
An Efficient GPU-based Implementation of Recursive Linear
Filters and Its Application to Realistic Real-Time Re-Synthesis

for Interactive Virtual Worlds
Fernando Trebien, Manuel Menezes de Oliveira Neto (orientador)

Programa de Pós-Graduação em Computação (PPGC)
Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)

Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{ftrebien,oliveira}@inf.ufrgs.br

Abstract. In this work, I present a new technique for implementing digital recur-
sive linear filters using GPUs supporting real-time processing with 2 to 4×more
coefficients than achieved by an equivalent implementation on CPUs, eliminat-
ing the need of CPU-based processing and improving performance by avoid-
ing memory transfers. It consists of unrolling the filter equation and “trading”
dependences until an expression containing available samples is obtained. Re-
sulting convolutions are then computed using the FFT. For demonstration, an
LPC filter is designed to synthesize sound for a scene parametrically (by object
material and collision velocity and angle) and computed using the technique.

1. Introduction
This work summarizes a Master’s thesis [Trebien 2009] (check References for the down-
load URL), and is also associated with one scientific article [Trebien and Oliveira 2009].

From computer games and other interactive graphics applications to mobile
phones to the recording studio, there has always been demand for more realistic and
pleasing sound effects. Some of these processes present high computational requirements
(e.g., reverberation through convolution), and some provide higher sound quality when
more processing power is available (e.g., auralization). Also, multiple processes are often
combined to build a soundstage. Since many applications also require processing audio
streams in real-time (i.e., responding to user inputs), CPU computational power often lim-
its the number and types of processes that can be combined, ultimately forcing the use of
lower-quality sound processing methods.

On the other hand, recent GPUs have presented peak throughput capabilities that
far exceed those of CPUs. Although 2D and 3D signal processing have been well explored
on the GPU [Sumanaweera and Liu 2005], very little been studied on GPU-based 1D
signal processing (e.g., no general solution for linear recursive filters on GPUs has been
published yet). The lack of such methods has precluded GPUs from being used for serious
sound processing, which could greatly benefit graphics applications.

I present a new technique that allows efficient implementations of recursive 1D
filters on GPUs, which can be used to re-synthesize and process 1D signals in real time.
Its effectiveness and relevance to computer graphics is demonstrated by re-synthesizing
realistic sounds of colliding objects made of different materials (e.g., glass, plastic, and
wood) in real time. The sounds can be customized to dynamically reflect object properties,

9

such as velocity and collision angle. Since the entire process is done through filtering, it
essentially requires a set of coefficients describing material properties (thus having a small
memory footprint). A method to obtain these coefficients is described. Given its flexible
and general nature, this approach replaces with some advantages, although not entirely,
the traditional CPU-based techniques that perform playback of pre-recorded sounds.

2. Related Work
Gallo and Tsingos [Gallo and Tsingos 2004] reported an application where 3D
sound sources are clustered relative to the listener and mixed using the GPU
(also with Doppler shifting and HRTFS filtering), finding that their GPU im-
plementation was 20% slower than their CPU implementation. Jedrzejewski
and Marasek [Jedrzejewski and Marasek 2004] used the GPU for computing im-
pulse responses via ray-tracing, with no signal processing on the GPU. Ro-
belly et al. [Robelly et al. 2004] presented a mathematical formulation for com-
puting time-invariant recursive filters on parallel architectures, with high speedups
when both filter order and number of parallel processors are high. Trebien and
Oliveira [Trebien and Oliveira 2008] mapped audio concepts to graphics concepts and
used a graphics API to perform basic audio operations and synthesize basic wave-
forms, achieving significant speedups. Zhang et al. [Zhang et al. 2005] have used
GPUs for modal synthesis by synthesizing modes separately and mixing the inter-
mediate results on the GPU. Bonneel et al. [Bonneel et al. 2008] developed a tech-
nique for efficient modal synthesis in frequency domain, adequate for sounds com-
posed of narrowband modes, and achieved speedups of 5 to 8× compared to a time-
domain solution. Finally, several works present adaptations of the FFT algorithm for
GPUs [Sumanaweera and Liu 2005], and FFT implementations are already available in
software libraries for GPUs [Govindaraju and Manocha 2007].

3. Recursive Filter Realization for GPUs
A time-invariant causal digital linear filter with a single input signal is defined by

wn =
P∑
i=0

bixn−i (1a) yn = wn −
Q∑

j=1

ajyn−j (1b)

where bi are feed-forward coefficients, aj are feedback coefficients, P is the feed-forward
filter order, and Q is the feedback filter order. If all aj are null, the filter output depends
only on its input and is therefore called non-recursive. In this case, any input sample
affects the value of at most P output samples, and for that reason, non-recursive linear
filters are formally called finite impulse response (FIR) filters. Otherwise, if any aj is
non-null, a recursion is established on the output signal, propagating the effect of any
input sample indefinitely. Because of that, recursive linear filters are called infinite
impulse response (IIR) filters. The coefficients aj and bi are usually constant for
each instance of processing, in which case the filter is said to be time-invariant. For
simplicity, the sets of bi’s and aj’s are referred to as vectors A and B, respectively, so that
A =

[
1 a1 . . . aQ

]T and B =
[
b0 b1 . . . bP

]T .

3.1. Eliminating Data Dependences
Equation 1a can be implemented with existing methods [Garcı́a 2002]. To avoid the need
for synchronization, Equation 1b is unrolled until all necessary output samples are avail-

10

able from the computation of preceding buffers. Unrolling it one step yields

yn = wn −
Q∑

j=1

ajyn−j = wn − a1yn−1 −
Q∑

j=2

ajyn−j

= wn − a1wn−1 − a1
Q+1∑
j=2

aj−1yn−j −
Q∑

j=2

ajyn−j

which is an expression for yn in terms of wn, wn−1 and yn−2, yn−3, . . . , yn−Q−1. By re-
peating this process, one observes that, at them-th step, a dependence on yn−m is replaced
with a dependence on wn−m and another on yn−m−Q+1:

yn =
m−1∑
k=0

ckwn−k +

Q−1∑
j=0

djyn−m−j (2)

C =
[
c0 c1 . . . cm−1

]T
D(m) =

[
d0 d1 . . . dQ−1

]T
D(m) and C are computed after m iterative steps from

D(0) =
[
1 0 . . . 0

]T
D(k+1) = D(k) [0]A′ + SD(k)

A′ =
[
−a1 −a2 . . . −aQ

]T
C =

[
D(0) [0] D(1) [0] . . . D(m−1) [0]

]T
D(k) [i] is the i-th coefficient of vector D(k) and

S =

0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . 1
0 0 0 0 . . . 0

Note that SD(k) represents a positional right shift on vector D(k), so it can be optimized.
Since all samples up to yn−m are now available, one can define an intermediate value
yk = yk−m if k ≤ n and yk = 0 otherwise. Since Equation 1a can be expressed as
wn = (b ∗ x)n (i.e., w = b ∗ x), Equation 2 can then be expressed in terms of yn as

yn = (c ∗ b ∗ x)n + (d ∗ y)n (3)

where ∗ represents the convolution operator, c and d represent signals respectively equal
to vectors C and D(m) in every defined position and null otherwise. Since c and d only
depend on the aj coefficients, c ∗ b and d can be precomputed. x is obtained by accessing
the current and previous input buffers, and y is obtained from previous output buffers.

11

5 6 3 47 50 1 2 3* 0 6*

C*BX D(m) Y

5 6 3 47 5

7 7
input output

6

+

C*B*X D(m)
*Y

Figure 1. Summary of operations for processing an input audio block.

The DFT can be used to compute a convolution between two discrete signals, or,
for efficiency, an FFT, but care must be taken when using FFTs for fast convolution since
they assume that the inputs are periodic signals, which is not the case. There are several
known ways to implement fast convolution using FFTs [Haykin and Veen 1998]. For this
work, I have implemented overlap-save, which adds padding (i.e., null samples) to the
input vectors to obtain a partial output of the acyclic convolution.

To apply overlap-save to Equation 3, let r represent the number of samples in a
block of audio, CB a vector containing the linear convolution of c and b with at least
r null samples at its end, and D representing d with at least r null samples at the end.
The FFTs =(CB) and =(D) of CB and D, respectively, are precomputed. During the
actual processing, the FFTs =(X) and =(Y) of X and Y are computed (those do not
have padding), then multiplied by the spectra of CB and D, respectively. The output is
obtained by applying the IFFT to obtain time-domain signals, then adding the two:

Yn = (=−1(=(CB)�=(X)) + =−1(=(D)�=(Y)))n

The symbol� represents the element-wise multiplication and=−1 is the IFFT. All vectors
X , Y , CB and D are maintained in memory as circular buffers of blocks of audio. The
output block replaces one position inside the circular buffer containing part of Y . Figure 1
illustrates this process in time domain.

4. A Demonstration Scenario
The algorithms described in the previous sections are implemented using CUDA and the
CUFFT library. To demonstrate the relevance of this approach to real-time graphics appli-
cations, a simple application was created to simulate the collisions among a set of spheres
and a piecewise planar surface. The physical simulation is based on Newton’s laws, and
the collision detection, on single-point contacts. The application also simulates different
materials by assigning different restitution coefficients to the scene objects. The piecewise
planar surface is modelled as made of wood and the spheres as either glass, wood or plas-
tic. In the demo application, all spheres have the same material, but one could modify this
sound generating process to accommodate a greater number of materials simultaneously.
Figure 2 shows two screenshots of the actual application.

As objects collide, the application sends messages to the audio synthesis process,
which then synthesizes the appropriate sound for each event. The messages contain infor-
mation such as energy lost in impacts and type of contacting bodies.

In order to generate realistic sounds using filtering instead of sample playback,
one filter for each type of material must be designed. This can be obtained by computing

12

Figure 2. Snapshots of the demonstration scene.

the filter coefficients from actual sound of the material. Such a filtering-based approach
has advantages over sample playback since by changing a few parameters, one can re-
synthesize variations of the original sound. For instance, the sound of impacts between
objects at different speeds and contact angles can be simulated.

4.1. Computing Filter Coefficients from Actual Sounds

One of the most useful methods for computing the required filter coefficients is re-
synthesis through linear predictive coding (LPC) [Harrington and Cassidy 1999]. LPC
designs a filter that predicts the output from part of the input by minimizing the error ε
in xn =

∑Q
j=1 ajxn−j + εn. Note that this is actually a recursive linear filter where x

is the output and ε is the input. The original signal can be exactly re-synthesized given
the filter coefficients aj and the error signal ε (a residual signal), which is usually simple
enough to be replaced by an approximate primitive waveform (e.g., a pulse, a pulse train
or white noise with envelope). While perfect re-synthesis is not achieved, the resulting
signal sounds similar to the original because the filter models resonances of the sound
source. This method not only saves memory but also allows the generation of several
similar sounds by synthesizing slightly different residuals.

For the demo application, coefficients are precomputed for a number of sounds
representing the strike between two spheres and the strike with a wooden surface. I
recorded waveforms for each material in a loosely controlled environment (without noise
dampening, for instance) but with acceptable results, since physical accuracy is not a re-
quirement. By inspection, I noticed that residuals obtained from each recording seemed to
approximate a waveform with a short, somewhat low-pass filtered pulse at the beginning,
followed by a long decaying filtered white noise tail, suggesting that this combination
would suffice. To synthesize the residual, a granule of a Hann-windowed sinc function
is generated for each sound event (i.e., collision). The resulting signal is then convolved
(by the filter) with another signal B consisting of unfiltered exponentially-decaying white
noise. Convolution with a windowed sinc is a form of low-pass filtering, simulating the
attenuation in high frequencies observed in actual sounds of less intense collisions.

The filters that the demo application executes to re-synthesize collision sounds
are formed by the non-recursive coefficients from B and the recursive coefficients A ex-
tracted by LPC. The application uses two filters: one (SS) for sphere-on-sphere collision
sounds and another (SP) for sphere-on-plane collision sounds. A polyphonic synthesizer
generates a sinc pulse for every collision. For a sphere-on-plane collision, the pulse is fed

13

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

31

Real Part

Im
ag

in
ar

y
P

ar
t

(a) Pole-zero plot for the filter. Many poles lie
close to the unit circle, suggesting that a digital
implementation may be unstable.

0 0.02 0.04 0.06 0.08 0.1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Impulse response to the filter implemented
using a block size of 256 samples. Error accu-
mulation becomes evident around t = 0.06.

Figure 3. Behavior of LPC-designed filter with unstable GPU implementation.

to both filters, but for sphere-on-sphere, it is fed only to SS. The amplitude parameter α
and the bandwidth parameter β are proportional to impact intensity.

For every sphere that is rolling over a surface, a quasi-periodic train of pulses is
generated with amplitude and bandwidth proportional to the sphere’s speed. The interval
between each pulse has a periodic component and a random Poisson component.

5. Filter Stability

Stability is not guaranteed for filters designed with LPC. Generally, increasing the number
of coefficients generates poles in the filter’s transfer function that are inside but very close
to the unit circle eıω on the z domain, causing some numeric error to be fed back into
the filter at some frequencies. This can usually be circumvented by performing LPC
extraction with fewer coefficients. Figure 3(a) shows the pole-zero plot of a filter designed
with LPC, and Figure 3(b) shows the impulse response of the filter when running with 256
samples per block, demonstrating that this particular implementation is not stable. The
same filter running with 512 samples per block is stable.

This problem happens particularly due to the use of FFTs, whose main source of
error is the implementation of floating point operations, which is not IEEE-754 compliant
on current GPUs. Another source of error is the type of operations involved, which cor-
rectly suggests that different FFT algorithms on the same platform provide different error
bounds [Meyer 1989]. In CUDA, FFTs are implemented in CUFFT, which does not spec-
ify the algorithms it uses or their error bounds. An equivalent CPU-based implementation
using FFTW3 appears to be less subject to this problem.

A simple heuristic can be given to test for stability: run an impulse signal through
the filter, record the output, and analyze it using the STFT in search of decaying and
increasing modes. All frequencies are expected to be decaying, so if a number n of
frames contain less energy in all frequencies than the first frame, the filter is highly likely
to be stable. Greater values of n provide greater accuracy.

14

6. Results
The LPC implementation for computing the filter coefficients from the sounds of the ma-
terials (Section 4.1) is written in MATLAB. The physically-based simulation depicted in
Figure 2 is written in C# as an independent application and integrated with the CUDA im-
plementation using inter-process communication. The sound generating process creates a
shared memory block to hold a vector with information about each sphere, and a message
queue for collisions. The use of shared memory represents a very small overhead, allow-
ing both processes to run in real-time with no perceptible delays. The sound generating
process reads this information once per input block and updates the pulse-train generation
parameters. A video showing the execution of the application and recorded in real time
can be downloaded from http://www.inf.ufrgs.br/Audio_on_GPU/en/media/.

To compare the performance of the GPU approach against a CPU implementation,
a low overhead modification was added to the procedure called by the low-latency audio
interface (Steinberg ASIO). This callback receives and provides buffers to the audio de-
vice and with this modification additionally checks if a buffer is available for playback.
If this condition is sustained for consecutive calls (at least 10 seconds of audio), the sys-
tem signals that the real-time test has passed. This method is then used to compare an
implementation in C++ with the CUDA implementation running most of its computation
on the GPU. Since the technique relies heavily on the performance of the FFT algorithm,
we used the FFTW and CUFFT, both considered highly optimized, for the CPU and the
GPU implementations, respectively. Performance was measured by increasing the size
of vectors involved in convolutions until real-time operation could not be sustained any-
more. The signal stream consisted of two channels of 32-bit floating-point samples at a
sampling rate of 44.1 kHz. The test was repeated for different buffer sizes (which affect
the number of convolutions being performed) and revealed an increase of a maximum 2
to 4× more coefficients when running the GPU-based implementation.

7. Conclusion
A new technique for efficient implementations of 1D digital filters on GPUs is presented
which may enable new 1D signal processing applications that require real-time filtering
with a large number of coefficients. This solution is the first presented in the literature.

The relevance of these new GPU algorithms for computer graphics is demon-
strated using a real-time 3D application performing physically-based collision detection.
At a collision event, the application re-synthesizes realistic sounds for the colliding ob-
jects based on materials, speed, and collision angles. The re-synthesis process uses co-
efficients (computed from recordings of actual sounds) specifying a recursive filter that
describes the materials’ acoustic properties. These techniques provide a more flexible way
of using realistic sounds in interactive applications and constitute an interesting alterna-
tive to the traditional sample playback approach. With appropriate parameters, these tech-
niques can re-synthesize a large variety of realistic sounds from a reference one, greatly
benefiting games and interactive applications that require immediate auditory feedback.
Other audio applications that may benefit from recursive filtering include equalization,
multi-band compression, vocoder, modal synthesis and subtractive synthesis.

Most of the filter theory and of filter applications are based on time-invariant fil-
ters. The presented technique, however, cannot be easily extended for time-varying filters

15

(where coefficients are replaced by functions of n) and for non-linear filters. This is es-
pecially troublesome with non-linear recursive filters, and finding alternative solutions to
this problem is an interesting challenge for future exploration.

References
Bonneel, N., Drettakis, G., Tsingos, N., Viaud-Delmon, I., and James, D. (2008). Fast

modal sounds with scalable frequency-domain synthesis. In SIGGRAPH ’08: ACM
SIGGRAPH 2008 papers, volume 27, pages 1–9, New York, NY, USA. ACM.

Gallo, E. and Tsingos, N. (2004). Efficient 3d audio processing with the gpu. electronic
proceedings of the acm workshop on general purpose computing on graphics proces-
sors, pp. c-42.

Garcı́a, G. (2002). Optimal filter partition for efficient convolution with short input/output
delay. In Proceedings of the Audio Engineering Society, number 113.

Govindaraju, N. K. and Manocha, D. (2007). Cache-efficient numerical algorithms using
graphics hardware. Parallel Computing, 33(10-11):663–684.

Harrington, J. and Cassidy, S. (1999). Techniques in Speech Acoustics, chapter 8, pages
211–238. Kluwer Academic Publishers.

Haykin, S. and Veen, B. V. (1998). Signals and Systems. John Wiley & Sons, New York,
NY, USA.

Jedrzejewski, M. and Marasek, K. (2004). Computation of room acoustics using pro-
grammable video hardware. In International Conference on Computer Vision and
Graphics ICCVG’2004.

Meyer, R. (1989). Error analysis and comparison of fft implementation structures. Acous-
tics, Speech, and Signal Processing, 1989. ICASSP-89., 1989 International Conference
on, pages 888–891 vol.2.

Robelly, J., Cichon, G., Seidel, H., and Fettweis, G. (2004). Implementation of recursive
digital filters into vector simd dsp architectures. IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 5:165–168.

Sumanaweera, T. and Liu, D. (2005). Medical Image Reconstruction with the FFT. In
GPU Gems 2, Matt Pharr (editor), pages 765–784. Addison Wesley.

Trebien, F. (2009). An efficient GPU-based implementation of recursive linear filters and
its application to realistic real-time re-synthesis for interactive virtual worlds. Masters
thesis, UFRGS, Porto Alegre, Brazil. http://www.inf.ufrgs.br/˜ftrebien/

monograph.pdf.

Trebien, F. and Oliveira, M. M. (2008). ShaderX6: Advanced Rendering Techniques,
chapter Real-Time Audio Processing on the GPU, pages 583–604. Charles River Me-
dia, Inc., Hingham, MA, USA, first edition.

Trebien, F. and Oliveira, M. M. (2009). Realistic real-time sound re-synthesis and pro-
cessing for interactive virtualworlds. The Visual Computer, 25(5–7):469–477.

Zhang, Q., Ye, L., and Pan, Z. (2005). Physically-based sound synthesis on gpus. In
Kishino, F., Kitamura, Y., Kato, H., and Nagata, N., editors, ICEC, volume 3711 of
Lecture Notes in Computer Science, pages 328–333. Springer.

16

