
An Aspect-Oriented Model-Driven Engineering Approach for
Distributed Embedded Real-Time Systems∗

Marco Aurélio Wehrmeister1,3, Carlos Eduardo Pereira1,2, Franz Josef Rammig4

1 Programa de Pós Graduação em Computação (PPGC) – Instituto de Informática
2 Departamento de Engenharia Elétrica

Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

3Universidade do Estado de Santa Catarina (UDESC)
Campus Univ. Prof. Avelino Marcante s/n – 89223-100 – Joinville – SC – Brazil

4Heinz Nixdorf Institut – Universität Paderborn
Fürstenallee 11 – 33102 – Paderborn – Germany

mawehrmeister@inf.ufrgs.br, cpereira@ece.ufrgs.br, franz@upb.de

Abstract. To cope with the increasing design complexity of modern embedded real-time
systems, Model-Driven Engineering (MDE) techniques are being proposed and applied
within the domain of embedded real-time systems. This thesis proposes a design approach
combining MDE and aspect-oriented concepts to deal with functional and non-functional
requirements in a modularized way using higher abstraction levels. A configurable tool
for code generation that supports the proposed methodology is presented. It is capable
of creating source code for different target platforms from the models produced in earlier
design phases. In addition to code generation for functional requirements handling, the
tool also weaves aspects’ adaptations, which modify the generated code to handle non-
functional requirements. The proposed approach has been successfully applied to the
development of embedded real-time systems for different real-world applications. Ob-
tained results show an improvement concerning the modularization of system’s require-
ments handling, leading to an increased reuse of previously created artifacts.

1. Introduction
The design of embedded systems is not a trivial task. Frequently, designers must deal
with software and hardware elements that must be highly optimized to cope with system’s
requirements. This situation increases the design complexity. Many embedded system re-
searchers and designers propose to raise the abstraction level during design to manage this
complexity. In this context, the Object-Oriented (OO) paradigm appears as an interesting
option, since several object-oriented approaches have been proposed in the literature to
the embedded real-time systems design. However, the domain of embedded real-time sys-
tems presents many specific requirements (e.g. deadlines for tasks accomplishment, energy
consumption, reduced footprint, communication latency, etc.) that do not specify system’s
functionalities but are tightly related to them, the so-called non-functional requirements.
Traditional approaches (e.g. OO or structured analysis methods) do not have specific con-
structions to deal with these requirements, whose handling is usually found intermixed
with the handling of functional requirements. This situation brings problems such as tan-
gled and scattered handling, which hinder the reuse of previously developed artifacts (e.g.

∗ This thesis was carried out in co-supervision by the doctoral programs of UFRGS (Brazil) and Uni Paderborn (Germany), respec-
tively Programa de Pós-Graduação em Computação and Promotionsausschuss des Instituts für Informatik. The main supervisor is prof.
Dr.-Ing. Pereira, and the co-supervisor is prof. Dr. rer. nat. Rammig. Marco’s doctor title is valid in both countries. The complete list
of publications is available in http://www.inf.ufrgs.br/˜mawehrmeister/phd_publications.html.

129

model elements or code). To address the above-mentioned problems, some proposals can
be found in the literature, such as subject-oriented [Ossler and Tarr] and Aspect-Oriented
(AO) programming [Kiczales et al. 1997], which provide special constructions to specify
and encapsulate the handling of non-functional requirements into single elements.

However, to address these problems only at implementation level is not sufficient
to manage embedded real-time systems’ design complexity. The increase of the abstrac-
tion level is an old but widely accepted idea to help with such quest. Following this claim,
embedded systems community is looking for new techniques/approaches, such as Model-
Driven Engineering (MDE) [Selic 2003], aiming at the management of design complexity,
as it can be seen in a recent embedded systems market survey1. An important issue to allow
the use of MDE in embedded systems design is tool support [Selic 2003]. Automatic trans-
formation from Platform Independent Models (PIM) to Platform Specific Models (PSM) is
a key issue to make models the main artifacts during the whole development cycle instead
of source code. Additionally, it avoids errors coming from manual transformations, and
also helps to keep specification and implementation synchronized. Code generation from
high-level models can be seen as a transformation of PIM into PSM, but instead of using
meta-model to meta-model transformations (i.e. transforming meta-model elements from
a PIM into PSM meta-model elements), it applies the translation from meta-model to text
representing source code in a target language.

This paper presents the Aspect-oriented Model-Driven Engineering for Real-Time
systems (AMoDE-RT) design approach for embedded real-time system. It combines MDE
techniques with AO concepts to address the problems mentioned above by increasing the
abstraction level during design, and allowing a modular handling of functional and non-
functional requirements. Especially, AMoDE-RT separates requirements handling from
earlier design phases until the implementation. For that, it uses an AO requirements anal-
ysis method, and allows the specification of aspects within UML models [OMG 008a]
and in code generation rules. AMoDE-RT is supported by a code generation and aspects
weaving tool called Generation of Embedded Real-Time Code based on Aspects (GenER-
TiCA). This tool takes as input an UML model enhanced with aspects and a set of mapping
rules to generate source code for different target platforms. AMoDE-RT has been success-
fully applied in different real-world applications of embedded real-time systems, focusing
on automation applications. Obtained results show remarkable improvements concerning
modularization of system’s requirements handling. As a consequence, previously devel-
oped artifacts (e.g. model elements, mapping rules, code) have been easily reused. These
results, along with the increase in the abstraction level (by means of using UML models),
lead to evidences that a decrease in design complexity has been obtained, since designers
do not need to concern on low level details in new designs using the same target platform.

This paper is structured as follows: Section 2 provides an overview on the AMoDE-
RT approach; Section 3 discusses the aspect-oriented framework proposed in this work;
Section 4 describes GenERTiCA’s main features; Section 5 presents the validation of this
work, and finally Section 6 discusses some conclusions and future work directions.

2. Related Work
This section provides a brief assessment of related works, highlighting the main contri-
butions of this thesis. A more comprehensive evaluation of the state-of-art is provided
in [Wehrmeister 2009]. Concerning MDE techniques for embedded and real-time sys-
tems, approaches such as [Edwards and Green 2003] and [Perseil and Pautet 2008] use

1http://www.embedded.com/design/testissue/210200580

130

UML with its standard semantics, i.e. using OO concepts that do not deal with func-
tional and non-functional requirements in a modularized and effective way. On the other
hand, approaches such as [Tesanovic et al. 2005] and [Rajkumar 2007] provide separation
of concerns to handle requirements by using AO concepts, but do not use a standard mod-
eling language, i.e. they propose their own modeling language. This work proposes to
merge both worlds, i.e. it combines AO concepts with UML-based MDE to design embed-
ded real-time systems. It proposes high-level aspects to handle a subset of non-functional
requirements commonly found in embedded and real-time systems domains, allowing sep-
aration of concerns during the whole development cycle.

In addition, there are many code generation tools. [Andersson and Höst 2008] pro-
poses a tool to generate SystemC code from state diagrams. Commercial tools, e.g. Ratio-
nal Rose [IBM 2010] or Artisan Studio [Artisan 2010], can generate classes’ skeleton code
from class diagrams for Java and C/C++ languages. These tools usually do not combine
structural and behavioral information specified in different UML’s diagrams, and hence,
only generate automaticaly a minor code portion. Normally, these tools are not flexible
since their generation process cannot be customized to support different target languages.
GenERTiCA proposes a more innovative approach: (i) its script-based approach allows to
generate code for different target platforms; (ii) it separates concerns on the specification of
transformation rules; (iii) it uses UML’s structural and behavioral diagrams (not only class
or state diagrams) to generate code; and (iv) it considers aspects (specified in the UML
model) during code generation, allowing the use of AO concepts in non-AO languages.

3. Overview of AMoDE-RT
Aspect-oriented Model-Driven Engineering for Real-Time systems (AMoDE-RT)
[Wehrmeister et al. 2007] allows a smooth transition from initial specification phases to
implementation phases. By using MDE techniques combined with AO concepts, AMoDE-
RT increases the abstraction level during design to address the increasing complexity of
embedded real-time systems. Figure 1 shows an overview of AMoDE-RT.

The first step in AMoDE-RT is gathering requirements and constraints of the em-
bedded real-time system. This is performed using the RT-FRIDA [Freitas et al. 2007] ap-
proach, which provides a methodology and toolset (e.g. templates, checklists, mapping
tables, and requirements conflict resolution tables) to assist in gathering functional and
non-functional requirements. The discussion of RT-FRIDA is out of scope of this paper,
interested readers should refer to [Freitas et al. 2007].

The next step is the modeling phase. The requirements gathered in the previous
step are used to specify system’s structure and behavior using UML [OMG 008a] dia-
grams annotated with stereotypes of the MARTE profile [OMG 008b]. These diagrams
are successively refined up to achieving the desired level of detail, providing sufficient in-

Libraries

Mapping Rules
(XML)

Sw/Hw Platforms

Aspects
Implementation

(8)

RT-UML Model
Transformation

(5)

DERCS
Model

(6)

Generated
Source Code
(9)

Code Compilation
and Synthesis

(10)

Distributed Embedded
Real-Time System

(11)

Modeling
(3)

Requirements
(2)

Requirements
Analysis (1)

(4)

RT-UML
Specification

(7)

Code
Generation

Aspects
Weaving +

GenERTiCA

Figure 1. Overview of the AMoDE-RT design approach
131

formation for system realization. In the initial UML model, elements describe concepts
that are closer to the target application domain (e.g. sensors, steering devices, robot arms,
etc.).Higher abstraction levels are easier to understand and allow designers to focus on ap-
plications foundations instead of concerning about implementation issues. These elements
represent the handling of functional requirements. The specification of non-functional re-
quirements is carried on using a high-level aspects framework called Distributed Embedded
Real-time Aspects Framework (DERAF) [Wehrmeister 2009]. DERAF is used in two mo-
ments: (i) earlier design phases and (ii) in the implementation phase, more specifically, in
the code generation/aspects weaving step. For details see Section 4.

Although increasing the abstraction level during design is good for managing com-
plexity, the higher the abstraction level is, more are the chances of ambiguous or erroneous
interpretations of the same specification. As UML allows specification of overlapping in-
formation (i.e. the same feature can be specified with different diagrams and/or elements),
the produced model can be ambiguous. However, for code generation purposes, these
ambiguities must be removed. These issues are addressed as follows: (i) modeling guide-
lines; and (ii) model transformation. Considering (i), a set of guidelines has been defined
in AMoDE-RT, i.e. a subset of UML diagrams is used, as well as rules defining how to
specify application’s elements using these diagrams. Considering (ii), transformation rules
have been created to transform UML models into instances of the Distributed Embed-
ded Real-time Compact Specification (DERCS) [Wehrmeister et al. 2009] , a more concise
PIM suitable for code generation (see Section 5). UML-to-DERCS transformation is per-
formed automatically by GenERTiCA tool. Unfortunately, due to space constraints, this
paper cannot detail these issues. Interested readers are a referred to [Wehrmeister 2009].

The third and fourth steps of AMoDE-RT (boxes 5 and 7 in Figure 1) are performed
by GenERTiCA. Source code generation is performed from the DERCS model, which has
been created from the UML model. In fact, GenERTiCA performs not only code genera-
tion, but also aspects weaving. The code generation process executes a set of small scripts
with mapping rules, in order to perform model-to-text transformations from DERCS ele-
ments to constructions in the target platform. These scripts create code fragments. Source
code files are made up of these generated fragments. The code generation process iterates
all DERCS model elements looking for the script that defines the mapping from the element
into suitable constructs in the target platform. Furthermore, if the element under evalua-
tion is affected by any DERAF aspect, GenERTiCA weaves the aspects adaptations into
the generated code fragment. GenERTiCA uses DERAF aspects implementations, which
are also scripts containing target platform’s constructions, to modify the code fragment.
More details on GenERTiCA are provided in Section 5

Finally, third party tools are used to compile and synthesize the generated applica-
tion code. Thereafter, system’s implementation is almost ready to be executed or tested.
Details on all subjects presented in this Section are provided in [Wehrmeister 2009].

4. Aspects Framework for Modeling and Implementation
One of the main contributions of this work is the Distributed Embedded Real-time As-
pects Framework (DERAF). DERAF provides a set of aspect to deal with a subset of the
non-functional requirements [Freitas et al. 2007] found in the domain of embedded real-
time systems. DERAF is an extensible high-level aspects framework to be used in both
earlier design and implementation phases. The main idea is to provide aspects that en-
hance the modeled system by means of adding specific behavior and structure to specify
non-functional requirements handling. These “new” features are independent from any

132

specific implementation technology. Designers choose DERAF aspects to specify the non-
functional requirements handling based on aspects’ high-level semantics, which must be
followed in their implementation using a target platform. Thus, in UML model, DERAF
aspects are used as “black boxes”. Some examples of DERAF aspects are: PeriodicTiming
provides all behavior to deal with periodic activation of tasks; ConcurrentAccessControl
provides all features to control the access of shared resources; and EnergyMonitoring adds
elements to monitor energy consumption, warning if a specified threshold is reached.

DERAF aspects are specified in UML using the Aspects Crosscutting Overview
Diagram (ACOD) [Wehrmeister et al. 2007], an extension to the class diagram proposed
in this work. In addition to ACOD, this work also proposes a new profile to specify AO
concepts in UML models. ACOD shows aspects and classes (which are affected by them).
Aspects are depicted as classes annotated with the <<aspect>> stereotype, along with
information on their adaptations, join points, and pointcuts. Join points describe the selec-
tion of which elements are affected by aspects’ adaptations. For their specification, this
work uses Join Point Designation Diagrams (JPDD) [Stein et al. 2006].

As previously stated, DERAF aspects are also used during code generation process.
Aspects’ adaptations are implemented as scripts that are executed by GenERTiCA. In other
words, a script contains target platform’s constructions that implement aspects’ semantics.
For instance, an adaptation script can append new commands at the end of a generated
code fragment. This extra code deals with the non-functional requirement(s) addressed by
the DERAF aspect. As demonstrated in the developed case studies, it is possible to use AO
concepts with non-AO target languages, such as Java or C++.

5. Code Generation and Aspects Weaving Tool
According to [Selic 2003], to enable the use of MDE, it is important to provide tool
support any proposed MDE approach. Thus, to support AMoDE-RT, this work cre-
ated the Generation of Embedded Real-Time Code based on Aspects (GenERTiCA)
[Wehrmeister et al. 2008], a configurable tool for code generation and aspects weaving.
It automates the production of source code from UML models. For that, GenERTiCA
transforms a UML model into a DERCS model, upon which mapping rules are applied to
generate code and also to weave aspects adaptations.

As mentioned, the Distributed Embedded Real-time Compact Specification
(DERCS) has been proposed to address the ambiguity problem in UML models, aiming at
source code generation. There are two remarkable contributions of DERCS: (i) it combines
behavior information which are spread in many different diagrams’ elements of UML’s
meta-model into fewer elements; and (ii) it provides meta-model elements to represent AO
concepts. Basically, a DERCS model represents functional requirements handling in terms
of OO concepts (e.g. objects, methods’ behavior, etc.), and non-functional requirements
handling using DERCS’ AO elements (e.g. aspects, pointcuts, join points, etc.).

Additionally, this work proposed UML-to-DERCS transformation heuristics,
which are followed by GenERTiCA to keep the equivalence between models. For in-
stance, a sequence diagram can produce different DERCS’s Behavior elements (with
their sequence of actions) depending on the diagram’s message nesting. Furthermore,
sequence diagrams annotated with <<JPDD>> stereotype are transformed into DERCS’
JoinPoint elements. JPDDs are evaluated and all DERCS’ elements that match with
their search criteria are selected and included in the corresponding JoinPoint elements.
There are many more transformation rules, for details see [Wehrmeister 2009].

GenERTiCA is a script-based code generation tool. It uses a set of small scripts

133

Platform

Aspect1
Declaration

Adaptations
Structural

Behavioral

Class

Attributes

Messages
Assigment

Expression

Stage Change

Message Sending

Object

Declaration

Primary Elements

Behavior

Data Types

Visibilities

Parameter Kind

Implementation

Declaration

Implementation

Branch

Loop

Destruction

Return

Aspectn

Aspects

Creation
…

01 for each Class in DERCS Model do

02 find Script for Class;

03 execute Script;

04 for each Element in Class do

05 // Element can be attribute and method
06 find Script for Element;

07 execute Script;

08 for each Aspect in DERCS Model do

09 if (Aspect affects Element)

10 // Element is found any join point
11 // in Aspect's pointcuts
12 for each Adaptation in Aspect do

13 find Script for Adaptation;

14 execute Script;

15 end for

16 end if

17 end for

18 end for

19 end for

...

235 <PeriodicTiming>

236 <Adaptations>

...

253 <Behavioral Name="LoopMechanism" ModelLevel="no">

254 while (isRunning()) $Options.BlockStart
255 \n$CodeGenerator.getGeneratedCodeFragment(1)
256 \n$Options.BlockEnd
256 </Behavioral>

258 </Adaptations>

259 </PeriodicTiming>

...(a)

(b)

(c)

Figure 2. (a) Mapping rules; (b) Code generation/aspects weaving process;
(c) Example of an aspect’s Implementation

(written using the VTL2) to produce code fragments from the DERCS model. There is
a script for each DERCS’ element. Thus, GenERTiCA does not use a single script to
specify mapping rules for all model’s elements, as it is commonly found in code generation
tools. In this sense, GenERTiCA’s approach improves the separation of concerns to define
mapping rules from model elements into target platform’s constructions, since designers
need to focus only on few elements per script rather than the whole meta-model.

GenERTiCA’s scripts are organized in a XML file according to the organization
depicted in Figure 2a. Each node represents a DERCS element. Scripts are stored in tree’s
leafs. The code generation and aspects weaving process is outlined in Figure 2b. GenER-
TiCA passes through all DERCS elements, trying to match the element under evaluation
with any XML tree’s node, in order to find the appropriate mapping rule script for that ele-
ment. Once the script is found, it is executed and the code fragment is generated. A script
has complete access to element’s information, as well as to the entire DERCS model, al-
lowing the specification of both simple and elaborated mapping rules. Although it was not
formally proved, this code generation approach preserve the equivalence between model’s
elements and target language’s constructions, i.e. by comparing the generated code with
the mapping rules scripts, it is possible to trace back to the source element in the model.

As mentioned, DERAF aspects’ implementations are also done using script. Fig-
ure 2c shows a small example. As depicted in Figure 2b, if the element under evaluation
is affected by any aspect, its adaptations are executed and the generated code fragment is
modified to include aspects’ non-functional requirements handling. GenERTiCA’s aspect
weaving approach, and also the use of DERAF in UML model, are remarkable contribu-
tions, since they allow designers to use AO concepts even if the target platform does not
support AO. Although the simplicity of this approach, it separates effectivelly the require-
ments handling, as demonstrated in the case studies performed in the scope of this work.

6. Validation and Results
The proposed ideas were validated using three real-world applications of embedded real-
time systems that were used as case studies: the movement control system of an unmanned
aerial vehicle; the control system of an industrial packing system; and, the movement
control of an automated wheelchair. For each case study, two versions have been cre-

2Velocity Template Language, http://velocity.apache.org

134

ated: one object-oriented and one aspect-oriented.They have been compared using a subset
of the software engineering metrics for AO systems presented in [Sant’anna et al. 2003].
For these case studies’ implementation, mapping rules for two different target platforms,
namely RT-FemtoJava [Wehrmeister et al. 2004] and ORCOS platforms [UPB 2008], have
been specified to generate source code from their AO version’s model.

The case studies helped on evaluating the reusability quality of the artifacts cre-
ated during design, and also the decrease in the effort to produce systems’ implementa-
tion. Reusability was assessed by means of understandability and flexibility factors. They
have internal attributes such as system size, cohesion, coupling and separation of concerns,
which can be measured by the mentioned AO metrics. To summarize, almost all metrics
(calculated upon the case studies’ models) have better values for AO model compared to
OO one, ranging from 37% to 66% in average. Considering the understandability factor,
key issues such as separation of concerns, cohesion and coupling improved around 45%
in average. For flexibility factor, AO model elements are more cohesive and decoupled
compared to OO model. Separations of concerns results show that elements in AO model
have more specific and well-defined roles than in OO model.

Further, DERAF aspects have been reused in different projects. The case studies
used 12 from a total of 21 aspects available in DERAF (i.e. 57%). From them, 8 aspects
(66%) were used in at least two case studies. Furthermore, if the implementation follows
aspects adaptations’ high-level semantics, their implementation can also be reused, as oc-
curred in all case studies. AMoDE-RT’s approach for join points specification also allows
JPDDs reuse, since 52% of all created JPDDs were used in all case studies.

Regarding GenERTiCA usage, the generated source code files are more complete3

than the ones obtained using available commercial or academic code generation tools,
which usually only provide class skeletons and/or simple state machine code. In these
case studies, it was possible to generate an amount of source code lines from 1.73 to 4.2
times the amount of mapping rules script’s lines. For instance for RT-FemtoJava, from a
total of 338 script lines, 3080 lines of Java was generated (an average amount of 1026 lines
per case study). It is importat to highlight that the mapping rules were create in the first
case study and reused without modification for the other two. A comprehensive discussion
on this assessment is provided in [Wehrmeister 2009]

7. Conclusion and Future Work
This paper presented a design approach to deal with the increasing design complexity
of embedded real-time systems. A design is better understood if its functional and non-
functional concerns are well separated. Artifacts can be reused in different designs with
less effort if they are cohesive and decoupled. Thus, it is expected that previously devel-
oped artifacts can be easily reused to decrease the effort and shorten the design time. In
this sense, AMoDE-RT can be considered a step towards this aim, since it provides not
only separation of concerns in earlier design phases, but also a smooth transition from
requirements specification to source code implementation.

Case studies’ results leads to the conclusion that improvements achieved with
AMoDE-RT increase with the number of crosscutting non-functional requirements. Ex-
tracted metrics confirm that, using MDE and AO, the same benefits achieved in traditional
information systems can also be obtained in the design of embedded real-time systems. In
this sense, DERAF is a remarkable contribution due to the lack of aspects with platform
independent semantics created specifically to embedded real-time systems domain.

3GenERTiCA has generated not only classes’ attributes and methods signatures, but also their associated behavior

135

Considering the code generation, it has been demonstrated that GenERTiCA pro-
duces a greater amount of source code from UML models. GenERTiCA is able to generate
not only classes’ structure (i.e. attributes and methods signature), but also their associated
behavior. Other contribution is that GenERTiCA considers aspects adaptations during code
generation process, enabling the use of AO concepts even in non-AO platforms.

As future work, other case studies are being executed. Mapping rules are being cre-
ated for other target platforms, e.g. VHDL. In addition, the presented approach is intended
to guide the development of an adaptable and flexible middleware for wireless sensor net-
works. AO concepts may allow the inclusion of middleware’s different features as they are
demanded, and this way, promoting the desired flexibility and adaptability.

References
Andersson, P. and Höst, M. (2008). Uml and systemc: Comparison and mapping rules for automatic code

generation. In Villar, E., editor, Embedded Systems Specification and Design Languages, pages 199–209.
Artisan (2010). Real-Time Studio. http://www.artisansoftwaretools.com.
Edwards, M. and Green, P. (2003). Uml for hardware and software object modeling. In Lavagno, L., Martin,

G., and Selic, B., editors, UML for Real: Design of Embedded Real-Time Systems, pages 127–147.
Freitas, E. P. et al. (2007). DERAF: A high-level aspects framework for distributed embedded real-time

systems design. In Early Aspects: Current Challenges and Future Directions, pages 55–74. Springer.
IBM (2010). Rational Rose. www-01.ibm.com/software/awdtools/developer/rose.
Kiczales, G. et al. (1997). Aspect-oriented programming. In Proc. of European Conference on Object-

Oriented Programming, pages 220–242, Berlin. Springer-Verlag.
OMG (2008a). Unified Modeling Language. www.omg.org/spec/UML/2.2/Superstructure.
OMG (2008b). UML profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE).

www.omg.org/cgi-bin/doc?ptc/2008-06-08.
Ossler, H. and Tarr, P. Using subject-oriented programming to overcome common problems in object-

oriented software development/evolution. In Intl. Conf. on Software Engineering, pages 687–688.
Perseil, I. and Pautet, L. (2008). Foundations of a new software engineering method for real-time systems.

Innovations in Systems and Software Engineering, 4(3):195–202.
Rajkumar, R. (2007). Model-based development of embedded systems: The sysweaver approach. In Ramesh,

S. and Sampath, P., editors, Next Generation Design and Verification Methodologies for Distributed Em-
bedded Control Systems, pages 35–46. Springer Netherlands.

Sant’anna, C. et al. (2003). On the reuse and maintenance of aspect-oriented software: An assessment
framework. In Anais do XVII Simpósio Brazilerio de Engenharia de Software, number 17, pages 19–24.

Selic, B. (2003). The pragmatics of model-driven development. IEEE Software, 20(5):19–25.
Stein, D. et al. (2006). Expressing different conceptual models of join point selections in aspect-oriented

design. In 5th Intl. Conf. on Aspect-Oriented Software Development, pages 15–26, New York. ACM.
Tesanovic, A. et al. (2005). Aspects and components in real-time system development: Towards reconfig-

urable and reusable software. Journal of Embedded Computing, 1(1/2005):17–37.
UPB (2008). Organic reconfigurable operating system. http://orcos.cs.uni-paderborn.de.
Wehrmeister, M. A. (2009). An Aspect-Oriented Model-Driven Engineering Approach for Distributed Em-

bedded Real-Time Systems. PhD thesis, Federal University of Rio Grande do Sul, Brazil. www.inf.
ufrgs.br/˜mawehrmeister/wehrmeister_thesis_final.pdf.

Wehrmeister, M. A. et al. (2004). Optimizing real-time embedded systems development using a rtsj-based
api. In On the Move to Meaningful Internet Systems: OTM 2004 Workshops, pages 292–302. Springer.

Wehrmeister, M. A. et al. (2007). An aspect-oriented approach for dealing with non-functional requirements
in a model-driven development of distributed embedded real-time systems. In 10th Intl. Symp.on Object
Oriented Real-Time Distributed Computing, pages 428–432, Washington. IEEE Computer Society.

Wehrmeister, M. A. et al. (2008). GenERTiCA: A tool for code generation and aspects weaving. In 11th
IEEE Intl. Symp. on Object Oriented Real-Time Computing, pages 44–54. IEEE Computer Society.

Wehrmeister, M. A. et al. (2009). An infrastructure for UML-based code generation tools. In Analysis,
Architectures and Modelling of Embedded Systems, volume 310/2009, pages 32–43. Springer, Boston.

136

