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Abstract. The Kneser grapli (n, k) is the graph whose vertices are all the sub-
sets withk elements of a set that haselements, and two vertices are joined by
an edge if the corresponding pair #fsets is disjoint. The odd grapgh, is the
special case of the Kneser graph when- 2k + 1. A long-standing conjecture
due to Lowasz claims that), has a hamiltonian path fok > 1. Previously,
Lovasz’'s conjecture had been proved for Al 13. We have improved these
values by showing tha®, has a hamiltonian path for4 < k& < 17. Addition-
ally, we have established how close the odd graphs are tgyldeamiltonian:
Oy has a closed spanning walk or trail in which every vertex appeat most
twice.

1. Introduction

A spanning cycle in a graph isteamiltonian cycleand a graph that contains such cycle
is said to behamiltonian A hamiltonian paths a path that contains every vertex of the
graph precisely once. Since its formulation by Hamilton 859, the hamiltonian cycle
problem has been used in several practical applications asi¢hetraveling salesman
problem or TSP for short: given a collection of cities and the codtra¥elling between
each pair of them, the TSP is to find the cheapest way of ws#ihof the cities and
returning to your starting point. Note th&SPis a variation of the hamiltonian cycle
since each city is represented by a vertex in a graph.

Determining if a graphG' has a hamiltonian cycle is an NP-Complete prob-
lem [Karp 1972], even if restricted to bipartite graphs Btmamoorthy 1975], planar
3-connected cubic graphs [Garey et al. 1976], or if a hamiéio path is given as part
of the instance [Papadimitriou and Steiglitz 1976]. The tiaman path problem is NP-
Complete as well [Garey and Johnson 1979].

In this paper, we study hamiltonian cycles and paths in algctgss calledkneser
graphs Letn, k be integers such that > £ > 1. TheKneser graphK (n, k) has as
vertices the subsets §1, 2, ..., n} that have cardinality. Two vertices are adjacent if
their corresponding-subsets are disjoint. The Kneser gralgii2k — 1,k — 1) is also
called theodd graphO, for & > 2. For simplicity, we refer t@, asK (2k + 1, k), k > 1.
With this definition, the grapby, is a triangle, and);, is the Petersen graph (see Figures 1

(@) el (b)).
Kneser graphs have been extensively studied, especialube of their high de-
gree of symmetry. Biggs mentions the following conjecture:
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Figure 1. Odd graphs and bipartite Kneser graphs for &k = 1, 2.

Conjecture 1([Biggs 1979]) The odd graplO, is hamiltonian for allk > 2.

Thebipartite Kneser graptB(n, k) has(")) U (")) as its vertex set and its edges
represent the inclusion between two such subsets. The«satefB(n, k) can be seen
as two (symmetric) layers of the-dimensional cube. If we consider the two layers in
the middle of the cube (see Figure 1 (d)), then the correspgriapartite Kneser graph
B(2k + 1, k) is called themiddle-levels graphand we denote it by, (see examples in
Figures 1 (c) and 1 (e)). We are now ready to state the comgetiiat has been attributed
to Dejter, Erdos, Trotter, and various other mathematgint was most probably origi-
nated with Havel.

Conjecture 2 ([Havel 1983]) The middle-levels grapB,, is hamiltonian for allt > 1.

In fact, both Conjectures 1 and 2 are strongly related to arimts conjecture due
to Lovasz [Lovasz 1970] that every connected vertexditare graph has a hamiltonian
path. The odd graphs, and the bipartite Kneser graphg form a well-studied family of
connected(k + 1)-regular, vertex-transitive graphs. Therefore, the swidyamiltonian
paths in these graphs may provide more evidence to suppeaskzs conjecture, or offer
a counterexample for it.

However, a direct computation of hamiltonian paths or cydle O, and B;
is not feasible for large values df, becauseO, has (*") vertices andB;, has
2 2’“““) vertices (see Table 1 in Section 3). Previous verification€anjecture 2 for
k < 17 [Shields and Savage 1999, Shields et al. 2009] and Congdtdor £ < 13

[Shields and Savage 2004] relied heavily on computatiorehods.

A j-factor of a graphG is aj-regular spanning subgraph 6f For instance, an
1-factor is a perfect matching. A grapfi is j-factorableif G is the union of disjoing-
factors. Two different -factorizations ofB, were found in [Kierstead and Trotter 1988]
and [Duffus et al. 1994] hoping that the union of two suitabliactors would provide a
hamiltonian cycle ofB,. Unfortunately, it turned out not to be the case for the gitvem
1-factorizations. However, thodefactorizations were used to find2eactorization ofO,,
[Johnson and Kierstead 2004].

Biggs’ conjecture has been extensively studied, thankiseartotivation brought
by Lovasz’s conjecture. Due to the difficulty of proving Bgj conjecture, researchers try
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to prove Havel’s conjecture instead, because it is expeotied a simpler problem, faB

is bipartite. However, both conjectures are still open. ¢¢gone option is to show these
graphs are “close” to being hamiltonian, where the word selohas been interpreted
in several different ways. Firstly, long cycles B, and O, have been sought. At the
moment, the best result of this type is due to Johnson [Joh2804] who showed thag,
contains a cycle of lengthi —o(1)) | Bx| andO,, contains a cycle of lengtfi —o(1)) |Oy|
where the error term(1) is of the form— for some constant [Chen 2003] showed that
the Kneser graptk(n, k) and the bipartite Kneser grapB(n, k) are hamiltonian for
n > 2.62k + 1. Note that, for fixedh, the smaller the parametgiis, the denser both the
Kneser graphk'(n, k) and the bipartite Kneser gragh(n, k) are. Thus, the graphs;

aln((:i/%c are the sparsest among all of these graphs. The density apa@ris the ratio
EG

(V)

Yet another interpretation of “close” to being hamiltonian provided by
[Jackson and Wormald 1990] where a hierarchy of graphsiiedoted. A closed span-
ning walk where each vertex is traversed at mdsnes is called g-walk and a spanning
tree of maximum degregis ag-tree Thus, in this terminology, a hamiltonian cycle is
a 1-walk, and a hamiltonian path isatree. The authors proved that any graph with a
g-tree has aj-walk, and that a-walk guarantees the existence ofe@t 1)-tree. These
results give the following hierarchy among families of grap

1-walk (Hamiltonian cycle)=— 2-tree (Hamiltonian path}= 2-walk
= 3-tree = 3-walk = ...

The prism over a grap8y' is the Cartesian produ¢tl]1K, of G with the complete graph
on two vertices. Hence, the prism ov@rconsists of two copies aoff with a 1-factor
joining the corresponding vertices. It was shown in [Kaeseal. 2007] that the property
of having a hamiltonian prism is “sandwiched” between thistexce of a 2-tree and the
existence of a 2-walk. Thus,

2-tree = Hamiltonian prism=— 2-walk

This means that graphs having a hamiltonian prism are ctobeihg hamiltonian, even
closer than graphs havingzawalk. In [Horak et al. 2005] it is proved that for &l > 1,

the prism over the middle-levels gragh is hamiltonian. In the present Thesis, we have
shown how close the odd graphs are to being hamiltonian:

Theorem 3([Bueno and Horak 2009])Denote ag-trail as a g-walk that does not repeat
edges. The prism over the odd graph, £ > 2, k even, is hamiltonian. Fok odd, O,
has not only a 2-walk but also a 2-trail.

We have also found that some odd graphs have indeed a haieniltoaith:
Theorem 4([Bueno et al. 2009, Bueno 2009]yhe odd grapl®,. has a hamiltonian path
for14 < k < 17.

We proved Theorem 4 without the direct aid of a computerelad we use exist-
ing results on the middle-levels problem [Shields and Sav#99, Shields et al. 2009],
therefore further relating two fundamental problems: td irhamiltonian path in the odd
graph and to find a hamiltonian cycle in the middle-levelpgra

The present text is meant to be a brief introduction to thechdeas underly-
ing the proofs of the results contained in the Thesis. Olshgut does not delve too

115



much into the details due to space constraints. For furtetild, we refer to the papers
[Bueno et al. 2009, Bueno and Horak 2009].

2. On Hamiltonian Cycles in the Prism over the Odd Graphs

In order to prove the first part of Theorem 3, we constructgebasing cubic subgrapid

of O, for k even. Then we proved that is 3-connected. Since [Paulraja 1993] showed
that every 3-connected cubic graph has a hamiltonian prgnmas a hamiltonian prism
for k even.

For k odd, we cannot apply the technique used whes even. In fact, for some
odd values of, under no circumstances it is possible to find a spanningcaubgraph
of Oy, becaus®),. has an odd number of vertices. Through the twlactorizations of3;,
found by [Kierstead and Trotter 1988] and [Duffus et al. 1]9@®42-factorization ofOy,
has been found by [Johnson and Kierstead 2004]. Using twteskt2-factorizations, we
determine a spanning 4-regular subgraphof O,, for £ odd. Then we show thdi’ is
connected. Since every 4-regular connected graph is anléfi has a 2-trail.

To better compare hamiltonian prisms and 2-trails, therdiagn Figure 2 illus-
trates the hierarchy among some families of graphs closeitagthamiltonian. Having
a 2-walk is a necessary condition — but not sufficient — forifga hamiltonian prism,
a 2-trail or a hamiltonian cycle. A hamiltonian prism im@ia 2-walk but the converse
does not hold in general, so a hamiltonian prism is slighlihger to being hamiltonian
than a 2-walk. Since a 2-trail is a 2-walk that does not repdges, a 2-trail is slightly
better than a 2-walk as well. Therefore a graph with a hamto prism is as close to
being hamiltonian as a graph with a 2-trail.

J

Figure 2. Hierarchy among some families of graphs close to being hamiltonian.

3. Hamiltonian Paths in Odd Graphs

Let Z,, denote the sefl, ..., n} with numbers taken module, plus1. We consider the
vertices of0, andB,, to be subsets &,, andn = 2k + 1. We define two special-subsets
of Z,, which arer; = {1,...,k}andry = {2,4,6,...,n — 1}.

Given a set C Z,, letv + § denote the sefa + 0 : a € v} andv denote the
complement ofv with respect tdZ,,. We say that, v C Z, satisfyu ~ v if either (i)
u=uv+dor(ii)u=v+forsomes € Z,. Itis easy to verify that- is an equivalence
relation. We refer to the equivalence classg ainder~ aso(v).
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Given a graplts, we define theuotient grapkfl as the graph obtained fro6i by
identifying vertices that are equivalent accordingtoMore precisely, the vertices 6f

are the equivalence classe@) for v € V(G), and ifuv € E(G) theno(u)o(v) € E(G).
Note that ifuv € E(G) satisfiesu ~ v, then the vertex(u) € V(G) has a loop. The
quotient graphB;, is called thereduced graph The graphs); andO; are illustrated in

Figure 3.

[Shields and Savage 1999] showed that each equivalence«dlas of B, con-
sists of exactlyn = 2k + 1 k-subsets ana (k + 1)-subsets. As a consequence, the
reduced graph?k has2n times fewer vertices thal,, (see Table 1). For exampl&,;,
has9,075,135,300 vertices, while§1/7 has129,644,790 vertices, which i§0 times smaller,
but still quite large.

Furthermore, [Shields and Savage 1999] proved that théeexie of a hamilto-
nian path in the reduced gra&nz, starting at the vertex(r;) and ending at the ver-
tex o(ry) implies that B, is hamiltonian. We refer to a hamiltonian path starting at
o(r1) and ending at (ry) as auseful path Using heuristics, [Shields and Savage 1999,
Shields et al. 2009] determined useful path§mf0r 1<k <17

We prove Theorem 4 by showing that if there is a useful gats (p1,...,pm)
in Oy, then there is a hamiltonian path @).. We use some interesting properties about
Oy, all of them proved in [Bueno et al. 2009, Bueno 2009] and kel inO; (Figure 3).
First, we notice that the quotient grapds and B, are equal. Moreover, if there is an
edgeo(u)o(v) in Oy, then there is a perfect matching between the verticeg ©f and
the vertices ofr(v) in Og. Consequently, if there is a path = (pi,...,pm) IN O,
thenOy, hasn disjoint paths(¢; + (¢ — 1), ...,¢, + (i — 1)), for 1 < i < n, such that
q; € pj, forl < j < m. Finally, the subgraph of); induced byo(r;) is the cycle
r, 1+ k, m+2k ..., 1+ (n— 1)k and the subgraph ab, induced byo(r,) is
the cyclery, ro+ 1, 79+ 2, ..., ro + (n — 1). Basically, we traverse all the disjoint
paths inO,, and carefully pick edges from the cycles induced-fy, ) ando () in order
to connect: paths into a single hamiltonian path.

Given a path?), we denote bya the path@ traversed from the last to the first
vertex. Given two path®, Q> with no vertices in common and such that the last vertex
of (), is adjacent to the first vertex 6., we denote by), o (), the path obtained by the
vertices of(), followed by the vertices of),.

By the definition of a useful path? = (p, ..., p,) is hamiltonian IOy, m =
[V(Oy)|/n, p1 = o(r1), andp,, = o(ry). Forl < i < n, there aren disjoint pathsp,
of the following form: P, = (¢ + (i — 1),...,¢m + (1 — 1)) with ¢, + (i — 1) € o(ry),
Gm + (i — 1) € o(ry) andg; + (i — 1) € p,.

Because of the cycle induced byr; ), and because = 2k+ 1, we have thag; +:
is adjacent t@; + ¢+ k. It follows that}Tﬂ o P, ;.1 is avalid path. Considering the cycle
induced byo (), ¢, + i is adjacent tay,, + i + 1. Therefore,P; o : is a valid path
as well. Consequently, the following is a vaIi(d_pam,-' =P o (JTH o P pi10 Jm
where i = (@ + (1 = 1), s g + (0 = 1)), Pipa = (g + 0500 +9)s P =
(r+i+k,. . quti+k),andPijio=(gm+i+k+1,....q1+i+k+1).
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Figure 3. On the top-right corner: Useful hamiltonian path in Os;. Unused edges
are gray. On the bottom-right corner: Vertices in o(r1) and o(r2), and dashed
paths Py, P, ..., P; used in the construction of the hamiltonian path in Os. On the
left: hamiltonian path in O3 between r; and r5.

The idea is to build a hamiltonian paffy o Q3 0 Q5 o .. .. If k is odd, then we
show thatR,;; = Q10 Q30 ...0 Q- is avalid path. Because of the cycle induced by
o(r1), we know that the last vertex 6§;, ¢; + i+ k + 1, is adjacent t@; + i + 1, the first
vertex ofQ;. o, sinceP o = (1 +i+1,...,gn+1+1). Also, R4 cONtains eitheP; or
E, fori e {1,...,2k+ 1} \ {k,k+ 1,2k + 1}. To include the missing paths, we define
the hamiltonian path i®, as H,yg = Ryqq © Py © m o Py11. The full construction
of a hamiltonian path irO5 is illustrated in Figure 3. We omit the construction of the
hamiltonian path fok even, since it is similar to the caseodd.

Since there is a useful path B, for 1 < k < 17 [Shields and Savage 1999,
Shields et al. 20091, has a hamiltonian path far< k& < 17.

4. Conclusion and Open Problems

In our thesis, we showed a relationship between the reduc'amhxjjvagC and Oy, and
determined a hamiltonian path in the odd graphby using a useful path in the reduced
graphO, = By. In this way, we determine hamiltonian pathgipfor £ up to17. Further
improved results for the middle-levels problem can be usdithtl hamiltonian paths in
Oy, for larger values of: [Bueno et al. 2009, Bueno 2009]. It is natural to ask whether a
hamiltonian cycle irD, can be constructed in a similar manner.

All hamiltonian paths known for the reduced grafﬂv@ were determined by
computational methods, using heuristics. Finding an ugedth in the reduced graph
/B\l; [Shields et al. 2009] took more than 20 days of processingngx\D Athlon 3500+.
Further studies in the structure of the reduced graph mayflmeing useful paths faster,
and possibly determine whether all reduced graphs havefal pseh. It is important to
note that even if the reduced graph does not have a useful thatltorresponding odd
graph may still have a hamiltonian path.
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Table 1. Number of vertices of the graphs Oy, B, and O = By,

k ln=2k+1 V(B V(O [V (O)|

1 3 6 3 1

2 5 20 10 2

3 7 70 35 5

4 9 252 126 14

5 11 924 462 42

6 13 3,432 1,716 132

7 15 12,870 6,435 429

8 17 48,620 24,310 1,430

9 19 184,756 92,378 4,862

10 21 705,432 352,716 16,796
11 23 2,704,156 1,352,078 58,786
12 25 10,400,600 5,200,300 208,012
13 27 40,116,600 20,058,300 742,900
14 29 155,117,520 | 77,558,760 2,674,440
15 31 601,080,390 | 300,540,195| 9,694,845
16 33 2,333,606,220 1,166,803,11Q 35,357,670
17 35 9,075,135,300 4,537,567,650 129,644,790

Two different kinds of approximations for hamiltonian ogslin the middle-levels

graphs are known. [Savage and Winkler 1995] showed®hatas a cycle containing at
least86.7% of the graph vertices, fok > 18. [Horak et al. 2005] showed the middle-
levels graph has a closed spanningialk. We proved that, for everk even,O,. has a
closed spanning-walk. Moreover, for every: odd, O, has a closed spanning trail in
which every vertex appears at most twice [Bueno and Hor@9 2Bueno 2009].

Since vertex-transitive graphs defined by a single paramsteh as the odd
graphs and the middle-levels graphs, are not known to hawvdtbaian paths, Lovasz’s
conjecture [Lovasz 1970] remains an open challenge talthys
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