf,, is set too high, few useless rules
are extracted, but several useful rules are missed,Jf is set too low, many useful rules
are extracted, but a prohibitive, exponential number ofesserules is also extracted.
As an alternative, we propose LAC-3Rvhich extracts rules on a demand-driven basis.
Specifically, whenever an input € 7 is being considered, that input is used as a filter to
remove fromS all the attribute-values that are notip This process generatepmjected
training data(denoted ass*+), which contains only attribute-values that arerin LAC-

SR directly produce®R*: by extracting rules fron&®: (instead of extracting rules from
S and then filtering those matching). LAC-SR produces a functiofis which, in fact,
can be interpreted as a combination of multiple functigfis where eaclys' is used to
predict only the output for inpuit;. In the following we discuss the efficiency of LAC-SR.

Lemma 1 All rules extracted frond®: (i.e., R*¢) are useful to input; € 7.

Proof: Since all inputs inS*: contain only attribute-values that are presentinthe
existence of arul¢ X — ¢;} € R*, such thatt’ ¢ x;, is impossiblel

Theorem 1 LAC-SR is efficient.

Proof: Letq be the number of distinct attribute-valuesinin this case, an upper bound
for the hypothesis spag@g, is the set of all possible rules & which is clearly|H|=p x 24
(wherep is the number of classes). According to Equation & £ (In(p x 29) + In(3)),
and so,n > 1 (In(p) + 0.69¢ + In(3)). Thus, the number of required examples,n-
creases only polynomially with. It is also necessary to show that a functify for
whichZs[fs]=0 is found in time polynomial iy (please, refer to Lemma 3.2 on page 33
in [Veloso 2009] for a proof that sucfs exists). Obviously, the number of all possible
functions is exponential in (i.e., O(27) rules). However, since an arbitrary inpye7
contains at mogdtattribute-values (witli<g), then any rule matching; can have at most

[ attribute-values in its antecedent. Therefore, the nurobgossible rules matching is
px (I+ (é) +...+ (ﬁ)) = 0(2")<0(¢"), and thus, the number of useful rules increases
polynomialy inq. Since, according to Lemma 1, LAC-SR extracts only usefi@suthen

the complexity of LAC-SR also increases polynomialy;irll

wnderfitting overfitting

Error

Simple Complex
Omin(1)>01in(2)>0 min(3) Functions Functions

Figure 1. (left) The pruning dillema. (right) Structural risk minimization.

2LLAC-SR stands fot.azy Associative Classification using a Single Rule.
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Theorem 1 states that LAC-SR is efficient, since the numbeseful rules grows
polynomially in ¢ (no matter the value of,,;,, which, in fact, can be arbitrarily low).
Although efficient, improvements to LAC-SR are still podsib Particularly, LAC-SR
uses the same prediction strategy of EAC-SRicks only the strongest rule to predict
the output for a giveninput (i.e., Eqg. 4). Such a simple pieymrovide extremely biased
predictions, and a safer strategy would be to combine théigirens of multiple rules,
so that a collective prediction can be performed. Theref@@ropose LAC-MR, which
interpretsR™ as a poll, where each rufeg¥ —c;} € R* is a vote given byt for output
¢;. The weight of a voteY¥ —c¢; depends of(X —c¢;). Eq. 5 gives the score associated
with outputc; for inputz;, and Eq. 6 gives the likelihood ef being the output of;.
Finally, LAC-MR produces a functiorfg® for eachz;, which returns the output which
receives the highest likelihood in a weighted voting precas shown in Eq. 7.

O(r s(x;,
% (5) plejlas) = M
‘ cj Zs(ﬁz‘,ck)

s (z;) = ¢; such that(c;|x;) is argmax(p(cx|z;)), wherel <k <p (7)
Structural Risk Minimization — The algorithms discussed so far do not take into ac-
count the complexity of the functions they produce. The idghat simple (or difficult)
sub-problems (i.es;) may demand simple (or complex) functions (i.£:). A general
measure of the complexity of a functigiy’ is its VC-dimension [Guyon et al. 1992], de-
noted asl, o (please, refer to [Veloso 2009], page 16, for more detailsamto compute
VC- dlmen5|on [Guyon et al. 1992]). In order to compdyez, functions are first orga-
nized in a nested structutg, such thatF,CF,C. .. F, where functions in clasg, are
simpler then functions in clagsF;, ., — 7, }*. A way of controlling the compIeX|ty of 5’
is to establish a relationship betwegn. and how wellf' fits S (i.e., Zs[f5']). Structural
Risk Minimization (SRM) provides this trade-off [Guyon ét 4992], as shown in Eq. 8.
The shape of this bound, which is shown in Figure 1 (right), lsa exploited to select a
function f5* with the most appropriate complexity for input The next algorithm to be
proposed, LAC-MR-SRM, uses Eqg. 7 to produce functions in increasing order of com-
plexity (i.e., functions inF; is considered before than functions#y. ), and it uses Eq.

8 to find the simplest functiofis’ which provides the lowest empirical error.

d e (m% + 1) —In?
X X s
I7(fs'] < Islfs']+ =

n

(6)

s(x;, ¢j) =

(8)

4.4. Empirical Results

In all experiments we used the standard k-fold cross-vididh All experiments were
performed on a Linux-based PC with Intel Pentium Il 1.0 GiHd & GB RAM. We will
present only a summary of the main results. The detailedrarpatal setup, including
the description of baselines and parameters, can be foUnelmso 2009].

3LAC-MR stands forLazy Associative Classication using Multiple Rules.

4Functions inF; are built using rules of cardinality %, using rules of cardinality at most 2, and so on.

SLAC-MR-SRM stands fot AC-MR with Structural Risk Minimization.

6The dataset (i.e., input/output pairs) is randomly pani¢id intok sub-samples. A single sub-sample
is used as test set, and the remainiagsub-samples are used as training. The process is regetiees,
and each of thé sub-samples are used exactly once as test set. The findlisatha average of theruns.
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Typical Classification Problems — In these problems, each object belongs to exactly
one class, and the goal is to predict the correct class fovengbbject. We will re-
port results using datasets collected from applicatiortivasse as cancer diagnosis (be-
nign/malignant), and classification of radar returns framibnosphere. Baselines include
decision trees and kNNs. LAC-MR-SRM was the best perforprayiding, on average,
an accuracy number of 87.9%, while the baseline accuraay ggenter than 82.1%.
Multi-Label Classification— Now, each object may belong to multiple classes simulta-
neously. Algorithmic modifications were proposed to LAC-MPorder to deal with such
problems. Basically(c;|x;) (i.e., Equation 6) is used to select classes that are maly lik
to be associated with the object ([Veloso 2009], page 62)wWeeport results concern-
ing the prediction of the function of certain genes of ¥e&ast Saccharomyces cerevisiae
organism. Depending on the evaluation metric used, LAC-MBel algorithms provide
gains of more than 15%, over SVMs and other algorithms tha¢ wsed as baselines.
Self-Training — In certain problems, the (high) cost associated with |aigetixamples
in order to create a training data, may render vast amoumsashples unfeasible. Algo-
rithmic modifications were proposed to LAC-MR, so that it genform well in scenarios
in which only few training examples are available. Basigal(c;|z;) is used to detect
predictions that are likely to be correct. These “safe” prgahs are regared as new ex-
amples and inserted into the training data, which is autmalft augumented with this
new information ([Veloso 2009], page 98). We will reportuks concerning the identifi-
cation of entities/persons associated with ambiguous sabh®C-MR based algorithms
provide gains of more than 18% when compared against SVM$&lane Bayes.

Ranking — In certain problems we may want to sort objects accordindnéar fikeli-
hood of membership. An example is ranking documents retubyesearch engines
documents likely to be relevant should appear first than ehecs likely to be irrelevant.
Modifications were proposed to LAC-MR, so that it can soreahg ([Veloso 2009], page
108). Basically, the rank of an objeet is given by the linear combination of the likeli-
hoods associated with each clag (¢; xp(cs|x;)). LAC-MR based algorithms provide
gains ranging from 6.6% to 42% when compared against SVM®o#ret algorithms.

5. Conclusions and Final Remarks

In this paper we summarized some of the research contrisitib{Veloso 2009]. Specif-
icaly, we posed classification as a function approximatioybjfgm, which we showed
that can be decomposed into simpler sub-problems. We atseeshthat approximating
the target function on a demand-driven basis, taking intmact demands of each sub-
problem, leads to better mapping functions. We presenfeibeit algorithms for classifi-
cation and related extensions, and we provided theoreodénce supporting them. We
demonstrated the superiority of our algorithms using d&o@narios. We are currently
extending our algorithms to deal with privacy-sensitivead&eloso 2002, Veloso 2003].
Application scenarios such as sentiment analysis : / / obser vat ori o. i nweb.

or g. br ) and Web polygraph (i.e., detecting lies in posts/statesm@mthe Web) are also
our current focus. Apart from our results, we have impleraéatvast amount of software,

currently available ait t p: / / www. dcc. uf ng. br/ ~adri anov/ sof t war e.
Due to lack of space, we were not able to include: (1) an ebtiaach of new

algorithms based on Empirical Risk Minimization ([Velod20®], pages 14, 36, and 53),
(2) discussions about Calibrated and Multi-Metric Clasaifon, and algorithms for these
problems ([Veloso 2009], pages 69 and 84), (3) several @xpets, and (4) some refer-
ences to papers published during the development of [V&668].
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