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Abstract. The ultimate goal of machines is to help humans to solve problems.
Such problems range between two extremes: structured problems for which the
solution is totally defined (and thus are easily programmed by humans), and ran-
dom problems for which the solution is completely undefined (and thus cannot
be programmed). Problems in the vast middle ground have solutions that cannot
be well defined and are, thus, inherently hard to program. Machine Learning is
the way to handle this vast middle ground, so that many tedious and difficult
hand-coding tasks would be replaced by automatic learning methods. There are
several machine learning tasks, and this work is focused on amajor one, which
is known as classification. Some classification problems arehard to solve, but
we show that they can be decomposed into much simpler sub-problems. We also
show that independently solving these sub-problems by taking into account their
particular demands, often leads to improved classificationperformance. This is
shown empirically, by solving real-world problems using the computationally
efficient algorithms that we present in this work. Significant improvements in
classification performance are reported for all these problems, under a compar-
ative study involving a broad repertoire of representativealgorithms. Further,
theoretical evidence supporting our algorithms is also provided.

1. Introduction

Learning is a fundamental ability of many living organisms.It leads to the development of
new skills, values, and preferences. Improved learning capabilities catalyze the evolution,
and may distinguish entire species with respect to the activities they are able to perform.
The importance of learning is, thus, beyond question. Learning covers a broad range of
tasks. Some tasks are particularly interesting because they can be mathematically mod-
eled. This makes natural to wonder whether machines might beprogrammed to learn,
leveraging one of the fastest growing research areas today:machine learning.

A prominent approach to machine learning is to repeatedly demonstrate how the
problem is solved, and let the machine learn by example, so that it generalizes some rules
about the solution and turn these into a program. This process is known as supervised
learning. Specifically, the machine takes matched values ofinputs (instantiations of the
problem to be solved) and outputs (the solution), and absorbwhatever information their
relation contains in order to emulate the true mapping of inputs to outputs. When outputs
are drawn from a fixed and finite set of possibilities, the process is known as classification.

The relationship between inputs and outputs may be expressed as a mapping func-
tion, which takes an input and provides the corresponding output. Since this function is
unknown, the classification problem can be essentially stated as a function approxima-
tion problem: given as examples some inputs for which the outputs (i.e., the classes) are
known, the goal is to extrapolate the outputs associated with other inputs as accurately as
possible. Several classification algorithms follow this function approximation paradigm,

89



as discussed in [Poggio and Girosi 1998]. The limiting factor of these algorithms is the
accuracy of the mapping functions they can provide in a reasonable time. Dramatic gains
cannot be achieved through minor algorithmic modifications, but require the introduction
of new strategies and approaches. The key approach we exploited in this work is to de-
compose a hard classification problem into possibly easier sub-problems, where each sub-
problem is defined by inputs that are similar somehow. Then, aspecific mapping function
for each sub-problem is built independently from each other, on a demand-driven basis,
according to particularities of each sub-problem. This approach leads to a finer-grained
approximation, in which multiple mapping functions are built. Specifically, each function
provides an optimized approximation of the target functionfor a specific input. Although
this strategy is very intuitive, some key questions must be answered:

• How sub-problems are defined? Which particularities of a sub-problem can be
used to improve function approximation?

• Is there a suitable way to search for mapping functions, suchthat the space for
candidate functions is constrained?

• Does indenpendently solving sub-problems lead to better approximations than di-
rectly solving the entire problem?

• What is the computational cost associated with our algorithms? Are there polyno-
mial time, efficient algorithms? Are they more effective than existing algorithms?

This work is mainly devoted to answer these questions. Specific contributions include:

• We introduce an approach that constrains the space for candidate mapping func-
tions to only those functions that are likely to be accurate [Veloso et al. 2006b],
leading to algorithms that need few examples to build accurate functions.

• We show that different sub-problems demand different mapping functions, and we
propose polynomial-time algorithms for demand-driven classification.

• We present extensions to demand-driven associative classification, and we show
that most of our conclusions in the classification scenario also hold for these
extensions, such as multi-label classification [Veloso et al. 2007a], multi-metric
classification [Veloso et al. 2009a], calibrated classification [Veloso et al. 2008b],
self-training [Veloso et al. 2009d], and ranking [Veloso etal. 2008a].

• We demonstrate the effectiveness of the proposed algorithms through an extensive
set of experiments. In addition to typical benchmarks, we also investigated
various real-world application scenarios, including document categoriza-
tion [Veloso et al. 2006a], gene functional analysis [Veloso and Meira 2005],
Email/Web spam detection [Veloso et al. 2009b], revenue maximiza-
tion [Veloso et al. 2009c], name disambiguation [Veloso et al. 2009d], and
ranking [Veloso et al. 2007b, Veloso and Meira 2007].

2. Related Work
Many prior efforts have been devoted to the development of classification algorithms. Par-
ticularly noteworthy algorithms include Perceptrons [Rosenblatt 1958], Nearest Neigh-
bors (kNNs [Cover and Hart 1967]), decision trees (DTs [Breiman 1984]), and Support
Vector Machines (SVMs [Boser et al. 1992]). For several years or even decades, many
modifications and improvements have been proposed to these algorithms, leading to al-
gorithms such as [Joachims 2006, Quinlan 1986], which are among the baselines we used
for comparison against the algorithms to be presented in this work. A much more detailed
discussion about related work can be found in [Veloso 2009].
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3. The Classification Problem
In this section we present the definitions necessary to understand the algorithms to be
introduced in this work. These definitions are presented in more details in [Veloso 2009].

Training Data and Test Set – In a classification problem, there is a set of input-output
pairs of the formzi=(xi, yi) (i.e., examples). Each inputxi is a fixed-length record of the
form < a1, . . . , al >, where eachak is an attribute-value. Each outputyi draws its value
from a discrete and finite set of possibilitiesy = {c1, . . . , cp}, and indicates the class to
which zi belongs. Cases whereyi =? indicate that the correct class ofzi is unknown.
There is a fixed but unknown conditional probability distribution P(y|x) (the relationship
between inputs and outputs is fixed but unknown). The set of pairs is explicitly divided
into two partitions, the training data (denoted asS) and the test set (denoted asT ):

S = {s1 = (x1, y1), . . . , sn = (xn, yn)} T = {t1 = (xn+1, ?), . . . , tm = (xn+m, ?)}

Further, it is assumed that pairs inT are in some sense related to pairs inS, and
that{s1, . . . , sn} and{t1, . . . , tm} are sampled from the same distribution P(y|x).

Classification Algorithm – A classification algorithm takesS andT as input, and re-
turns a mapping functionfS : x −→ y that represents the relation between inputs and
outputs inS, that is, the mapping functionfS is a discrete approximation of P(y|x).
Many possible functions can be derived fromS. The hypothesis spaceH is the space
of functions explored by the algorithm in order to selectfS. The selected functionfS is
finally used to estimate outputsy given inputsx, for eachxi ∈ T . The classification task
is that of selecting, from all functions inH, those that best approximate P(y|x).

Expected and Empirical Errors – The expected error of a functionfS is defined as:

IT [fS ] =

∫

t=(x,y)

ℓ(fS , t)dP(y|x) , whereℓ(fS , zi) =

{

0 if fS(xi) = yi

1 otherwise (prediction is wrong)

Ideally, the selected functionfS should provide the lowest expected errorIT [fS ].
However,IT [fS ] cannot be computed because P(y|x) is unknown, and thus such an opti-
mal function cannot be directly selected. On the other hand,the empirical error offS can
be easily computed usingS:

IS [fS ] =
1

n

n
∑

i=1

ℓ(fS , si)

Efficient Algorithms – The empirical error can be considered an approximation of the
expected error. It can be shown [Cucker and Smale 2001] that the empirical error con-
verges uniformly to the expected error when|S| → ∞. An efficient classification algo-
rithm ensures that this convergence occurs with high rate. Formally, given two constants
ǫ and δ (with values between 0 and 0.5), a classification algorithm is efficient if it se-
lects, in polynomial time and with a polynomial number of examples, with probability
(1 − δ), a functionfS ∈ H for which IS [fS ] < ǫ, andIS [fS ] ≈ IT [fS ]. Obviously, the
more accuracy (lowerǫ values) and the more certainty (lowerδ values) one wants, the
more examples (i.e.,n) the classification algorithm needs. As shown in [Valiant 1984],
the expected error can be bounded by:

ǫ ≥
1

n

(

ln |H| + ln(
1

δ
)
)

(1)
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4. Demand-Driven Associative Classification
We start this section with a simple, eager algorithm, which produces a single mapping
function fS . Then, we present a more sophisticated, demand-driven algorithm, which
produces multiple functions. Finally, we employ powerful function approximation tech-
niques in order to boost the effectiveness of the demand-driven algorithms.

4.1. Classification using Association Rules
The hypothesis space,H, may contain a huge number of functions. Randomly producing
functions, in the hope of finding one that approximates well the target function P(y|x),
is unlikely to be an efficient strategy. A better alternativeis to directly exploit associa-
tions between inputs and outputs. Such associations are usually hidden in the examples,
and, when uncovered, they may reveal important aspects concerning the underlying phe-
nomenon that generated these examples. These aspects can beexploited for the sake of
producing only functions that provide potentially good approximations of P(y|x). This
strategy has led to algorithms which are referred to as associative algorithms, since they
produce functions that are composed of rulesX −→ cj, indicating an association between
attribute-values inX ⊆ x, and a classcj ∈ y. Next, we discuss properties of these rules.

Support and Confidence – The support of a ruleX −→ cj, denoted asσ(X −→ cj),
indicates the number of examples inS in which X andcj co-occur. The confidence of
a ruleX −→ cj , denoted asθ(X −→ cj), is an indication of how stronglyX andcj are
associated. Support and confidence are defined in Equations 2and 3:

σ(X −→ cj) = |(xi, yi) ∈ S| such thatX ⊆ xi and yi = cj (2)

θ(X −→ cj) =
σ(X −→ cj)

|(xi, yi) ∈ S| such thatX ⊆ xi

(3)

Complexity – Often, the length of an explanation can be an indication of its complex-
ity [Kolmogorov 1965]. A ruleX −→ cj can be viewed as an explanation that leads to
classcj . In this case, the cardinality ofX −→ cj (i.e., |X |) is regarded as its complexity.

Usefulness – A rule X −→ cj matches an inputxi iff X ⊆ xi. Since the prediction
provided by a rule is based on all the attribute-values that are inX , only rules matching
inputxi are used to estimate the corresponding outputyi. We say that a rule is useful if it
matches at least one input inT , otherwise the rule is said to be useless.

Hereafter, it will be denoted asR a set of rules extracted fromS. Also, it will be
denoted asRxi the subset ofR which contains only rules matching an inputxi. Finally,
it will be denoted asRxi

cj
the subset ofRxi which contains only rules predicting classcj .

4.2. Eager Algorithms
The simplest algorithm to be presented, referred to as EAC-SR1, performs the typical
eager rule extraction strategy, and produces a functionfS using frequent rules inS. In
this case,R contains all rulesr extracted fromS such thatσ(r) ≥ σmin, whereσmin is a
user-specified minimum support threshold. Then, given an arbitrary inputxi, fS(xi) gives
the predicted output forxi, which is the class associated with the strongest rule inRxi :

fS(xi) = cj such thatθ(X −→ cj) is argmax(θ(r)) ∀ r ∈ Rxi (4)

1EAC-SR stands forEager Associative Classification using a Single Rule.
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4.3. Demand-Driven Algorithms

Although simple, EAC-SR suffers from two problems: (i) an infrequent, but useful rule
may be not extracted fromS (possibly hurting classification effectiveness), and (ii)a
frequent, but useless rules may be extracted fromS (incurring unnecessary overhead).
Figure 1 (left) illustrates these problems. It shows the search space for rules, where black
balls represent useful rules, and white balls represent useless rules.σmin induces a border
which separates frequent from infrequent rules. Ifσmin is set too high, few useless rules
are extracted, but several useful rules are missed. Ifσmin is set too low, many useful rules
are extracted, but a prohibitive, exponential number of useless rules is also extracted.
As an alternative, we propose LAC-SR2, which extracts rules on a demand-driven basis.
Specifically, whenever an inputxi ∈ T is being considered, that input is used as a filter to
remove fromS all the attribute-values that are not inxi. This process generates aprojected
training data(denoted asSxi), which contains only attribute-values that are inxi. LAC-
SR directly producesRxi by extracting rules fromSxi (instead of extracting rules from
S and then filtering those matchingxi). LAC-SR produces a functionfS which, in fact,
can be interpreted as a combination of multiple functionsfxi

S
, where eachfxi

S
is used to

predict only the output for inputxi. In the following we discuss the efficiency of LAC-SR.

Lemma 1 All rules extracted fromSxi (i.e.,Rxi) are useful to inputxi ∈ T .

Proof: Since all inputs inSxi contain only attribute-values that are present inxi, the
existence of a rule{X −→ cj} ∈ Rxi , such thatX * xi, is impossible.�

Theorem 1 LAC-SR is efficient.

Proof: Let q be the number of distinct attribute-values inS. In this case, an upper bound
for the hypothesis spaceH, is the set of all possible rules inS, which is clearly|H|=p×2q

(wherep is the number of classes). According to Equation 1,n ≥ 1
ǫ

(

ln(p × 2q) + ln(1
δ
)
)

,
and so,n ≥ 1

ǫ

(

ln(p) + 0.69q + ln(1
δ
)
)

. Thus, the number of required examples,n, in-
creases only polynomially withq. It is also necessary to show that a functionfS , for
whichIS [fS ]=0 is found in time polynomial inq (please, refer to Lemma 3.2 on page 33
in [Veloso 2009] for a proof that suchfS exists). Obviously, the number of all possible
functions is exponential inq (i.e., O(2q) rules). However, since an arbitrary inputxi∈T
contains at mostl attribute-values (withl≪q), then any rule matchingxi can have at most
l attribute-values in its antecedent. Therefore, the numberof possible rules matchingxi is
p × (l +

(

l

2

)

+ . . . +
(

l

l

)

) = O(2l)≪O(ql), and thus, the number of useful rules increases
polynomialy inq. Since, according to Lemma 1, LAC-SR extracts only useful rules, then
the complexity of LAC-SR also increases polynomialy inq. �

σmin(1) σmin(1)
σmin(2) σmin(2)
σmin(3) σmin(3)

σmin(1)>σmin(2)>σmin(3)

E
rr

or

 

underfitting overfitting

~ IT[fS]

ε

IS[fS]

Simple
Functions

Complex
Functions

Figure 1. (left) The pruning dillema. (right) Structural risk minimization.

2LAC-SR stands forLazy Associative Classification using a Single Rule.
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Theorem 1 states that LAC-SR is efficient, since the number ofuseful rules grows
polynomially in q (no matter the value ofσmin, which, in fact, can be arbitrarily low).
Although efficient, improvements to LAC-SR are still possible. Particularly, LAC-SR
uses the same prediction strategy of EAC-SR− picks only the strongest rule to predict
the output for a given input (i.e., Eq. 4). Such a simple pick may provide extremely biased
predictions, and a safer strategy would be to combine the predictions of multiple rules,
so that a collective prediction can be performed. Thereforewe propose LAC-MR3, which
interpretsRxi as a poll, where each rule{X−→cj} ∈ Rxi is a vote given byX for output
cj. The weight of a voteX−→cj depends onθ(X−→cj). Eq. 5 gives the score associated
with outputcj for input xi, and Eq. 6 gives the likelihood ofcj being the output ofxi.
Finally, LAC-MR produces a functionfxi

S
for eachxi, which returns the output which

receives the highest likelihood in a weighted voting process, as shown in Eq. 7.

s(xi, cj) =

∑

θ(r)

| Rxi
cj |

(5) p̂(cj |xi) =
s(xi, cj)

∑

s(xi, ck)
(6)

fxi

S
(xi) = cj such that̂p(cj |xi) is argmax(p̂(ck|xi)), where1 ≤ k ≤ p (7)

Structural Risk Minimization – The algorithms discussed so far do not take into ac-
count the complexity of the functions they produce. The ideais that simple (or difficult)
sub-problems (i.e.,xi) may demand simple (or complex) functions (i.e.,fxi

S
). A general

measure of the complexity of a functionfxi

S
is its VC-dimension [Guyon et al. 1992], de-

noted asdf
xi
S

(please, refer to [Veloso 2009], page 16, for more details onhow to compute
VC-dimension [Guyon et al. 1992]). In order to computedf

xi
S

, functions are first orga-
nized in a nested structureF , such thatF1⊆F2⊆. . .Fl, where functions in classFk are
simpler then functions in class{Fk+1−Fk}

4. A way of controlling the complexity offxi

S

is to establish a relationship betweendf
xi
S

and how wellfxi

S
fitsS (i.e.,IS [fxi

S
]). Structural

Risk Minimization (SRM) provides this trade-off [Guyon et al. 1992], as shown in Eq. 8.
The shape of this bound, which is shown in Figure 1 (right), can be exploited to select a
functionfxi

S
with the most appropriate complexity for inputxi. The next algorithm to be

proposed, LAC-MR-SRM5, uses Eq. 7 to produce functions in increasing order of com-
plexity (i.e., functions inFk is considered before than functions inFk+1), and it uses Eq.
8 to find the simplest functionfxi

S
which provides the lowest empirical error.

IT [fxi

S
] ≤ IS [fxi

S
]+

√

√

√

√

√

df
xi
S

(

ln 2n
d

f
xi
S

+ 1

)

− ln δ
4

n
(8)

4.4. Empirical Results
In all experiments we used the standard k-fold cross-validation6. All experiments were
performed on a Linux-based PC with Intel Pentium III 1.0 GHz and 1 GB RAM. We will
present only a summary of the main results. The detailed experimental setup, including
the description of baselines and parameters, can be found in[Veloso 2009].

3LAC-MR stands forLazy Associative Classication using Multiple Rules.
4Functions inF1 are built using rules of cardinality 1,F2 using rules of cardinality at most 2, and so on.
5LAC-MR-SRM stands forLAC-MR with Structural Risk Minimization.
6The dataset (i.e., input/output pairs) is randomly partitioned intok sub-samples. A single sub-sample

is used as test set, and the remainingk-1 sub-samples are used as training. The process is repeatedk times,
and each of thek sub-samples are used exactly once as test set. The final result is the average of thek runs.
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Typical Classification Problems – In these problems, each object belongs to exactly
one class, and the goal is to predict the correct class for a given object. We will re-
port results using datasets collected from applications asdiverse as cancer diagnosis (be-
nign/malignant), and classification of radar returns from the ionosphere. Baselines include
decision trees and kNNs. LAC-MR-SRM was the best performer,providing, on average,
an accuracy number of 87.9%, while the baseline accuracy is no greater than 82.1%.
Multi-Label Classification – Now, each object may belong to multiple classes simulta-
neously. Algorithmic modifications were proposed to LAC-MRin order to deal with such
problems. Basically,̂p(cj|xi) (i.e., Equation 6) is used to select classes that are more likely
to be associated with the object ([Veloso 2009], page 62). Wewill report results concern-
ing the prediction of the function of certain genes of theYeast Saccharomyces cerevisiae
organism. Depending on the evaluation metric used, LAC-MR based algorithms provide
gains of more than 15%, over SVMs and other algorithms that were used as baselines.
Self-Training – In certain problems, the (high) cost associated with labeling examples
in order to create a training data, may render vast amounts ofexamples unfeasible. Algo-
rithmic modifications were proposed to LAC-MR, so that it canperform well in scenarios
in which only few training examples are available. Basically, p̂(cj |xi) is used to detect
predictions that are likely to be correct. These “safe” predictions are regared as new ex-
amples and inserted into the training data, which is automatically augumented with this
new information ([Veloso 2009], page 98). We will report results concerning the identifi-
cation of entities/persons associated with ambiguous names. LAC-MR based algorithms
provide gains of more than 18% when compared against SVMs andNaive Bayes.
Ranking – In certain problems we may want to sort objects according to their likeli-
hood of membership. An example is ranking documents returned by search engines−
documents likely to be relevant should appear first than documents likely to be irrelevant.
Modifications were proposed to LAC-MR, so that it can sort objects ([Veloso 2009], page
108). Basically, the rank of an objectxi is given by the linear combination of the likeli-
hoods associated with each class:

∑

(

cj× p̂(cj |xi)
)

. LAC-MR based algorithms provide
gains ranging from 6.6% to 42% when compared against SVMs andother algorithms.

5. Conclusions and Final Remarks
In this paper we summarized some of the research contributions of [Veloso 2009]. Specif-
icaly, we posed classification as a function approximation problem, which we showed
that can be decomposed into simpler sub-problems. We also showed that approximating
the target function on a demand-driven basis, taking into account demands of each sub-
problem, leads to better mapping functions. We presented efficient algorithms for classifi-
cation and related extensions, and we provided theoreticalevidence supporting them. We
demonstrated the superiority of our algorithms using actual scenarios. We are currently
extending our algorithms to deal with privacy-sensitive data [Veloso 2002, Veloso 2003].
Application scenarios such as sentiment analysis (http://observatorio.inweb.
org.br) and Web polygraph (i.e., detecting lies in posts/statements on the Web) are also
our current focus. Apart from our results, we have implemented a vast amount of software,
currently available athttp://www.dcc.ufmg.br/∼adrianov/software.

Due to lack of space, we were not able to include: (1) an entirebranch of new
algorithms based on Empirical Risk Minimization ([Veloso 2009], pages 14, 36, and 53),
(2) discussions about Calibrated and Multi-Metric Classification, and algorithms for these
problems ([Veloso 2009], pages 69 and 84), (3) several experiments, and (4) some refer-
ences to papers published during the development of [Veloso2009].
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