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Abstract. In AI, inconsistency measures have been proposed as a way to man-
age inconsistent knowledge bases. This work investigates inconsistency measur-
ing in probabilistic logic. We show that previously existing rationality postulates
for inconsistency measures in probabilistic knowledge bases are themselves in-
compatible and introduce a new way of localising inconsistency to reconcile
these postulates. We then show the equivalence between distance-based incon-
sistency measures, from the AI community, and incoherence measures, from phi-
losophy, that are based on the disadvantageous gambling behaviour entailed by
incoherent probabilistic beliefs (via Dutch books). This provides a meaningful
interpretation to the former and efficient methods to compute the latter.

1. Motivation

Representing real-world knowledge and performing inference usually demand formalisms
that can cope with uncertainty. Probabilistic logics combine the deductive power of log-
ical systems with the well-founded Theory of Probability to attend to this need. Prob-
abilities have been assigned to logical formulas for more than a century [Boole 1854,
de Finetti 1930], and more recently probabilistic logics entered into the Artificial Intelli-
gence (AI) community [Nilsson 1986, Hansen and Jaumard 2000, Halpern 2003].

Most approaches to probabilistic logic rely on the consistency of the set of
premises in order to perform inference, which is a standard practice throughout logical
reasoning. Nonetheless, many are the possible sources of inconsistency in a probabilis-
tic knowledge base: it may contain statistical data from different samples, it could have
been formed by the opinion of different experts, or even a single expert could lack the
resources to check his own consistency while building the base, etc. To restore consis-
tency in such cases, the inconsistency may be analysed, which calls for a way to measure
it. This work mainly investigates measures of inconsistency for knowledge bases over
probabilistic logic.
Example 1.1. Consider we are devising an expert system to assist medical diagnosis.
Suppose a group of experts on a given disease D is required to quantify the relationship
between D and its symptoms. Suppose three conditional probabilities (among others) are
presented:

• the probability of a patient of diseaseD exhibiting both symptom S1 and symptom
S2 is at least 60%;
• the probability of a patient of disease D exhibiting symptom S1 but not symptom
S2 is at least 50%;
• the probability of a patient of disease D exhibiting symptom S1 is at most 80%.
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A knowledge engineer, while checking those facts, finds that they are inconsistent: ac-
cording to the first two items, the probability of symptom S1, given disease D, should be
at least 110%. He does not even know where each probability came from, but plans to
adjust them, since consistency is a requirement. How should he proceed? Which prob-
abilities is the degree of inconsistency most sensitive to? Once chosen which number to
change, should it be raised or lowered in order to approximate consistency? These are the
kind of questions an inconsistency measure can help to answer.

The problem of measuring inconsistency in probabilistic knowledge bases has
recently been tackled via distance minimisation [Thimm 2013, Potyka 2014]. Thimm has
adapted to probabilistic logic the rationality postulates for measuring inconsistency in
classical propositional logic [Hunter and Konieczny 2008]. Informally, an inconsistency
measure is a function taking knowledge bases (sets of formulas) to non-negative numbers.
The first postulate is (Consistency), which claims that an inconsistency measurement is
zero if, and only if, the corresponding base is consistent. Another desirable property
suggested is (Independence), stating that the withdrawal of a free formula of the base —
i.e., a formula that does not belong to any minimal inconsistent set — should not change
the inconsistency measurement. Thimm brought these postulates, among others, to the
probabilistic context, adding (Continuity) to the list, which intuitively says that small
changes in probabilities lead to small changes at the value of the inconsistency measure.
We prove that (Consistency), (Independence) and (Continuity) cannot hold together, and
some of these postulates must be abandoned or exchanged for jointly satisfiable ones.
Since (Independence) is based on minimal inconsistent sets, a problem related to the
postulates reconciliation is how to characterise “atomic” inconsistencies in probabilistic
logic.
Example 1.2. Recall the situation in Example 1.1. Now, instead of adjusting these prob-
abilities by himself, this knowledge engineer decides that the experts who elicit them
should do the job. It happens that each of these probabilistic assessments has come from
a different expert. The engineer then intends to schedule a meeting among the physicians
responsible for the inconsistency in order for them to reassess their assignments in a con-
sistent way. These experts are very busy, and their time, expensive, thus the knowledge
engineer wants to invite for the meeting only the very physicians whose probabilistic as-
sessments are collaborating, or causing, the inconsistency of the whole base. Who should
the engineer call? Or, which pieces of information can be “blamed” for causing the in-
consistency? It seems clear that the doctors responsible for the two first statements should
be invited, but what about the third? These questions can be answered by localising the
inconsistency in the base.

While computer scientists are investigating the problem of measuring inconsis-
tency in probabilistic knowledge bases, statisticians and philosophers have been inter-
ested in evaluating the incoherence of formal agents that assign probability to events or
propositions. In Bayesian epistemology, probabilities are usually construed as an agent’s
degrees of belief, which can be operationally defined as the relative prices she would be
willing to pay for gambles. Under these assumptions, the incoherence of an agent by can
be quantified via the sure loss she would be exposed to via a disadvantageous set of bets
— a Dutch book [Schervish et al. 2002]. To the best of our knowledge, these proposals for
measuring incoherence of Bayesian agents have been ignored within the AI community,
even though they correspond to measures on probabilistic knowledge bases.
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2. Objectives
The first main objective of this work is to reconcile the rationality postulates for measuring
the inconsistency of probabilistic knowledge bases. To achieve this, the characterisation
of problematic sets of formulas in a probabilistic knowledge base — those causing the
inconsistency — must be analysed, since these sets are the basis of some incompatible
desirable properties. That is, before fixing the postulates, we have to understand how to
localise inconsistency in probabilistic logic.

As a second major aim, this work intends to link different approaches from dif-
ferent communities to very similar problems: on the one hand, distance-based methods
to measure the inconsistency of probabilistic knowledge bases in Artificial Intelligence;
on the other hand, sure losses via Dutch books to quantify the incoherence of agents in
Bayesian statistics and formal epistemology.

3. Main Contributions
Identifying and fixing the incompatibility of the rationality postulates for inconsistency
measures in probabilistic logic is the first major contribution of this work. We prove that
the desirable properties are not jointly satisfiable and provide suitable for one them. A
derived achievement of this work is the proposal of alternative forms of localising the
inconsistency in probabilistic bases, which are employed to reconcile the postulates.

In the second main contribution of the thesis here summarised, we prove a formal
equivalence between inconsistency measures via distance minimisation and incoherence
measure via Dutch books. This provides the former with a meaningful interpretation,
through the betting behaviour induced by the probabilities, and latter with efficient com-
putation methods. Furthermore, our results open the path for the reciprocal interchange
of ideas and techniques between the corresponding communities.

4. List of Publications
Part of this thesis’ results, as well as related research done by the author, has been appear-
ing in major international journals and conferences. The list of publications shows that
this research has had impact in its surrounding areas, providing both a general framework
for localising inconsistency in classical logic and a foundation for probabilistic consoli-
dation on the AGM framework of belief revision, for instance. Also, the techniques de-
veloped were applied in more distant fields, like formal epistemology in philosophy and
natural language processing. Additionally, the most recent papers are evidence of inter-
national collaboration: with Anthony Hunter, from the University College London, where
the author has done post-doctoral research, and with Julia Staffel, German philosopher
based at the Washington University in St. Louis.

De Bona, G. and Hunter, A. (2017). Localising iceberg inconsistencies. Artificial
Intelligence. In press. Qualis-Capes: A1.

De Bona, G. and Staffer, J. (2017). Graded incoherence for accuracy-firsters.
Philosophy of Science. In press. InCites-JCR ranking: #7 out of 44 in History and
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Finger, M. and De Bona, G. (2017). Algorithms for deciding counting quantifiers
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De Bona, G., Cozman, F., and Finger, M. (2015). Generalized probabilistic satisfi-
ability through integer programming. Journal of the Brazilian Computer Society,
21(1):1–14. Qualis-Capes: B2.

De Bona, G., Cozman, F., and Finger, M. (2014). Towards classifying propo-
sitional probabilistic logics. Journal of Applied Logic, 12(3):349–368. Qualis-
Capes: B1.

De Bona, G., Cozman, F., and Finger, M. (2013). Generalized probabilistic sat-
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5. Relevant Results

A knowledge base (KB) is a set of (un)conditional (possibly imprecise) probabilities as-
signed to propositional formulas. In Examples 1.1 and 1.2 the KB enconding the three
statements is ∆ = {P (S1 ∧ S2) ≥ 0.6, P (S1 ∧ ¬S2) ≥ 0.5, P (S1) ≤ 0.8}. An inconsis-
tency measure is a function I : K→ [0,∞) intended to capture the inconsistency degree
of a KB, where K is the set of all KBs.

A direct approach to measure inconsistency in the unconditional case is via the
distance between the probabilities in an KB and the closest consistent ones. For in-
stance, to measure the inconsistency of ∆ using some distance d(., .), we minimise
d(〈0.6, 0.5, 0.8〉, 〈x, y, z〉) subject to {P (S1∧S2) ≥ x, P (S1∧¬S2) ≥ y, P (S1) ≤ z} be-
ing consistent. If d is the Manhattan/Absolute distance, the corresponding inconsistency
measure, denoted by I1, is such that I1(∆) = |0.6−0.4|+ |0.5−0.4|+ |0.8−0.9| = 0.3,
since {P (S1 ∧ S2) ≥ 0.5, P (S1 ∧ ¬S2) ≥ 0.4, P (S1) ≤ 0.9} is a closest consistent KB.
Similarly, using Chebyshev distance, we have the inconsistency measure I∞, which is
such that I∞(∆) = max{|0.6−0.4|, |0.5−0.4|, |0.8−0.9|} = 0.1. These measures have
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been generalized to the conditional case in a way that keeps computational practicability
[Potyka 2014], and by I1 and I∞ we denote such generalisation. Any p-norm distance
yields an inconsistency measure Ip, but I1 and I∞ are the most efficiently computable
ones, employing linear programming. These measures have been criticised for lacking a
meaningful interpretation, being only geometrical.

The formulation of inconsistency measures has been guided by rationality postu-
lates requiring basic, intuitive properties. Our first relevant result proves the incompati-
bility of three of these postulates, informally presented in the introduction1:
Theorem 5.1. (Consistency), (Independence) and (Continuity) are incompatible.

To fix the postulates, we investigate (Independence), which is the least appealing
to the intuition. This postulate is based in the concept of minimal inconsistent set (MIS).
A Γ ∈ K is a MIS if its is inconsistent and every Γ′ ( Γ is consistent. For instance,
Θ = {P (S1 ∧ S2) ≥ 0.6, P (S1 ∧ ¬S2) ≥ 0.5} is the only MIS contained in ∆.

Recall the situation in Example 1.2. Suppose that only the two experts responsible
for the probabilities in Θ are called to reconcile their assignments, via relaxing the proba-
bility bounds, yielding the consistent KB Θ′ = {P (S1 ∧ S2) ≥ 0.5, P (S1 ∧¬S2) ≥ 0.5}.
Nevertheless, adding the third assignemt we have ∆′ = {P (S1 ∧ S2) ≥ 0.5, P (S1 ∧
¬S2) ≥ 0.5, P (S1) ≤ 0.8}, which is still inconsistent – indeed, ∆′ is a MIS. Note that
P (S1 ∧ S2) ≥ 0.5 and P (S1 ∧ ¬S2) ≥ 0.5 entail P (S1) ≥ 1, contradicting P (S1) ≤ 0.8.

Hence, MISs do not capture all the inconsistency in a KB. To circumvent that, we
introduce the concept of inescapable conflict. Informally, a KB is an inescapable conflict
when its probability bounds can be relaxed to form a MIS. Thus, ∆ is an inescapable
conflict, for ∆′ is a MIS. We propose then a new version of (Independence), called (i-
Independence), demanding that removing a probabilistic assigment from a KB should
not decrease its inconsistency measurement if such assignment does not take part in any
inescapable conflict in the KB. Our second relevant result follows:
Theorem 5.2. (Consistency), (i-Independence) and (Continuity) are compatible.

The next main result deals with inconsistency measures based on bet transactions2.
Imagine a situation where Alice thinks the probability of a given coin landing heads up
is 60% and the probability of such coin landing tails up (not heads up) is also 60%. The
KB ∆ = {P (H) = 0.6, P (¬H) = 0, 6} captures Alice’s epistemic state, which is clearly
inconsistent. Now suppose there is two bet tickets: one that pays $100 (the bet prize) if
the coin lands heads up and the other pays $100 if the coin lands tails up. Based on her
probabilistic beliefs, Alice think it is fair to buy these bet tickets for $60 each. Thus, she
is willing to spend $120 on these gambles, but will receive only $100 back, no matter the
coin outcome, losing $20 for sure. This set of bet transactions with guaranteed loss is
called a Dutch book.

It is a well-known result that an agent is vulnerable to a Dutch book iff she is
incoherent; i.e., if the KB corresponding to her epistemic state is inconsistent. Hence, a
natural idea proposed in philosophy is to measure the degree of an agent’s incoherence
through the size of the maximum sure loss she is exposed to via a Dutch book. The intu-
ition is that the more incoherent an agent is, the greater the guaranteed loss she is exposed

1In this section, the technical results are only sketched, and their precise mathematical formulation can
be found in the thesis here summarised.

2To explain this concept and the related measures, we focus on the unconditional case, for simplicity.
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to via a Dutch book. Nevertheless, if bet prizes are not limited, the sure loss in a Dutch
book can be arbitrarily scaled up. Hence, the maximum guaranteed loss is normalised by
either the greatest bet prize or the sum the prizes, yielding the incoherence measures ImaxSSK

and IsumSSK [Schervish et al. 2002], respectively. For instance, if Alice’s loss is divided by
the maximum prize, we have ImaxSSK = 20/100 = 0.2, whereas normalising by the prize’s
sum, we have IsumSSK = 20/200 = 0.1.

Although apparently unrelated at first, the most efficient distance-based measures
and the incoherence measures based on Dutch-books are equivalent, giving a meaningful
interpretation to the former and efficient computation methods to the latter:
Theorem 5.3. For any knowledge base Γ ∈ K, I1(Γ) = ImaxSSK(Γ) and I∞(Γ) = IsumSSK(Γ).

6. Concluding Remarks
In the thesis here summarised we studied different ways of measuring inconsistency
in probabilistic knowledge bases. The incompatibility among (Consistency), (Indepen-
dence) and (Continuity) was proved and fixed, with a new form of characterising conflicts
being develop along the way. Furthermore, we showed how distance-based inconsis-
tency measures correspond to Dutch-book-based incoherence measures, fostering cross-
pollination between computer science and philosophy. The ongoing impact of this re-
search is attested by the list of publications, with the framework here developed being
generalised and applied to different areas.
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