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Abstract. We study the Decomposition Conjecture posed by Bardt and
Thomassen (2006), which states that, for each tree T, there exists a natural num-
ber kr such that, if G is a kp-edge-connected graph and |E(T')| divides |E(G))|,
then G admits a partition of its edge set into copies of T'. In a series of papers,
Thomassen has verified this conjecture for stars, some bistars, paths of length 3,
and paths whose length is a power of 2. In this paper we prove this conjecture
for paths of any given length. Our technique is then used to prove weakenings of
a conjecture of Kouider and Lonc (1999), and a conjecture of Favaron, Genest
and Kouider (2010), both for path decomposition of regular graphs.

Introduction

A set D = {H,,...,Hy} of pairwise edge-disjoint subgraphs of a graph G is called a
decomposition of G if these subgraphs cover the edge set of G. If H;, for 1 <i <k,
is isomorphic to a fixed graph H, then we say that D is an H-decomposition of G.
When H = P, is a path with two edges, one can prove that a connected graph G admits an
H-decomposition if and only if GG has an even number of edges. On the other hand, Dor
and Tarsi (1997) proved that deciding whether a graph admits an H-decomposition is an
NP-complete problem whenever I has a component with at least 3 edges. It is then natu-
ral to look for sufficient conditions for a graph to admit an //-decomposition. As we will
see, this problem has attracted the attention of many researchers. The focus of this paper
is the study of the H-decomposition problem when H = F; is a path of length /. To tackle
this problem, we developed a technique that consists in finding first a decomposition of
the given graph into trails (some of which may be paths), and then, by means of a Disen-
tangling Lemma, switching the edges between the elements of the current decomposition,
so that the new decomposition contains more paths than the original one. This technique
of finding first a trail decomposition, and then using this lemma, has shown to be useful
to attack other path decomposition problems. In fact, we [Botler et al. 2015c] first used
this idea to decompose triangle-free 5-regular graphs into paths of length 5. Later, we
were able to explore better this technique to obtain path decomposition of two important
family of graphs, namely, regular graphs and highly edge-connected graphs. Our proofs
use a generalization of the technique we presented in [Botler et al. 2016], which com-
bines a method introduced by Thomassen [Thomassen 2008a] and a technique used by
Lovasz [Lovasz 1968] for decomposition into cycles and paths.
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In Section 2, we study path decompositions of regular graphs, and present re-
sults related to the Conjectures of Kouider and Lonc (1999), and Favaron, Genest, and
Kouider (2010). In Section 3, we study path decompositions of highly edge-connected
graphs, mentioning our main result: the proof of the Decomposition Conjecture of Barat
and Thomassen (2006) for paths.

Owing to space limitation, we only mention the main results and ideas con-
tained in [Botler 2016]. For more details on the results of Section 2, the reader
is referred to [Botler et al. 2015b]; full proofs of the results in Section 3 are given
in [Botler et al. 2017a].

The basic terminology and notation used in this paper are standard (see,
e.g. [Diestel 2010]). A path P in G is a sequence of distinct vertices P = vgvy - - - vy
such that v;v;41 € E(G), fori = 0,1,...,¢ — 1. The length of P is the number of its
edges. A path of length ¢ is denote by F,. A vanilla trail is a trail vyv; - - - vy such that
vy - - - vg_1 18 a path. A vanilla (-trail is a vanilla trail of length /.

Decomposition of regular graphs into paths of fixed length

In 1964, Ringel conjectured that the complete graph Koy, admits a 7'-decomposition
for any tree 1" with ¢ edges. This conjecture is commonly confused with the Graceful
Tree Conjecture that says that every tree 7' with n vertices admits a labeling f: V(7)) —
{0,...,n—1}suchthat {1,....,n—1} C{|f(z)— f(y)|: xy € E(T)}. In fact, the latter
implies Ringel’s Conjecture (see [Rosa 1967]), and this fact implies that Ringel’s Conjec-
ture holds for many classes of trees, such as stars, paths, bistars, caterpillars, and lobsters
(see [Edwards and Howard 2006]). Haggkvist (1989) generalized Ringel’s Conjecture for
regular graphs as follows.

Conjecture 2.1 (Graham—Héggkvist, 1989). For each tree T' with { edges, if G is a 2(-
regular graph, then G admits a T'-decomposition.

In 1989, Hiaggkvist also proved that Conjecture 2.1 holds when the girth of G
is at least the diameter of 7. In the case of paths, Kouider and Lonc (1999) improved
Hiéggkvist’s result, proving that a 2¢-regular graph with girth ¢ > (¢ + 3)/2 admits a
Py-decomposition D such that every vertex is the end-vertex of exactly two paths of D.
They also conjectured that this statement holds for every 2¢-regular graph.

Conjecture 2.2 (Kouider—Lonc, 1999). Every 2(-regular graph admits a P-
decomposition D such that each vertex is the end-vertex of exactly two paths of D.

We say that a path decomposition D of a graph is balanced if there is a positive
integer k such that each vertex is the end-vertex of exactly k paths of D. Heinrich, Liu and
Yu (1999) proved that if GG is a 3m-regular graph that contains an m-factor, then G' admits
a balanced Ps-decomposition. In [Botler and Talon 2017] it is proved that Conjecture 2.2
holds for ¢/ = 4 (see Theorem 2.4). In [Botler et al. 2017b] we prove a weakening of
Conjecture 2.2, which states that, for each positive integers ¢ and ¢ such that g > 3, there
is an mg = my(¢, g) such that, if G is a 2mf-regular graph with m > mg and girth at
least g, then G admits a balanced F,-decomposition. The next theorem gives a bound
for my.

Theorem 2.3. Let (, g and m be positive integers such that g > 3 and let G be a 2m/-
regular graph with girth at least g. If m > [({ — 2)/(g — 2) |, then G admits a balanced
Py-decomposition.
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Theorem 2.4. Every 8-regular graph admits a balanced P,-decomposition.

Another result related to those stated above is due to Kotzig (1957), who proved
that a 3-regular graph GG admits a Ps;-decomposition if and only if GG contains a per-
fect matching. Favaron, Genest, and Kouider (2010) proved that if G is a 5-regular
graphs without cycles of length 4 and containing a perfect matching, then G admits a
Ps-decomposition. They also conjectured that Kotzig’s result may be generalized in the
following way.

Conjecture 2.5 (Favaron—Genest—Kouider, 2010). For every odd positive integer {, if G is
an {-regular graph that contains a perfect matching, then G admits a P,-decomposition.

In this case, the degree of the vertices of the graph is decreased by one-half, but
a perfect matching is required. In [Botler et al. 2015c], we extended Favaron, Genest,
and Kouider’s result, proving that triangle-free 5-regular graphs that contain a perfect
matching admit a Ps;-decomposition. A natural generalization of perfect matching is the
concept of m-factor. An m-factor of a graph G is an m-regular spanning subgraph of G.
In [Botler et al. 2017b], we also prove the following result, which is a weakening of Con-
jecture 2.5: for each positive integers ¢ and g such that ¢ is odd and g > 3, there is an
mgo = mo(¢, g) such that, if G is an m/l-regular graph with m > my, girth at least g,
and containing an m-factor, then G admits a balanced P,-decomposition. We also give a
bound for mg. This value is stated in the next theorem.

Theorem 2.6. Let ¢, g and m be positive integers such that ( is odd and g > 3, and
let G be an mt-regular graph with girth at least g that contains an m-factor. If m >
2|(¢—2)/(g —2)], then G admits a balanced P,-decomposition.

It would be interesting to prove, if possible, a better bound for m,. We showed
that when g = ¢ — 1 the bound on m can be improved to 1, which proves Conjecture 2.5
for graphs with sufficiently high girth, and generalizes the result in [Botler et al. 2015c¢].

Theorem 2.7. For every odd positive integer {, if G is an (-regular graph with girth at
least { — 1 and containing a perfect matching, then G admits a P;-decomposition.

In what follows, we mention the main ideas used in the proof of Theorem 2.3.

Sketch of the proof of Theorem 2.3. Let £, g, m and G be as in the statement. The proof
follows by induction on ¢. The statement holds trivially for £ = 1, and the proof for the
case ¢ = 2 follows simply by choosing an Eulerian orientation of G and decomposing the
out-going edges at each vertex into paths of length 2. Thus, we can suppose that ¢ > 3.
Using a theorem of Petersen (1891), we can show that G contains a 4m-factor H. Thus,
G' = G — E(H) is a 2m({ — 2)-regular graph with girth at least g, and m > | ((¢ — 2) —
2)/(g—2)]. By the induction hypothesis, G’ admits a balanced P,_»-decomposition 7. It
is easy to see that since D’ is balanced, each vertex of G is the end-vertex of precisely 2m
paths of D’. Moreover, if we choose an Eulerian orientation for H, then we have d}} (v) =
dy(v) = 2m for every vertex v of G. Thus, using the edges of H we can extend each path
of D’ with one out-going edge at each of its end-vertices, obtaining a decomposition D
of GG into vanilla /-trails. The Disentangling Lemma in [Botler 2016] is then used to
transform D into a balanced Pj-decomposition of G, concluding the proof.

Decomposition of highly edge-connected graphs into paths of fixed length

In this section we study H-decomposition of highly edge-connected graphs. When H is a
tree, Barat and Thomassen (2006) conjectured that high edge-connectivity (together with

2345



XXXVII Congresso da Sociedade Brasileira de Computagado

the obvious necessary condition on the number of edges) may be sufficient for a graph to
admit an /-decomposition.

Conjecture 3.1. For any fixed tree T, there exists a natural number kr such that, if G
is a kp-edge-connected graph and |E(G)| is divisible by |E(T)|, then G admits a T'-
decomposition.

Barat and Thomassen (2006) proved that Conjecture 3.1 in the special case T
is the claw K3 is equivalent to a weakening of Tutte’s 3-flow conjecture, posed by
Jaeger (1988). Recently, Lovédsz, Thomassen, Wu, and Zhang (2013) proved that a
(3k — 3)-edge-connected graph G admits a K y-decomposition if |E(G)| is divisible
by k, showing that Conjecture 3.1 holds for stars, and, in particular, confirming Jaeger’s
weak 3-flow conjecture. Between 2008 and 2013, Thomassen also proved that Conjec-
ture 3.1 holds for paths of length 3, paths of length 4, a family of bistars, and more
recently, for paths whose length is a power of 2. Recently, Barat and Gerbner (2014)
and Thomassen (2013a) proved that it is sufficient to prove Conjecture 3.1 for bipartite
graphs. That is, Conjecture 3.1 is equivalent to the following conjecture.

Conjecture 3.2. For any fixed tree T, there exists a natural number k'r such that, if G is
a bipartite kl--edge-connected graph and |E(QG)| is divisible by |E(T)|, then G admits a
T'-decomposition.

In [Botler et al. 2016], we proved that Conjecture 3.1 holds for paths of length 5.
This result was also obtained by Merker [Merker 2017], who, additionally, verified Con-
jecture 3.1 for trees with diameter at most 4. Finally, in [Botler et al. 2017a], we proved
Conjecture 3.1 for paths of any given length. For that, we first proved Conjecture 3.2 for
paths of any length, and then used the equivalence of Conjectures 3.1 and 3.2.
Theorem 3.3. Let { be a positive integer, and let r = max{32(¢{ — 1),(({ + 1)}. If G isa
2(13¢+ 4r — 4)-edge-connected bipartite graph such that |E(G))| is divisible by (, then G
admits a Pj)-decomposition.
Theorem 3.4. Let { be a positive integer, r = max{32(¢{ — 1),(¢ + 1)}, and put k}, =
2130 + 4r — 4). If G is a (4k/y + 1605 1)-edge-connected graph such that |E(G)| is
divisible by (, then G admits a P,-decomposition.

The proof of Theorem 3.3 follows the structure of the proof of Theorem 2.3. For
that, we define new concepts such as fractional factors and F-balanced decompositions,
which extend the concepts of factors and balanced decompositions, respectively, to the
scope of highly edge-connected graphs.

Concluding remarks

Graph decomposition is a topic that has shown to be rich in conjectures and challeng-
ing problems that have brought significant contributions to structural graph theory. In
this work we developed a technique to deal with decompositions of graphs into paths
that has shown to be useful to deal with well-studied problems (Conjectures 2.1, 2.5,
and 3.1). Furthermore, the tools developed in this work have led us to other new results
as in [Botler and Talon 2017].

When we were writing the main result of Section 3 in [Botler et al. 2017a],
we learned that Bensmail, Harutyunyan, Le, and Thomassé (2015) obtained a si-
milar result using a different approach. Recently, together with Merker, these au-
thors [Bensmail et al. 2017] proved Conjecture 3.1 using probabilistic tools. This shows
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that the study of graph decompositions may be explored with different approaches, each
of which contributes to enrich the area of structural graph theory.

We plan to continue working on Conjecture 2.1. We also would like to generalize
the Disentangling Lemma to deal with more general structures, seeking for results analo-
gous to the ones in Section 2 for other structures. In another direction, we believe that it
is possible to improve the girth condition of Conjecture 2.5.

We conclude mentioning that the results obtained in [Botler 2016] have been
published in the Journal of Combinatorial Theory, Series B [Botler et al. 2017a] and
Discrete Mathematics [Botler et al. 2015c]; and have been accepted to the FEuro-
pean Journal of Combinatorics [Botler et al. 2017b] and Discrete Applied Mathemat-
ics [Botler et al. 2016], the first one being one the most prestigious journals in combina-
torics. We have also presented these results in many international conferences, among
which we mention ICGT 2014, LAGOS 2015, EuroComb 2015 [Botler et al. 2015b,
Botler et al. 2015a].
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