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Abstract. Texture is one of the primary visual features used to computationally
describe the patterns found in nature. Existing computational methods, however,
do not successfully discriminate the complexity of texture patterns. Such meth-
ods disregard the possibility of describing images by benefiting from the complex
systems properties that are characteristic to textures. To do so, we created ap-
proaches based on the Bouligand-Minkowski fractal dimension, swarm-system
Artificial Crawlers, and non-linear diffusion of Perona-Malik, techniques that
led to methodologies with efficacy and efficiency comparable to the state-of-
the-art. The results achieved in the four methodologies described in this work
demonstrated the validity and the potential of our hypothesis in tasks of pattern
recognition. The contributions of our methodologies shall support advances in
materials engineering, computer vision, and agriculture.

1. Introduction
Texture is an important visual attribute in computer vision with many areas of applica-
tions. Recently, texture analysis has been widely applied to remote sensing [1], industrial
inspection [2], medical image analysis [3], face recognition [4], among many others. Al-
though the human visual system can easily discriminate textural patterns, the description
by automatic methods has been a great challenge. Indeed, there is no universally accepted
definition of texture. It is usually referred to as a repetitive pattern that can vary according
to the size, which produces different tactile sensations associated with roughness, coarse-
ness, and regularity. Furthermore, texture patterns are related to the physical properties of
surfaces present in images, making them a powerful tool for image analysis.

The proposed methods have been grouped according to the mathematical aspects
used to handle the patterns present in the images. There are five major categories: struc-
tural, statistical, spectral, model-based, and agent-based. The structural methods rely on
primitives that provide a symbolic description of the images [5]. The idea comes from
concepts on mathematical morphology, which describes an image by evolving morpho-
logical operations with different sizes of structuring elements, a useful technique to handle
shapes in textures. Statistical methods represent textures by the spatial distribution of the
gray-level pixels in the image. One of the best methods of this category, and still very pop-
ular, is co-occurrence matrices [6]. In the same line, Dmitry Chetverikov [7] introduced
the technique named interaction map. Similarly, Ojala et. al. [8] proposed a method that
describes images based on the occurrence of gray values on circular local neighborhoods;
it is named local binary patterns (LBP). Xiaoyang et al. [9] extended the idea of LBP to
local ternary pattern (LTP), which considers the magnitude of pixel derivatives along with
its sign to generate the ternary code.

Model-based methods were proposed with the assumption that textures can be rep-
resented by mathematical models, including stochastic models of Markov random fields
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[10] and fractality [11]. Particularly, fractal geometry has drawn great attention on the
task of describing textures. The main reason is because fractal geometry is able to de-
scribe irregular or fragmented shapes of natural phenomena, as well as other complex
objects that traditional Euclidean geometry is not able to describe. The fractal concept is
expressed by the time-domain statistical scaling laws and is characterized by the power-
law behavior of physical systems. This idea makes use of the geometrical interpretation
of objects and takes into account the degree of regularity of the structure related to its
physical behavior [11].

Most of the methods used in texture analysis are restricted to the analysis of the
spatial relations over small neighborhoods, or they are based on the extraction of global
features of the whole image on a single scale. As a consequence, they do not perform well
in high-complex geometry textures. In contrast, spectral methods or signal processing
methods, including Fourier analysis [12], Gabor filters [13], wavelet transform methods
[14], were developed inspired by evidence that the human visual system describes images
by the frequency domain. However, the Fourier transform lacks spatial information, what
impairs its potential for image description. Although Gabor filters present joint image
resolution in both the spatial and frequency domains, they do not describe well coarse
textures; this is because the energy of such textures is concentrated in subimages of lowest
frequencies. In contrast with Gabor filters, wavelets decompose a texture image into
a set of frequency channels. However, wavelet analysis is basically a linear analysis
and suffers from uniformly-poor resolutions over different scales and from its non-data
adaptive nature, since the same wavelet basis is used to analyze all the data.

2. Goals and Contributions
The goal of this thesis is to propose solutions to overcome the drawbacks of current texture
analysis methods. To reach this goal, we have proposed new methods for texture descrip-
tion based on complex systems, including fractal dimension, swarm systems, non-linear
diffusion models, and complex networks. We have addressed two main issues found in
typical statistical and model-based texture descriptors: (1) the lack of a multiscale repre-
sentation to capture the richness of local features in different levels of observation; and,
(2) although fractal descriptors proved to be a promising texture descriptor, current meth-
ods do not explicitly consider the neighborhood relation in terms of the gray levels of
the texture. In this work, we evaluated our methods over four well-known texture bench-
marks: Brodatz, Vistex, Outex and Usptex. In addition, our methods were compared with
state-of-the-art texture methods. The motivation to develop our methods is that they are
suitable for real-world applications, as in material engineering and agriculture, leading
to better or automatic decisions. As we show along the text, we focus on nanomaterial
quality assessment and on plant disease identification in soybean leaves.
2.1. Theoretical Contributions
The first contribution of this work is a methodology for texture description. We surpass
the state-of-the-art, as proposed by Zhang and Chen [15], by introducing a new rule of
movement that considers both high and low-level intensities on images using the swarm
system named artificial crawler. We developed an improved method for assessing the
quality of the silk fibroin scaffolds with two rules of movement: maxima and minima.
Our goal is to provide an effective method to support visual analysis, thus reducing the
subjectivity of the human analysis. We evaluated the potential of the silk fibroin by in-
cluding glycerol in the solution during scaffold formation. This work was published in
the Computational Science and Discovery Journal [16].
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The second contribution of this thesis is an extended with the Bouligand-
Minkowski fractal dimension method. The methodology is based on the energy infor-
mation of the artificial crawler swarm system extracted from two rules of movement.
Similar to the method proposed in the first contribution, each agent is able to move to the
higher intensities, as well as to lower ones. Although we can find the minima and maxima
of images directly, the underlying idea is to characterize the path of movement during
the evolution process. Our method differs from our first contibution since we quantify
the state of the swarm system after stabilization by employing the Bouligand-Minkowski
fractal dimension method. In the method, the energy information was considered the most
important attribute due to its capacity of representing the interaction between the move-
ment of agents and the environment. This work was published in the journal Physica A:
Statistical Mechanics and its Applications [17] and, an example of the path configuration
for 1,000 artificial crawlers is presented in Figure 1.

(a) r = 1 (b) r = 2 (c) r = 3

Figure 1. (a) An image example and the mapping of artificial crawler agents, after
convergence, onto a 3D space, (b) and (c) show an illustration of the dilation
process for the fractal dimension of the swarm system artificial crawlers.

The third contribution of this thesis is a multiscale texture descriptor based on
non-linear diffusion designed to better represent textures in the task of image classifica-
tion. Many recent texture-analysis methods are developed to extract measures on a single
scale. In contrast, we assume that an image texture reveals different structures according
to the scale of observation, so that the scale concept of multiscale representation is of
crucial importance [18]. Thus, we iteratively represent the original image in a set of new
images, where images are combinations of both oscillatory (texture) and geometrical (car-
toon) patterns, we get two components for the derivative images. At each iteration step,
we estimate the average and deviation of the descriptors computed over the two com-
ponents. We then combine the measures from both components to compose our feature
vector. The fractal dimension is adopted here due to its precision in quantifying structural
properties. Experimental results over four well-known texture datasets reveal a superior
performance of our method. This work was first published in the Proceedings of the 13th
International Conference on Advanced Concepts for Intelligent Vision Systems with Ga-
bor filters [19]. Later, a new research involving fractal descriptors was submitted to the
Pattern Recognition Letters Journal [18] and the main ideia of the proposal is presented
in Figure 2.

2.2. Applied Contributions
The fourth contribution of this work is the application of image analysis methods in an
innovation project that resulted in a software registration deposit, in a commercial appli-
cation (available at the GooglePlay store), and on a publication in the Computer Elec-
tronics and Agriculture Journal [20]. In this case, we assume that a leaf image presents
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Conclusão

Conclusão

XC = [µ log Vtn , � log Vtn ] XT = [µ log Vtn , � log Vtn ]

XC = [µC , �C ] XT = [µT , �T ]

# = [XC ,XT ]

Prof. Bruno Brandoli (CPPP/UFMS) CG / Introdução à Visualização de Dados 1o Semestre/2015 31 / 32
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Figure 2. Schematic representation of our multiscale proposal.

different details according to the scale of analysis, which is suitable to describe fractal-
like structures as observed in leaves. The texture analysis has been integrated to the
mobile application named BioLeaf - Foliar Analysis. In the same line and with fractal
dimension, we have been used it to measure the spraying coverage to assess the qual-
ity of pesticide spraying machines, an application named DropLeaf - Deposition Anal-
ysis. This mobile application is in a commercial negotiation. We invite the reader to
visit the BioLeaf and at DropLeaf website at http://bioleaf.icmc.usp.br and
http://dropleaf.icmc.usp.br, which present all the details of the applications.

Figure 3. (a) Screenshots of BioLeaf - Foliar Analysis and, in (b) screenshots of
DropLeaf - Deposition Analysis.

The fifth contribution of this thesis is a complex network approach for particle
agglomeration analysis in nanoscale images. In this work, instead of assuming that a
nanoscale image is a textured surface, we have modeled the nanoparticles like vertices
of a graph, while connections are created according to a thresholding for density estima-
tion over a certain radius. For each nanoparticle, we calculate its density. Two particles
are linked, defining and edge, only if their distance is smaller than a given radius and
its density is higher than a given threshold. This work was published in the Journal of
Nanoparticle Research [21]. Furthermore, this work was integrated into an expert system
(see Figure 4), named NanoImage Analyzer, and it was submitted for software registration
also at INPI.

3. Conclusion
Texture description has always been a challenging task in image analysis and computer
vision. Texture analysis methods have emerged as important tools for real-world appli-
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Figure 4. Tool NanoImageAnalyzer for analysis of nanoparticles agglomeration.
It can be downloaded freely at http://nanoanalyzer.icmc.usp.br

cations, this is because they can learn patterns from objects or regions with annotated
examples. Typically, such methods aim to measure raw image pixels into a discriminant
data space. Despite the achievements, effective feature description is still a challenge.
In this work, we introduced novel methods for texture description applied over domains
ranging from agriculture to nanomaterials. We have achieved promising results, as previ-
ously discussed, with the aim of demonstrating that texture, as found in nature, is of great
potential in image analysis and computer vision.

In conclusion, this work departed from the hypothesis that the use of texture in-
formation can improve systems that depend on image analysis. We tested this initial
assumption over several domains using different proposed methods. Our results, as dis-
cussed in the previous section, demonstrated that, indeed, multiscale image representation
has potential in enhancing the discriminatory power when the scale is taken into account.
Future directions of the feature design are lead by advances in deep neural network con-
struction, that has brought a significant breakthrough for feature description, however, our
preliminary experiments showed that it is needed a large number of training samples for
achieving good results.
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