

Analyzing Exception Flows of Aspect-Oriented Programs*

Roberta Coelho
1
, Arndt von Staa

1
 (PhD supervisor), Awais Rashid

2
 (PhD co-supervisor)

1
 Computer Science Department, PUC-Rio, Brazil

2
 Computing Department, Lancaster University, Lancaster, UK

{roberta,arndt}@inf.puc-rio.br, awais@comp.lancs.ac.uk

Abstract. The goal of exception handling mechanisms is to make programs

more reliable and robust. However, the integration of exception handling

mechanisms with aspect-oriented languages raises unique issues. This paper

presents a PhD work whose goal was to investigate such issues. The main

contributions of this work were the following: (i) to perform the first

exploratory study aiming at assessing the error proneness of AOP mechanisms

on exception flows of programs; (ii) the development of SAFE (Static Analysis

for the Flow of Exceptions), an exception-flow analysis tool for AspectJ

programs; (iii) the identification of a set of bug patterns on the exception

handling code of AO systems; and (iii) the definition of an approach that

enables the developer to find faults on the exception handling code statically.

1. Introduction

Among the existing techniques for building robust systems, exception handling is a

widely used mechanism for structuring the error recovery code. It allows the system to

detect errors and respond to them correspondingly through the execution of recovery

code encapsulated into exception handlers. The importance of exception handling

mechanisms is attested by its use on the development of several large scale systems

[Romanovsky et al 2001] and the fact that many exception handling specific constructs

(e.g., try-catch blocks) are embedded in mainstream programming languages such as

Ada, Java, and C#.

 The past decade has seen the rise of Aspect-Oriented Programming (AOP)

[Kiczales 1996] techniques as a means to modularize crosscutting concerns, such as

persistence, distribution, security, transaction management, volatile business rules,

certain design patterns and exception handling [Castor Filho et al. 2007] in some

situations. Since then AOP has been increasingly used in the development of large scale

systems, most notably the JBoss Application Server, the IBM Websphere, and SORIAN

(a Hospital Information System developed by Siemens). Moreover, a number of

industrial-strength aspect-oriented programming languages and frameworks have

already been released (e.g., AspectJ, JBoss AOP, and Spring AOP).

 AOP provides an abstraction called aspect to modularize crosscutting concerns.

One of its constructs, called advice, defines an additional behavior that can be included

at specific points in the program execution (e.g., before the execution of a method, or

* This thesis can be found at: http://www.inf.puc-rio.br/~roberta/ctd2009

1

after, or even before and after at the same time). This new construct has the ability to

change the program control flow - even preventing the original body of a method to be

executed. It is recognized that flexible programming mechanisms (e.g., inheritance and

polymorphism [Miller and Anand 1997]) might have negative effects on exception

handling. Hence, while the invasiveness of aspect composition mechanisms may bring a

realm of possibilities to software design, they might render less useful if they make the

exception handling code error prone. In other words, does the code dedicated to improve

the system robustness become itself a source of program failures, threatening the system

robustness?

 Unfortunately, there was no systematic evaluation of the positive and negative

effects of AOP on the robustness of exception handling code. Existing research in the

literature has been limited to analyze the impact of aspects on the normal control flow

[Rashid and Chitchyan 2003, Hannemann and Kiczales 2002, Garcia et al. 2005]. In

addition, most of the empirical studies of AOP do not go beyond the discussion of

modularity gains and pitfalls obtained when using aspects to modularize crosscutting

concerns [Soares et al. 2006, Greenwood et al. 2007, Figueiredo et al 2008]. For

instance, these studies do not account for the consequences bearing with new exceptions

and handlers that come along with the aspects’ added functionality. Thus, any

practitioner considering using AOP in a project, or any researcher on aspect oriented

software development must consider the fundamental questions:

• What is the effect of aspects on the exceptional flow of programs?

• What pitfalls should be avoided when implementing the exception handling code

of AO programs?

• How can one know the exceptions arising as a result of aspectual compositions?

• And finally, how can one detect and fix violations on the exception handling

code of AO programs?

 These research questions motivated the PhD work presented in this paper which

is organised as follows. Section 2 presents the main contributions of this work. Section

3 details each contribution. Section 4 presents works that are directly related to our own.

Finally, Section 5 presents our concluding remarks. Due to space limitation, we assume

throughout this article that the reader is familiar with AOP terminology (i.e., aspect, join

point, pointcut, and advice) and the AspectJ language.

2. PhD Main Contributions

 This PhD work aimed at providing answers to the relevant research questions

presented above. Hence, the main contributions of the PhD work are as follows:

(i) it performs the first systematic study which aims at investigating how aspects

affect on the exception flows of programs [Coelho et al 2008a].

(ii) it introduces a set of bug-patterns related to the exception handling code of AO

programs that were characterised based on the data empirically collected [Coelho

et al 2008b].

(iii) it implements an exception flow analysis tool for AspectJ programs. This tool

performs a static analysis of the woven bytecode of AspectJ programs in order to

2

find the exceptions that may flow from aspects (checked and unchecked) and

how such exceptions flow on the base code (i.e., exception paths) [Coelho et al

2008c, Coelho et al 2009].

(iv) it proposes an approach based on static analysis whose goal is to help

developers: (i) to understand the exceptional flow of AO programs, (ii) to

describe exception handling contracts, and (iii) to automatically check them

[Coelho et al. 2008c, Coelho et al. 2009].

 The contributions of this PhD work have a broader impact on the current

research on AOP, and the on how faults on the exception handling code can be detected.

They allow for: the designers of AO languages to consider pushing the boundaries to

make AOP more robust and resilient to exception handling faults; the ones proposing

AO refactoring methods to consider the exceptional flow when suggesting the

refactoring of specific concerns to aspects; the AOP developers of robust aspect-

oriented applications to make more informed decisions in the presence of exception

flows. Last but not least, the idea of statically checking the exception handling code

through the definition and automatic check of exception handling contracts can be

applied to different programming languages besides AspectJ and Java (as presented

here).

3. How were the Research Questions Tackled?

3.1. Statically Discovering the Exception Flows of Programs

In order to detect the exceptions arising as a result of aspectual compositions we

developed a static analysis tool called SAFE (Static Analysis for the Flow of

Exceptions). Such a tool is needed because the analysis of the flow of exceptions inside a

system can easily become unfeasible if performed manually [Robillard and Murphy

2003]. In order to discover which exceptions can be thrown by a method (or method like

construct such as an advice), due to the use of unchecked exceptions, the developer

needs to recursively analyse each method call. Moreover, when method calls are part of

a library, the developer needs to rely on the library documentation which most often is

neither precise nor complete [Thomas 2002, Cabral and Marques 2007].

 SAFE is an interprocedural exception flow analysis tool for Java and AspectJ

programs1. The exception flow analysis performed by SAFE is a dataflow analysis,

resembling the analysis based on def-use pairs, but instead of running on the control

flow graphs, it runs on the program call graph. SAFE runs on an extension of the

program call graph (PCG) whose nodes contain additional information comprising the

statements where exceptions may be thrown (throw clause) or handled (by an

enclosing try-catch block). The exception-flow analysis tool traverses such program

representation and calculates (i) the actual exceptions that might arise at every method

and advice and (ii) the exception paths of each exception (i.e., the path in the program

call graph that links the exception signaler and its handler). The SAFE tool is based on

Soot framework for static analysis of bytecode. It uses the field-sensitive, flow-

1 The existing exception flow analysis tools for Java programs [Robillard and Murphy 2003, Fu and Ryder 2007] do

not support AspectJ constructs. Even the tool that operates on Java bytecode level [Fu and Ryder 2007] cannot be

used in a straightforward fashion, since it cannot interpret the effects on bytecode after AspectJ weaving process.

3

insensitive and context-insensitive points-to analysis provided by Soot to build the

PCG.We used this tool on a collection of Java and AspectJ applications (see Section

3.2), to: (i) support both local and global reasoning of the exception-handling structure

of a system; (ii) automatically check the exception handling contracts (See Section 3.4);

and to (iii) discover the new dependencies that may arise between aspects and classes on

exceptional scenarios (e.g., an advice may throw an exception that is handled by a

method in a class).

3.2. Assessing the Impact of Aspects on Exception Flows: The Exploratory Study

In this PhD work we performed the first systematic study that quantitatively assessed the

error proneness of aspect composition mechanisms on the exceptional flow of programs.

The evaluation was based on the SAFE tool, and on code inspections of the exception

behaviors of Java and AspectJ implementations of three real applications: Health

Watcher (HW), Mobile Photo (MP) and JHotDraw (HD). Overall, this corresponded to

10 system releases (two releases of HW and MP were evaluated), 41.1 KLOC of Java

source code of which approximately 4.1 KLOC were dedicated to exception handling,

and 39 KLOC lines of AspectJ source code of which around 3.2 KLOC were dedicated

to exception handling. In this study we analyzed both OO and AO versions of the same

systems because we wanted to check whether AO constructs (AspectJ) increase/decrease

the number of defects in the exception handling code.

 This study was performed according to the process defined by [Wohlin et al.

2000]. The hypotheses of the study were the following: (i) the null hypothesis (H0)

was that there was no difference on the robustness of exception handling code in Java

and AspectJ versions of the same system; and (ii) the alternative hypothesis (H1) was

that the impact of aspects on exception flows of programs can lead to more program

flaws associated with the exception flow. Figure 1 presents some of the study results.

Health Watcher V1

196
153

43
1735

43

0

100

200

300

400

500

600

OO AO

#
 e

x
c
e
p

ti
o

n
 p

a
th

s

Same Exception Subsumption Uncaught

Health Watcher V9

277
242

47

271

28

9

OO AO

Mobile Photo V4

53
46

13

2

47

0

20

40

60

80

100

OO AO

Mobile Photo V6

63

21

9

6

56

OO AO

Hot Draw

64

316

5

384

136
124

0

100

200

300

400

500

600

OO AO

Figure 1. Uncaught exceptions, subsumptions, and specialized handlers in AO
and OO versions.

 Figure 1 illustrates the number of exception paths found in each target system.

We can observe a significant increase in the number of uncaught exceptions in every

AO implementation. This means that the number of exceptions thrown inside the

system, which will not be handled and will transparently propagate back to the program

entry point (causing the Java virtual machine to terminate), will be higher in the AO

implementations of each target system. An additional observation was a decrease in the

4

number of exceptions caught by specialized handlers (i.e., exceptions caught by handlers

whose type is the same of the exception type being caught) and a corresponding increase

in the number of exception subsumptions (i.e., exceptions caught by handlers whose

type is a super-type of the exception type being caught). The exception subsumption may

represent an instance of the Unintended Handler Action problem - a scenario in which

the exception is mistakenly caught by a handler in the base code (e.g. a catch

Exception or a catch Throwable clause). In order to get a more fine-grained view of

how exceptions were handled we manually inspected the exception handling code of

every target system. The code inspection revealed a set of recurring program anomalies

in the exception handling code of AspectJ programs which caused exceptions to become

uncaught or to be caught by “wrong” handlers.

3.3. Identifying Exception Handling Bug Patterns in AO Programs

We organized the recurring program anomalies found during the study into a catalogue

of bug patterns (presented at [Coelho et al. 2008b]) related to the exception handling

code of AO systems. These bugs came mainly from three sources: (i) bugs related to

aspects that signal exceptions - such as the Solo Aspect Signaler bug pattern – which

characterizes a scenario on which no handler is defined for the exceptions raised by the

aspects; (ii) bugs related to exception handling aspects (i.e., aspects defined to handle

exceptions [Castor Filho et al. 2007]) - such as the Late Binding Aspect Handler a bug

that occurs when the aspect intercepts a point in the base code where the exception had

already been caught by another handler; and (iii) misuses of the AspectJ specific

construct that wraps any checked exception into an unchecked exception (i.e, declare

soft). We have observed that these bug patterns have the potential of negatively

affecting the robustness of a system. Therefore, there is a need for both: building

verification tools and techniques tailored to improve the reliability of the exception

handling code in aspect-oriented programs and improving the design of exception

handling mechanisms in AO programming languages. Next section describes our effort

to address this first need.

3.4. Statically Detecting Exception Handling Faults

Based on the fault model discovered during the empirical study, we developed an

approach that is capable of statically detecting violations in the exception handling code

of AspectJ systems. We wanted to detect exception handling faults statically, instead of

through testing as is usual for fault models, due to three main reasons. First, the early

detection and prevention of faults is less costly [Boehm 1981, Bruntink and Deursen

2006]. Secondly, testing exception handling is inherently difficult – as the root causes

that invoke the exception handling code are often difficult to simulate. Last but not least,

the large number of different exceptions that can happen at runtime may lead to a test-

case explosion problem.

 The proposed verification approach is based on two main steps (i) the definition

and (ii) automatic checking of exception handling contracts. According to it the

developer specifies the exception handling contracts of the system (i.e., the elements

responsible for handling specific exceptions thrown inside the system). Such exception

handling contracts are then automatically checked by the SAFE tool during the

exception flow analysis. As a result the developer can discover statically (at compile

time) which exceptions remain uncaught or are caught by the “wrong” handler at

5

runtime - without the need of creating test cases to exercise every exceptional situation.

In order to evaluate the usefulness of this approach to detect violations on the exception

handling code, we applied it on the three real-world applications developed in both Java

and AspectJ presented in Section 3.2. Our empirical results show that our approach

mined 2.901 exception-paths. 886 exception-paths mined from the Java applications,

from which 138 represented occurrences of uncaught exceptions. 2.015 exception-paths

mined from the AspectJ systems, from which it detected 310 occurrences of uncaught

exceptions, 44 occurrences of exceptions thrown by classes that were mistakenly caught

by handlers defined on aspects, and 345 occurrences of exceptions thrown by aspects

that were mistakenly caught by handlers defined on classes [Coelho 2008d].

4. Related Work

Works have been proposed aiming at characterizing the new kinds of faults in AO

programs [Ceccato et al. 2005, Bækken and Alexander 2006, Zhang and Zhao 2007];

however, such works neither tackled the potential problems related to the exception

handling code (shown in Section 3.3), nor conducted observational studies to provide

evidences of the proposed bug patterns (shown in Section 3.2). Moreover, the

techniques and tools proposed so far to check the reliability of aspect-oriented code

mainly focus on: test-input generation [Xie and Zhao 2006]; definition of test criteria

[Lemos et al. 2007]; test selection approaches [Xie et al. 2006]; and mutation testing

[Anbalagan and Xie 2008]. Such techniques have been limited to analyze the impact of

aspects on the normal control of programs; and as a consequence do not propose ways

of checking the reliability of the exception-handling code of AO systems (shown in

Section 3.4).

5. Concluding Remarks

In this work we have tackled an issue that was neglected by previous research work and

empirical studies on Aspect Oriented Programming: the impact of aspects on the

exception flow of programs and its consequences on program robustness. As the main

results of our work focused on AspectJ programs, one question to be asked is to what

extent our findings can be applied to other AOP languages. We have investigated other

AOP technologies (i.e., CaesarJ, JBoss AOP and Spring AOP) and have observed that

they follow similar join point models as the one of AspectJ. Such join point models

enable aspects to add new exceptions at specific points in the code, potentially causing

the bug patterns discovered here. Moreover, further investigations lead to the conclusion

that the threats brought by aspects to the robustness of the exception handling code are

not caused by specific constructs but to general properties of aspectual compositions

(i.e., inversion of control, quantification, obliviousness) which may conflict the

characteristics of exception handling. Such findings are described at [Coelho et al.

2008c, Coelho et al. 2009]. Part of this PhD research was conducted in the context of

the European Network of Excellence on AOSD (AOSD-Europe), which included a

seven-month research visit to Lancaster University. The PhD work summarized here

resulted in a significant number of scientific publications, presented in a time line

below.

6

Rashid
 et a

l (
IE

EE C
om

pute
r)

(s
ubm

itt
ed)

Coelh
o et.

al. (
Journ

al o
f I

nf.
Sciences)

(in
vite

d fo
r s

ubm
issio

n)

2004 2006 2007

Publications

2005

time line

2008

Coelh
o and

Sta
a (T

uto
ria

l -
SBES 2005)

Coelh
o et.

al. (
Poste

r - OOPSLA 2005)

Coelh
o et.

al (
SPLiT

2006)

Coelh
o et.

al. (
PLoP

2006)

Coelh
o and

Sta
a (D

oc. S
ym

p-O
OPSLA

2006)

Coelh
o et.

al. (
IC

SM 2007)

Coelh
o et.

al. (
Tools

Sessio
n

– SBES 2007)

Coelh
o et al. (

PLoP
2008)

Coelh
o et.

al (
ECOOP 2008)

Coelh
o et.

al. (
SBES 2008) (

2
nd Best

Paper)

§ § ‡ ‡ ¥ ¥ ¥ Ф Ф Ф Ф Ф

§ - Impact of Testing on Software Quality ‡ - Verification Approach for Aspect-Oriented Programs

¥ - Using Aspects to Support the Testing Ф- Verification Approaches for the Exception Handling Code of Aspect-Oriented Programs

Research

Goals

2009

Legend:

Figure 2. Research works organized in a timeline.

References

Anbalagan. P, Xie, T., (2008) “Automated generation of pointcut mutants for testing pointcuts

in AspectJ programs”. ISSRE, 2008, p. 239-248.

Baekken, J.; Alexander, R., “A Candidate Fault Model for AspectJ Pointcuts”. ISSRE 2006,

2006, p.169-178.

Boehm. B. W. (1981), “Software Engineering Economics”. Prentice-Hall, 1981.

Bruntink, M, Deursen, A., Tourwé, T. (2006) “Discovering faults in idiom-based exception

handling”. ICSE 2006, p. 242-251.

Cabral, B., Marques, P. (2007) “Exception Handling: A Field Study in Java and .NET”.

ECOOP’07. vol. 4609, Springer (2007), p. 151–175.

Castor Filho,F., Garcia, A., Rubira, C. (2007)“Extracting Error Handling to Aspects: A Cook-

book”. ICSM’07, 2007, p.134-143.

Ceccato, M., Tonella, P., Ricca, F. (2005) “Is AOP Code Easier or Harder to Test than OOP

Code?”. Workshop on Testing Aspect-Oriented Programs, 2005.

Coelho, R, Awais, R., Garcia, A., Ferrari, F. Cacho, N., Kulesza, U., Staa, A.v., Lucena, C.

(2008a) “Assessing the Impact of Aspects on Exception Flows: An Exploratory Study”,

ECOOP´08, 2008, p. 207-234.

Coelho, R, Awais, R., Staa, A.v., Noble, J., Kulesza, U., Lucena, C., (2008b), “A Catalogue of

Bug Patterns for Exception Handling in Aspect-Oriented Programs”, PLoP’08, 2008.

Additional Publications – not included on the References Section

Rashid, A., Meunier, R., Cottenier, T., Greenwood, P., Coelho, R., Chitchyan, R., Suedholt, M., Joosen, W., Aspect-
Oriented Software Development in Practice: Tales from AOSD-Europe, IEEE Computer (submitted)

Coelho, R.; Cirilo E., Kulesza, U., Staa, A.v., Rashid, A., Lucena, C., JAT: A Test Automation Framework for Multi-
Agent Systems, International Conference on Software Maintenance (ICSM 2007), 2007.

Coelho, R., Cirilo E., Kulesza, U., Staa, A.v., Rashid, A.v., Lucena, C., JAT Framework: Creating JUnit-Style Tests
for Multi-Agent Systems, Tools Session – Brazilian Symposium on Software Engineering (SBES 2007), 2007.

Coelho, R., Dantas, A., Kulesza, U., Staa, A.v., Cirne, W., Lucena, C. The Monitor Aspect Pattern, Pattern
Languages of Programming Design (PLoP 2006) in conjunction with OOPSLA 2006, 2006.

Coelho, R., Alves, A., Kulesza, U., Costa, A., Staa, A.v., Lucena, C., Borba, P. On Testing Crosscutting Features
Using Extension Join Points, 3rd Workshop on Product Line Testing (SPLiT 2006).

Coelho, R., Staa, A.v., Using Interfaces to Support the Testing of Crosscutting Features. In: Doctoral Symposium of
Object- Oriented Programming, Systems, Languages and Applications (OOPSLA 2006), 2006.

Coelho, R.; Staa, A.v.; Tutorial: Software Testing, SBES 2005, Uberlândia, 2005.

Coelho, R., Kulesza, U., Staa, A.v., . Improving Architecture Testability with Patterns. In: Object- Oriented
Programming, Systems, Languages and Applications (OOPSLA 2005), 2005.

7

Coelho, R, Kulesza, U., Rashid, A., Staa, A.v., Lucena, C., (2008c), “Unveiling and. Taming

the. Liabilities of Aspect Libraries Reuse”, SBES’08, 2008. (2
nd

 best paper)

Coelho, R. (2008d), “Analyzing the Exception Flows of Aspect-Oriented Programs”, PhD

Thesis, PUC-Rio, June 2008.

Coelho, R., Kulesza, U., Rashid, A., Staa, A.v., Lucena, C. (2009) “Unveiling and Taming

Liabilities of Aspects in the Presence of Exceptions: A Static Analysis Based Approach”,

Information Sciences Journal (invited for submission).

Figueiredo, E., Cacho, N.; Santanna, C., Monteiro, M.,Kulesza, U., Garcia, A., Soares, , Ferrari,

F., Khan, S., Filho, F., Dantas, F. (2008) “Evolving Software Product Lines with Aspects:

An Empirical Study on Design Stability”. ICSE’08, 2008, p.261-270.

Fu, C., Ryder, B. G. (2007) “Exception-Chain Analysis: Revealing Exception Handling

Architecture in Java Server Applications”. ICSE’07, 2007, p.230-239.

Garcia, A., Santanna, C.,Figueiredo, E., Kulesza,U.,Lucena, C., Staa, A.v. (2005) “Modu-

larizing Design Patterns with Aspects:A Quantitative Study”. AOSD’05, p.3-14.

Greenwood, P., Bartolomei, T., Figueiredo, E., Dosea, M., Garcia, A., Cacho, N., Santanna, C.,

Soares, S., Borba, P., Kulesza, U., Rashid, A. (2007) “On the Impact of Aspectual

Decompositions on Design Stability: An Empirical Study”. ECOOP’07, 2007, p.176-200.

Hannemann, J., Kiczales, G. (2002) “Design Pattern Implementation in Java and AspectJ”.

OOPSLA’02, ACM Press, 2002, p.161-173.

Kiczales, G. Aspect-oriented programming. ACM Computing, 28(154), 1996.

Lemos, O., Vincenzi, A., Maldonado, J, Masiero, P. (2007) “Control and data flow structural

testing criteria for aspect-oriented programs”. JSS, 80(6), 2007, p.862-882.

Miller, R., Anand, T. (1997) “Issues with Exception Handling in Object-Oriented Systems”.

ECOOP’97, 1997, p.85–103.

Rashid, A., Chitchyan, R. (2003) “Persistence as an Aspect”. AOSD’03, 2003,p.120-129.

Robillard, M., Murphy, G., (2003) “Static Analysis to Support the Evolution of Exception

Structure in Object-Oriented Systems”. ACM Trans. on Sof. Eng. Met., 12(2), 2003, p.191-

221.

Romanovsky, A., Dony, C., Knudsen, J. L., and Tripathi, A. (2001) “Advances in Exception

Handling Techniques”. Springer Verlag, 2001.

Soares, S., Borba, P., Laureano, E. (2006) “Distribution and Persistence as Aspects”. In:

Software: Practice and Experience, Wiley, vol. 36 (7), 2006, p. 711-759.

Thomas, D. (2002) “The Deplorable State of Class Libaries”; JOT, 2002, 1(1); p.21-27.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., and Wesslén, A. (2000)

“Experimentation in software engineering: an introduction”. Kluwer Academic Publishers,

Boston, 2000.

Zhang, S., Zhao, J. (2007) “On Identifying Bug Patterns in Aspect-Oriented Programs”.

COMPSAC, 2007, p.431–438.

Xie, T., Zhao, J. (2006) “A framework and tool supports for generating test inputs of AspectJ

programs”. AOSD, 2006, p.190–201.

Xie, T., Zhao, J., Marinov, D.; Notkin, D. (2006) “Detecting Redundant Unit Tests for

AspectJ Programs”. ISSRE, 2006, p.179-190.

8

