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Abstract. The Kneser graphK(n, k) is the graph whose vertices are all the sub-
sets withk elements of a set that hasn elements, and two vertices are joined by
an edge if the corresponding pair ofk-sets is disjoint. The odd graphOk is the
special case of the Kneser graph whenn = 2k + 1. A long-standing conjecture
due to Lov́asz claims thatOk has a hamiltonian path fork ≥ 1. Previously,
Lovász’s conjecture had been proved for allk ≤ 13. We have improved these
values by showing thatOk has a hamiltonian path for14 ≤ k ≤ 17. Addition-
ally, we have established how close the odd graphs are to being hamiltonian:
Ok has a closed spanning walk or trail in which every vertex appears at most
twice.

1. Introduction

A spanning cycle in a graph is ahamiltonian cycleand a graph that contains such cycle
is said to behamiltonian. A hamiltonian pathis a path that contains every vertex of the
graph precisely once. Since its formulation by Hamilton in 1859, the hamiltonian cycle
problem has been used in several practical applications such as thetraveling salesman
problem, or TSP for short: given a collection of cities and the cost oftravelling between
each pair of them, the TSP is to find the cheapest way of visiting all of the cities and
returning to your starting point. Note thatTSP is a variation of the hamiltonian cycle
since each city is represented by a vertex in a graph.

Determining if a graphG has a hamiltonian cycle is an NP-Complete prob-
lem [Karp 1972], even if restricted to bipartite graphs [Krishnamoorthy 1975], planar
3-connected cubic graphs [Garey et al. 1976], or if a hamiltonian path is given as part
of the instance [Papadimitriou and Steiglitz 1976]. The hamiltonian path problem is NP-
Complete as well [Garey and Johnson 1979].

In this paper, we study hamiltonian cycles and paths in a graph class calledKneser
graphs. Let n, k be integers such thatn ≥ k ≥ 1. TheKneser graphK(n, k) has as
vertices the subsets of{1, 2, . . . , n} that have cardinalityk. Two vertices are adjacent if
their correspondingk-subsets are disjoint. The Kneser graphK(2k − 1, k − 1) is also
called theodd graphOk for k ≥ 2. For simplicity, we refer toOk asK(2k +1, k), k ≥ 1.
With this definition, the graphO1 is a triangle, andO2 is the Petersen graph (see Figures 1
(a) e 1 (b)).

Kneser graphs have been extensively studied, especially because of their high de-
gree of symmetry. Biggs mentions the following conjecture:
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Figure 1. Odd graphs and bipartite Kneser graphs for k = 1, 2.

Conjecture 1 ([Biggs 1979]). The odd graphOk is hamiltonian for allk > 2.

Thebipartite Kneser graphB(n, k) has
(
[n]
k

)
∪

(
[n]

n−k

)
as its vertex set and its edges

represent the inclusion between two such subsets. The vertex set ofB(n, k) can be seen
as two (symmetric) layers of then-dimensional cube. If we consider the two layers in
the middle of the cube (see Figure 1 (d)), then the corresponding bipartite Kneser graph
B(2k + 1, k) is called themiddle-levels graph, and we denote it byBk (see examples in
Figures 1 (c) and 1 (e)). We are now ready to state the conjecture that has been attributed
to Dejter, Erdos, Trotter, and various other mathematicians, but was most probably origi-
nated with Havel.

Conjecture 2 ([Havel 1983]). The middle-levels graphBk is hamiltonian for allk ≥ 1.

In fact, both Conjectures 1 and 2 are strongly related to a notorious conjecture due
to Lovász [Lovász 1970] that every connected vertex-transitive graph has a hamiltonian
path. The odd graphsOk and the bipartite Kneser graphsBk form a well-studied family of
connected,(k + 1)-regular, vertex-transitive graphs. Therefore, the studyof hamiltonian
paths in these graphs may provide more evidence to support Lovász’s conjecture, or offer
a counterexample for it.

However, a direct computation of hamiltonian paths or cycles in Ok and Bk

is not feasible for large values ofk, becauseOk has
(
2k+1

k

)
vertices andBk has

2
(
2k+1

k

)
vertices (see Table 1 in Section 3). Previous verifications of Conjecture 2 for

k ≤ 17 [Shields and Savage 1999, Shields et al. 2009] and Conjecture 1 for k ≤ 13
[Shields and Savage 2004] relied heavily on computational methods.

A j-factor of a graphG is aj-regular spanning subgraph ofG. For instance, an
1-factor is a perfect matching. A graphG is j-factorableif G is the union of disjointj-
factors. Two different1-factorizations ofBk were found in [Kierstead and Trotter 1988]
and [Duffus et al. 1994] hoping that the union of two suitable1-factors would provide a
hamiltonian cycle ofBk. Unfortunately, it turned out not to be the case for the giventwo
1-factorizations. However, those1-factorizations were used to find a2-factorization ofOk

[Johnson and Kierstead 2004].

Biggs’ conjecture has been extensively studied, thanks to the motivation brought
by Lovász’s conjecture. Due to the difficulty of proving Biggs’ conjecture, researchers try
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to prove Havel’s conjecture instead, because it is expectedto be a simpler problem, forBk

is bipartite. However, both conjectures are still open. Hence, one option is to show these
graphs are “close” to being hamiltonian, where the word “close” has been interpreted
in several different ways. Firstly, long cycles inBk andOk have been sought. At the
moment, the best result of this type is due to Johnson [Johnson 2004] who showed thatBk

contains a cycle of length(1−o(1)) |Bk| andOk contains a cycle of length(1−o(1)) |Ok|
where the error termo(1) is of the form c√

k
for some constantc. [Chen 2003] showed that

the Kneser graphK(n, k) and the bipartite Kneser graphB(n, k) are hamiltonian for
n ≥ 2.62k + 1. Note that, for fixedn, the smaller the parameterk is, the denser both the
Kneser graphK(n, k) and the bipartite Kneser graphB(n, k) are. Thus, the graphsOk

andBk are the sparsest among all of these graphs. The density of a graphG is the ratio
|E(G)|
|(V (G)

2 )|
.

Yet another interpretation of “close” to being hamiltonianis provided by
[Jackson and Wormald 1990] where a hierarchy of graphs is introduced. A closed span-
ning walk where each vertex is traversed at mostq times is called aq-walkand a spanning
tree of maximum degreeq is a q-tree. Thus, in this terminology, a hamiltonian cycle is
a 1-walk, and a hamiltonian path is a2-tree. The authors proved that any graph with a
q-tree has aq-walk, and that aq-walk guarantees the existence of a(q + 1)-tree. These
results give the following hierarchy among families of graphs:

1-walk (Hamiltonian cycle)=⇒ 2-tree (Hamiltonian path)=⇒ 2-walk
=⇒ 3-tree =⇒ 3-walk =⇒ . . .

The prism over a graphG is the Cartesian productG�K2 of G with the complete graph
on two vertices. Hence, the prism overG consists of two copies ofG with a 1-factor
joining the corresponding vertices. It was shown in [Kaiseret al. 2007] that the property
of having a hamiltonian prism is “sandwiched” between the existence of a 2-tree and the
existence of a 2-walk. Thus,

2-tree =⇒ Hamiltonian prism=⇒ 2-walk

This means that graphs having a hamiltonian prism are close to being hamiltonian, even
closer than graphs having a2-walk. In [Horák et al. 2005] it is proved that for allk ≥ 1,
the prism over the middle-levels graphBk is hamiltonian. In the present Thesis, we have
shown how close the odd graphs are to being hamiltonian:

Theorem 3([Bueno and Horák 2009]). Denote aq-trail as a q-walk that does not repeat
edges. The prism over the odd graphOk, k ≥ 2, k even, is hamiltonian. Fork odd,Ok

has not only a 2-walk but also a 2-trail.

We have also found that some odd graphs have indeed a hamiltonian path:

Theorem 4([Bueno et al. 2009, Bueno 2009]). The odd graphOk has a hamiltonian path
for 14 ≤ k ≤ 17.

We proved Theorem 4 without the direct aid of a computer. Instead, we use exist-
ing results on the middle-levels problem [Shields and Savage 1999, Shields et al. 2009],
therefore further relating two fundamental problems: to find a hamiltonian path in the odd
graph and to find a hamiltonian cycle in the middle-levels graph.

The present text is meant to be a brief introduction to the basic ideas underly-
ing the proofs of the results contained in the Thesis. Obviously, it does not delve too
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much into the details due to space constraints. For further details, we refer to the papers
[Bueno et al. 2009, Bueno and Horák 2009].

2. On Hamiltonian Cycles in the Prism over the Odd Graphs

In order to prove the first part of Theorem 3, we constructed a spanning cubic subgraphH
of Ok for k even. Then we proved thatH is 3-connected. Since [Paulraja 1993] showed
that every 3-connected cubic graph has a hamiltonian prism,Ok has a hamiltonian prism
for k even.

For k odd, we cannot apply the technique used whenk is even. In fact, for some
odd values ofk, under no circumstances it is possible to find a spanning cubic subgraph
of Ok, becauseOk has an odd number of vertices. Through the two1-factorizations ofBk

found by [Kierstead and Trotter 1988] and [Duffus et al. 1994], a 2-factorization ofOk

has been found by [Johnson and Kierstead 2004]. Using two of these 2-factorizations, we
determine a spanning 4-regular subgraphH ′ of Ok, for k odd. Then we show thatH ′ is
connected. Since every 4-regular connected graph is eulerian,H ′ has a 2-trail.

To better compare hamiltonian prisms and 2-trails, the diagram in Figure 2 illus-
trates the hierarchy among some families of graphs close to being hamiltonian. Having
a 2-walk is a necessary condition – but not sufficient – for having a hamiltonian prism,
a 2-trail or a hamiltonian cycle. A hamiltonian prism implies a 2-walk but the converse
does not hold in general, so a hamiltonian prism is slightly closer to being hamiltonian
than a 2-walk. Since a 2-trail is a 2-walk that does not repeatedges, a 2-trail is slightly
better than a 2-walk as well. Therefore a graph with a hamiltonian prism is as close to
being hamiltonian as a graph with a 2-trail.

2-walk

2-trail

hamiltonian prism

cycle
hamiltonian

Figure 2. Hierarchy among some families of graphs close to being hamiltonian.

3. Hamiltonian Paths in Odd Graphs

Let Zn denote the set{1, . . . , n} with numbers taken modulon, plus1. We consider the
vertices ofOk andBk to be subsets ofZn andn = 2k+1. We define two specialk-subsets
of Zn, which arer1 = {1, . . . , k} andr2 = {2, 4, 6, . . . , n− 1}.

Given a setv ⊆ Zn, let v + δ denote the set{a + δ : a ∈ v} andv denote the
complement ofv with respect toZn. We say thatu, v ⊂ Zn satisfyu ∼ v if either (i)
u = v + δ or (ii) u = v + δ for someδ ∈ Zn. It is easy to verify that∼ is an equivalence
relation. We refer to the equivalence class ofv under∼ asσ(v).
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Given a graphG, we define thequotient graphG̃ as the graph obtained fromG by
identifying vertices that are equivalent according to∼. More precisely, the vertices of̃G
are the equivalence classesσ(v) for v ∈ V (G), and ifuv ∈ E(G) thenσ(u)σ(v) ∈ E(G̃).
Note that ifuv ∈ E(G) satisfiesu ∼ v, then the vertexσ(u) ∈ V (G̃) has a loop. The
quotient graph̃Bk is called thereduced graph. The graphsO3 andÕ3 are illustrated in
Figure 3.

[Shields and Savage 1999] showed that each equivalence class σ(v) of B̃k con-
sists of exactlyn = 2k + 1 k-subsets andn (k + 1)-subsets. As a consequence, the
reduced graph̃Bk has2n times fewer vertices thanBk (see Table 1). For example,B17

has9,075,135,300 vertices, whilẽB17 has129,644,790 vertices, which is70 times smaller,
but still quite large.

Furthermore, [Shields and Savage 1999] proved that the existence of a hamilto-
nian path in the reduced graph̃Bk, starting at the vertexσ(r1) and ending at the ver-
tex σ(r2) implies thatBk is hamiltonian. We refer to a hamiltonian path starting at
σ(r1) and ending atσ(r2) as auseful path. Using heuristics, [Shields and Savage 1999,
Shields et al. 2009] determined useful paths iñBk for 1 ≤ k ≤ 17.

We prove Theorem 4 by showing that if there is a useful pathP = (p1, . . . , pm)

in Õk, then there is a hamiltonian path inOk. We use some interesting properties about
Õk, all of them proved in [Bueno et al. 2009, Bueno 2009] and exhibited inÕ3 (Figure 3).
First, we notice that the quotient graphs̃Ok andB̃k are equal. Moreover, if there is an
edgeσ(u)σ(v) in Õk, then there is a perfect matching between the vertices ofσ(u) and
the vertices ofσ(v) in Ok. Consequently, if there is a pathP = (p1, . . . , pm) in Õk,
thenOk hasn disjoint paths(q1 + (i − 1), . . . , qm + (i − 1)), for 1 ≤ i ≤ n, such that
qj ∈ pj , for 1 ≤ j ≤ m. Finally, the subgraph ofOk induced byσ(r1) is the cycle
r1, r1 + k, r1 + 2k, . . . , r1 + (n − 1)k and the subgraph ofOk induced byσ(r2) is
the cycler2, r2 + 1, r2 + 2, . . . , r2 + (n − 1). Basically, we traverse all then disjoint
paths inOk and carefully pick edges from the cycles induced byσ(r1) andσ(r2) in order
to connectn paths into a single hamiltonian path.

Given a pathQ, we denote by
←−
Q the pathQ traversed from the last to the first

vertex. Given two pathsQ1, Q2 with no vertices in common and such that the last vertex
of Q1 is adjacent to the first vertex ofQ2, we denote byQ1 ◦Q2 the path obtained by the
vertices ofQ1 followed by the vertices ofQ2.

By the definition of a useful path,P = (p1, . . . , pm) is hamiltonian inÕk, m =
|V (Ok)|/n, p1 = σ(r1), andpm = σ(r2). For 1 ≤ i ≤ n, there aren disjoint pathsPi

of the following form:Pi = (q1 + (i − 1), . . . , qm + (i − 1)) with q1 + (i− 1) ∈ σ(r1),
qm + (i− 1) ∈ σ(r2) andqj + (i− 1) ∈ pj .

Because of the cycle induced byσ(r1), and becausen = 2k+1, we have thatq1+i

is adjacent toq1 + i+k. It follows that
←−−
Pi+1◦Pi+k+1 is a valid path. Considering the cycle

induced byσ(r2), qm + i is adjacent toqm + i + 1. Therefore,Pi ◦
←−−
Pi+1 is a valid path

as well. Consequently, the following is a valid path:Qi = Pi ◦
←−−
Pi+1 ◦ Pi+k+1 ◦

←−−−−
Pi+k+2,

wherePi = (q1 + (i − 1), . . . , qm + (i − 1)),
←−−
Pi+1 = (qm + i, . . . , q1 + i), Pi+k+1 =

(q1 + i + k, . . . , qm + i + k), and
←−−−−
Pi+k+2 = (qm + i + k + 1, . . . , q1 + i + k + 1).
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Figure 3. On the top-right corner: Useful hamiltonian path in Õ3. Unused edges
are gray. On the bottom-right corner: Vertices in σ(r1) and σ(r2), and dashed
paths P1, P2, . . . , P7 used in the construction of the hamiltonian path in O3. On the
left: hamiltonian path in O3 between r1 and r2.

The idea is to build a hamiltonian pathQ1 ◦ Q3 ◦ Q5 ◦ . . .. If k is odd, then we
show thatRodd = Q1 ◦ Q3 ◦ . . . ◦ Qk−2 is a valid path. Because of the cycle induced by
σ(r1), we know that the last vertex ofQi, q1 + i + k + 1, is adjacent toq1 + i + 1, the first
vertex ofQi+2, sincePi+2 = (q1 + i+1, . . . , qm + i+1). Also,Rodd contains eitherPi or
←−
Pi, for i ∈ {1, . . . , 2k + 1} \ {k, k + 1, 2k + 1}. To include the missing paths, we define
the hamiltonian path inOk asHodd = Rodd ◦ Pk ◦

←−−
Pk+1 ◦ P2k+1. The full construction

of a hamiltonian path inO3 is illustrated in Figure 3. We omit the construction of the
hamiltonian path fork even, since it is similar to the casek odd.

Since there is a useful path iñBk for 1 ≤ k ≤ 17 [Shields and Savage 1999,
Shields et al. 2009],Ok has a hamiltonian path for1 ≤ k ≤ 17.

4. Conclusion and Open Problems

In our thesis, we showed a relationship between the reduced graphsB̃k and Õk, and
determined a hamiltonian path in the odd graphOk by using a useful path in the reduced
graphÕk = B̃k. In this way, we determine hamiltonian paths inOk for k up to17. Further
improved results for the middle-levels problem can be used to find hamiltonian paths in
Ok for larger values ofk [Bueno et al. 2009, Bueno 2009]. It is natural to ask whether a
hamiltonian cycle inOk can be constructed in a similar manner.

All hamiltonian paths known for the reduced graph̃Bk were determined by
computational methods, using heuristics. Finding an useful path in the reduced graph
B̃17 [Shields et al. 2009] took more than 20 days of processing on an AMD Athlon 3500+.
Further studies in the structure of the reduced graph may help finding useful paths faster,
and possibly determine whether all reduced graphs have a useful path. It is important to
note that even if the reduced graph does not have a useful path, the corresponding odd
graph may still have a hamiltonian path.
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Table 1. Number of vertices of the graphs Ok, Bk and Õk = B̃k

k n = 2k + 1 |V (Bk)| |V (Ok)| |V (Õk)|
1 3 6 3 1
2 5 20 10 2
3 7 70 35 5
4 9 252 126 14
5 11 924 462 42
6 13 3,432 1,716 132
7 15 12,870 6,435 429
8 17 48,620 24,310 1,430
9 19 184,756 92,378 4,862
10 21 705,432 352,716 16,796
11 23 2,704,156 1,352,078 58,786
12 25 10,400,600 5,200,300 208,012
13 27 40,116,600 20,058,300 742,900
14 29 155,117,520 77,558,760 2,674,440
15 31 601,080,390 300,540,195 9,694,845
16 33 2,333,606,220 1,166,803,110 35,357,670
17 35 9,075,135,300 4,537,567,650 129,644,790

Two different kinds of approximations for hamiltonian cycles in the middle-levels
graphs are known. [Savage and Winkler 1995] showed thatBk has a cycle containing at
least86.7% of the graph vertices, fork ≥ 18. [Horák et al. 2005] showed the middle-
levels graph has a closed spanning2-walk. We proved that, for everyk even,Ok has a
closed spanning2-walk. Moreover, for everyk odd, Ok has a closed spanning trail in
which every vertex appears at most twice [Bueno and Horák 2009, Bueno 2009].

Since vertex-transitive graphs defined by a single parameter, such as the odd
graphs and the middle-levels graphs, are not known to have hamiltonian paths, Lovász’s
conjecture [Lovász 1970] remains an open challenge to thisday.
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