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Abstract. The Border Gateway Protocol (BGP) enables communication be-
tween Autonomous Systems (ASes) on the Internet. BGP offers significant flex-
ibility for traffic engineering through BGP communities, which are operator-
defined tags that convey information or requests in route announcements. Unfor-
tunately, the absence of standardized semantics or centralized repositories for
BGP communities complicates and limits their use, hindering the effective man-
agement of interdomain routing. This thesis develops techniques to infer BGP
community semantics using public BGP data from routing collectors, overcom-
ing the lack of documentation and providing datasets that can be automatically
updated. We first propose a set of techniques to infer location communities,
which are communities related to entities or locations traversed by a route. We
apply our techniques to billions of routing records from public BGP collectors
and show that they produce high precision (ranging from 86% to 93%) and
recall (ranging from 72% to 81%). We also design and evaluate algorithms
to automatically uncover BGP action communities and ASes that violate stan-
dard practices, revealing undocumented relationships between them (e.g., sib-
ling relationships). Our experimental evaluation uncovers previously unknown
AS relationships and shows that our algorithm to identify action communities
achieves average precision and recall of 92.5% and 86.5%, respectively.

1. Introduction

The Internet consists of Autonomous Systems (ASes) that exchange reachability infor-
mation using BGP, the de facto interdomain routing protocol [Rekhter 2006]. In BGP,
the construction of a route begins with an origin AS, which announces an IP prefix to its
neighbors. This announcement propagates via BGP updates, which contain mandatory
and optional attributes. Mandatory attributes include the destination IP prefix, the next-
hop router’s 1P, and the AS-path, which records the sequence of ASes a route traverses.
Optional attributes can be transitive (forwarded by ASes) or non-transitive and include
BGP communities and multi-exit discriminators (MEDs).

The BGP best-path selection algorithm allows operators to rank routes based
on policies and economic agreements using parameters like LocalPref for route prefer-
ence, MED for preferred interconnections, and intradomain cost minimization. However,
these mechanisms are coarse-grained and only influence routes received from neighbor-
ing ASes. As networks demand greater reliability and performance, routing policies have
become more dynamic and complex, exposing the limitations of BGP [Giotsas et al.
2014, Streibelt et al. 2018].

To overcome the limitations in BGP expressiveness, network operators increas-
ingly use BGP communities, which are 32-bit tags whose meaning (i.e., semantics) are



defined independently by each network. Network operators generally group BGP com-
munities into two types: informational and action. Informational communities' convey
details such as the country, city, PoP, or router where a route was learned, or the business
relationship with the neighboring network that announced it [Giotsas et al. 2014]. Ac-
tion communities request specific routing actions from upstream networks [Streibelt et al.
2018], such as AS path prepending to make a route less attractive or preventing a prefix
from being advertised to certain peers to steer traffic away from low-performance ASes.

Unfortunately, BGP communities are opaque identifiers with no standardized se-
mantics, allowing each network to define their own values and meanings. For example,
network A may use A:X to trigger AS path prepending, while network B may use B:X
to indicate that it received a route in New York. Some networks document their commu-
nities in Internet Routing Registries (IRR) databases [Tools 2024] or webpages, but most
observed communities remain undocumented.

The lack of standardization and public databases that map community values to
their semantics hinder traffic engineering and the development of tools to automate net-
work management. Operators must rely on incomplete or outdated IRR records, web-
pages, or direct communication with AS operators. This manual and error-prone process
makes it harder to integrate communities into routing decisions, often leading to subopti-
mal paths and limiting researchers’ ability to analyze interdomain routing.

2. Problem Statement and Contributions

A recent study [Giotsas et al. 2017] uses natural language processing to infer the meaning
of documented communities in IRR records and support webpages. This approach has two
fundamental limitations: (i) it infers a small number of communities, as it depends on the
descriptions provided by network operators; and (ii) it relies on incomplete and outdated
data, leading to reduced precision and limited coverage of existing communities. Also, an
AS can use the communities of a sibling AS, which complicates the understanding of BGP
community usage, as an informational community may appear in a route announcement
without the AS that defined it. Therefore, network operators still rely on documentation
provided by each AS about their BGP communities and relationships with other ASes,
which is often incomplete and insufficient for effective troubleshooting and understanding
of Internet routing. Thus, our problem statement can be summarized as follows:

Problem Statement: Nerworks do not publicly provide necessary and sufficient
information about their BGP communities and relationships with other networks for ef-
fective troubleshooting and understanding of Internet routing.

This thesis [da Silva Jr 2024] contributes to partially closing this gap by automat-
ically building reliable databases to document a subset of communities that are actively
being used on the Internet, i.e., communities that appear in public BGP route collectors. It
also presents mechanisms to uncover an undocumented type of confounding use of BGP
communities in the wild in which an AS consistently uses the informational communities
of another AS, which might help operators understand BGP community uses or uncover
undocumented AS relationships. This behavior can impact previous research that infers
AS relationships or the semantics of BGP communities [Giotsas et al. 2014, Krenc et al.
2023]. Specifically, this thesis focuses on the following two research questions (RQ):

'In this article, we use the term informational community interchangeably with information community.



RQ 1: Can we build reliable databases of BGP community semantics using
public routing data?

We address this research question by developing techniques to automatically infer
the semantics of BGP communities directly from publicly available route announcements
collected by route collectors. We initially target location communities (§3), defined as
communities that carry metadata about the location (e.g., city, country, continent, router,
PoP or link) where a route was learned. Location communities allow richer manipulation
inside the tagging AS, but they would also be helpful to neighboring and remote ASes
if their semantics were publicly available. For example, operators could use a tool that
correlates BGP location communities and performance (e.g., latency, jitter, etc.) to tune
their route selection preferences at a finer granularity than possible with just AS paths.

We also present algorithms for identifying action communities from public routing
data (§4). Our algorithms provide automatically updated databases of action communities
that can benefit novel tools and models. For example, this information can help operators
troubleshoot routing anomalies, e.g., when routes with action communities follow unex-
pected paths, and identify opportunities for traffic engineering, e.g., when an operator
observes preferable routes induced by action communities not publicly documented. We
show through longitudinal studies that our algorithms perform well over the years, even
when ASes add new communities or decommission old ones, attesting to the reliability of
the generated datasets [da Silva Jr et al. 2022, da Silva Jr et al. 2025]°.

RQ 2: Can we use BGP communities to identify AS relationships?

While sibling ASes may share communities, our analysis of routing announce-
ments revealed cases where nonsibling ASes also use each other’s communities. This
behavior complicates the inference of location communities, as these tags can appear in
route announcements without their defining AS in the AS path, deviating from expected
patterns and making automated inference more challenging.

For inferring location communities, we build a heuristic based on the hitting set
algorithm [Garey and Johson 1979] to detect the presence of these ASes that use the com-
munities of others and prevent their presence from excluding location communities from
the inference. We discovered that these relationships were not limited to sibling ASes, as
some ASes use the communities of other ASes even when they are not siblings. We call
this behavior community squatting® and identify the ASes involved as AS squatters.

We identify the squatting relationships and reduce the noise they introduce into the
inference of action communities. We compare our inferred AS relationships with tech-
niques that use public databases, such as PeeringDB [Arturi et al. 2023], and show that
our algorithms capture relationships that the existing techniques missed, thus addressing
Research Question 2. Our algorithm to uncover squatting relationships can complement
techniques for validating AS-relationship inferences and tracking route changes.

2The papers presented at ACM SIGMETRICS are also published in the Journal Proceedings of the ACM
on Measurement and Analysis of Computing Systems (POMACS).

3We borrow the term squat and its derived forms from “IP address squatting” [Salamatian et al. 2023],
where a network uses another’s IP address space internally for its own purposes.



2.1. Main Contributions

Our thesis contributes to the automatic identification of location (a subset of informa-
tion communities) and action communities on the Internet. We treat these sets separately
because they require different techniques and use BGP dumps from different time peri-
ods. We also design algorithms to identify ASes that engage in unconventional practices
by consistently squatting on the BGP communities of other ASes, which we refer to as
squatting relationship. This behavior can affect the validity of previous research that
relies on BGP communities [Krenc et al. 2023, Giotsas et al. 2014, Streibelt et al. 2018].

2.1.1. Location Communities

Our approach to infer location communities (§3) [da Silva Jr et al. 2022] is fundamen-
tally different from previous efforts, as our algorithms automatically infer communities
from public route announcements observed by BGP route collectors [Meyer 1997, RIPE
2024] and generate databases of communities that can be regenerated any time to reflect
additions of new communities or assignment changes. Our work is the first to show that
we can use public route announcements to infer, even at a coarse level, the semantics of
BGP communities.

We process over two billion route announcements from route collector projects
and infer 15,505 location communities across 1,120 ASes, wich represents 19.67% of
the communities that appeared in the BGP dumps in 2020. Our experimental evaluation
shows that our methodology yields high precision (from 87% to 93%) and recall (from
72% to 81%). We compare our results with CAIDA’s manually-built public database
of BGP communities [CAIDA 2021] and show that our technique has higher recall and
similar precision, with the advantage that it can be automatically updated as new BGP
communities are defined or as definitions change over time.

2.1.2. Action Communities and AS Squatters

Similarly to our approach to inferring location communities, we infer action communities
using only public BGP route announcements. The key difference between informational
and action communities is their placement in routing paths [da Silva Jr et al. 2025]. In-
formational communities are added by an AS to convey details such as where it learned
a route or its business relationship with the previous AS. Since they originate from the
defining AS, they should always appear on routes that traverse it. In contrast, action com-
munities request a routing action from another network, the controlling AS, which applies
the request and typically removes the community, as prescribed by RFC 7454 [Durand
et al. 2015]. This means action communities should rarely appear on routes that include
their defining AS. Our algorithms leverage this distinction to classify action communities
and detect potential squatters.

Our evaluation, based on billions of route announcements from 2018 to 2023,
shows that our algorithm for identifying action communities achieves average preci-
sion and recall of 92.5% and 86.5%, respectively, across all communities covered by
our manually-built ground truth. Analyzing 739 million announcements from December
2023, we inferred 19,564 action communities from 2,099 ASes, excluding 15,800 com-
munities (14.86%) linked to private ASNs. Our squatter detection algorithm identified
54 squatting relationships involving 105 ASes that systematically used other ASes’ com-
munities. These cases may reveal undocumented AS relationships, including five sibling
relationships missed by the state-of-the-art method in [Chen et al. 2023].



Figure 1. Example illustrating how long AS-paths between origin ASes and a tar-
get AS T constrain the locations where 7' receives and selects routes. We define
A as the (possibly empty) AS sequence between the BGP collector peer VV and 7,
and 5 (highlighted in gray) as the non-empty AS sequence that restricts where T’
receives BGP announcements. Solid black lines represent AS interconnections.

Our algorithms provide automatically updated metadata that can benefit novel
tools and models. For example, action community information can help operators trou-
bleshoot routing anomalies, e.g., when routes that follow an unexpected or undesired path
carry specific action communities, and identify opportunities for traffic engineering, e.g.,
when an operator observes preferable routes induced by action communities not publicly
documented. Our results show that operators use action communities much more exten-
sively than publicly available documentation would indicate.

3. Inferring Location Communities

We infer location communities based on the fact that ASes peer at a finite set of locations
and enforce dynamic but deterministic routing policies [Gao and Rexford 2001, Giotsas
et al. 2014]. Consider a target AS 7' that tags received routes with location communi-
ties (see Figure 1). If AS T and AS N, interconnect at a single location, then 7" will tag
all routes received from N; with the location community corresponding to their single
interconnection. The idea that all routes received at a specific location will have the cor-
responding location community is the core of our algorithm. Unfortunately, we cannot
simply infer communities that appear on all routes received from a neighbor N; as loca-
tion communities. First, neighbor /V; may tag all of its announcements with AS 7T traffic
engineering communities, which would be incorrectly inferred as location communities.
Second, when AS 7" and AS NN, interconnect at multiple different locations (indicated by
the multiple links between 7' and N, in Figure 1), then 7" may choose routes received
from N, at any of these locations. Each chosen route will have a different location com-
munity corresponding to the interconnection over which it was received. Therefore, no
community will appear in all routes, and no location community will be inferred.

We relax the requirement of a single interconnection and avoid the need to quan-
tify the number of interconnections between the target AS 7" and neighboring ASes by
analyzing paths that traverse multiple interconnections. Suppose that AS 7"and AS Nj in-
terconnect at multiple locations and that AS T receives a route with AS path (N3, Ny, N5)
(blue dashed line in Figure 1). Let I7 3, I5 4, and I, 5 be the interconnections traversed by
the route. Interconnection Ir 3 is constrained by the set of interconnections between ASes
T and N3 and their routing policies. Here is a non-exhaustive list of such constraints:

1. AS T might use multi-exit discriminators (MEDs) as a tie-breaker [Rekhter 2006] and
choose routes from N3 received at a particular interconnection. For example, if N
prefers to receive traffic from AS 7' towards I3 4 at I7 3, it may set lower MED values
on routes exported at /73, leading AS 7" to choose routes received at I7 3 over routes
received at other interconnections.



2. Routers systematically choose routes from the closest (lowest IGP cost [Rekhter
2006]) interconnection. For example, if I7 3 is the closest interconnection to AS 77s
egress router towards the vantage point at V', then the egress router will choose and
export routes from N received at I7 3.

3. Routes may not be accepted by AS " or exported by AS N3 at some interconnections,
especially in complex peering [Giotsas et al. 2014]. For example, if 7" and N3 peer in
Europe, but 7" buys transit from N3 in the US, T" will receive routes from N3’s peers
and providers only in the US.

The constraints imposed by the set of interconnections and routing policies be-
tween each pair of ASes in a route compound over consecutive AS hops. In other words,
interconnection /3 4 1s also constrained by the interconnections between ASes N3 and [V,
and their routing policies. The same constraints apply to /, 5. The implication is that cho-
sen routes traversing a sequence of ASes (like (N3, Ny, N5)) will only be received by AS
T at a small set of locations, possibly a single one. Looking at the problem another way,
for AS T to receive routes traversing (N3, Ny, N5) at different interconnections, then N
needs to receive and choose routes through (N, N5) at different interconnections, which
implies /N4 receives and chooses routes from N5 at different interconnections.

We sidestep incorrect inferences for origins that tag all their announcements with
traffic engineering communities by combining observations on multiple routes from dif-
ferent origins. The chance that all these origins tag their announcements with AS 7' traffic
engineering communities is low, which allows us to correctly remove traffic engineering
communities from the set of inferred location communities. In our algorithm, we require
routes from a configurable number of different origin ASes to infer location communities.
The algorithm also requires other configurable parameters that dictate the minimum and
maximum number of announcements satisfying specific properties to filter out possible
noises [da Silva Jr et al. 2022].

3.1. Unknown Siblings

Another issue is that there are ASes that seem to tag routes with location communities of
other ASes, with no apparent sibling relationship. For example, we observed announce-
ments traversing AS20473 (Constant) tagged with location communities from AS1299
(Telia). We relax the heuristic to account for missing sibling ASes and cases where ASes
reuse or incorrectly tag announcements with another AS’s location communities. If a
small set of ASes is responsible for tagging a target AS 7”s communities on routes that
do not traverse 7' or its known siblings, we retain the inferred location communities. More
precisely, let R, be the set of routes tagged with community ¢ from AS 7', and let R+ be
the set of routes whose AS paths traverse AS 7" or any of 7”s known siblings. We ig-
nore routes that traverse 7" or any of 1"”s siblings, and consider the route announcements
F. = R. \ Rr when deciding whether to discard an inferred location community. We
compute the minimum hitting set of F, and discard c as a location community if the set
contains more than K, ASes, where Ky, 1S a parameter of the algorithm.

In other words, we keep location community inferences only when few ASes are
to blame for AS 7”s communities showing up on routes that do not contain 7" or any
of 7”s siblings. The minimum hitting set is the smallest set of ASes W such that the
intersection of V¥ and each route € F. is nonempty. The minimum hitting set problem
is equivalent to the NP-complete minimum set cover problem [Garey and Johson 1979],
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Figure 2. Example illustrating how an action community is more likely to appear
in routes that do not include its controlling AS. The community C:NAE instructs
AS C not to advertise routes to AS E. We can observe the community C:NAE on
routes without AS C exported by ASes D, E, and F.

and we solve it using a greedy heuristic, which provides a tight approximation of the
optimal solution [da Silva Jr 2024].

For the experiments and numerical results of our algorithms for inferring location
communities, please see Chapter 4 of our thesis [da Silva Jr 2024].

4. Identifying Action Communities and AS Squatters

A basic premise of our work is that an action community should only appear if the route
does not traverse its controlling AS (see Figure 2 for an example). In this section, we
describe practical uses of BGP communities that violate this premise (§4.1). We then
describe how we identify communities that rarely appear with their controlling ASes as
action communities (§4.2) and how we use them to uncover other action communities that
do not satisfy our premise (§4.3).

4.1. Identifying BGP Community Squatting

We observe that ASes may use BGP information communities defined by or belonging to
other ASes. As an AS X is not supposed to tag routes with AS Y’s information communi-
ties, we refer to this type of use as squatting. A common case is ASes using communities
defined by one of their siblings, i.e., another ASN under the control of the same organi-
zation [Gao 2001, Chen et al. 2023]. This behavior is particularly common after network
mergers and could result from the homogenization of routing policies defined using BGP
communities across the merged ASes (See [da Silva Jr et al. 2025] for examples).

We propose an algorithm to detect ASes that squat another AS’s communities
by identifying an AS X that systematically tags routes with information communities
where the first 16 bits belong to another AS Y. The challenge is distinguishing between
AS X improperly using AS Y’s information communities and legitimate use of AS Y’s
action communities. We address this challenge by assuming that action communities are
applied selectively for short-term traffic engineering while information communities are
consistently added when announcements traverse a router. Thus, we identify an AS X
that consistently appears with AS Y’s communities as a potential squatter. The algorithm
uses configurable parameters to select routes and relationships that satisfy the squatting
criteria [da Silva Jr et al. 2025, da Silva Jr 2024].

4.2. Inferring BGP Action Communities

Our inference algorithm centers on checking how often a community is tagged on a route
that does not traverse the controlling AS or any of its squatters, from now on collectively



referred to as controlling ASes. We design and evaluate different approaches to account
for the lack of visibility and noise in observed community usage.

Handling squatting ASes To prevent misidentifying squatted communities as action
communities, we first identify squatting ASes, and then we rewrite ASNs in the AS path
and communities based on the squatting relationships, replacing each ASN with the small-
est ASN in its squatting set. This ensures that if a route traverses a squatting AS X and
carries a community from a squatted AS Y, both ASNs are consistently rewritten, effec-
tively preventing squatted communities from being classified as action communities.

Filtering Low-Visibility Communities We exclude communities with limited visibility
in public BGP dumps from our inferences. A community ¢ must appear in at least two col-
lector peers, with each peer observing it in at least four routes. These empirically chosen
thresholds effectively filter out rarely seen communities without significantly impacting
inference accuracy [da Silva Jr et al. 2025]. This filter removed 11,836 communities,
accounting for less than 11% of those in BGP dumps. If these communities gain broader
usage and visibility, our algorithm could classify them.

Inferring Action Communities Our algorithm analyzes each community indepen-
dently by computing the fraction of routes tagged with a community from AS Y that
do not traverse AS Y. It counts the total occurrences of each community ¢ and how often
those routes bypass c’s controlling ASes. This method accounts for errors or cases where
an action community remains tagged despite passing through its controlling AS (e.g., if
a customer fails to set it). Based on these counts, we classify communities as action
communities when they are largely absent from routes traversing their controlling ASes.

4.3. Uncovering Missing Action Communities

Our algorithm requires a minimum number of observed announcements to classify a com-
munity as an action community confidently. However, limited route collector coverage
and community filtering by some ASes reduce visibility. To address this problem, we use
high-confidence inferences to construct a prefix tree based on community digits, enabling
more accurate classification of low-visibility communities. ASes typically assign commu-
nities sequentially within a type, reserving contiguous blocks that share a common prefix.
These prefixes vary in length depending on numbering schemes and may use fixed- or
variable-size blocks per type. We validate this pattern using a manually built ground-truth
dataset. Figure 3 illustrates a prefix tree for AS3257, where leaves denote community
types: A for action and I for information. For instance, 3257:02XXX and 3257:1XXXX
are action communities, while 3257:08 XXX and 3257:3XXXX are informational.

For the experiments and numerical results of our algorithms for identifying action
communities and community squatters, see Chapter 5 of our thesis [da Silva Jr 2024].

5. Related Work

BGP Communities. The use of BGP communities has expanded significantly [Streibelt
et al. 2018], enabling tasks like network optimization, DDoS mitigation, and failure de-
tection [Giotsas et al. 2017, Feldmann et al. 2004]. Yet, the lack of standardization and
documentation hampers efforts to analyze routing dynamics and deploy advanced poli-
cies. Recent work has explored inferring community semantics [Giotsas et al. 2017,Krenc
etal. 2023]. Giotsas et al. [Giotsas et al. 2017] apply NLP to extract meanings from IRRs,



Figure 3. A prefix tree for the documented BGP communities from AS 3257. The
branch 05000 is unusually long because it contains only one community, with no
other communities sharing the 05* prefix.

websites, and AS documents. Krenc ef al. [Krenc et al. 2023] propose a clustering ap-
proach to classify informational and action communities, but it depends on a ground-truth
dataset to set separation parameters and evaluates on non-disjoint data, risking overfitting.
Both rely heavily on AS documentation, which is often incomplete or outdated. In con-
trast, our approach uses documentation solely for ground-truth validation, allowing for
independent inference of BGP community semantics.

AS Relationships. Characterizing AS relationships is challenging due to constant In-
ternet changes and the lack of reliable public data, which often omits backup or regional
connections not visible in route collectors [Gao 2001]. Additionally, AS relationships can
be hybrid [Giotsas et al. 2014], varying by peering location. Identifying these relation-
ships has practical applications, such as detecting route leaks, where a customer AS im-
properly exports routes from one provider to another, disrupting Internet traffic [Streibelt
et al. 2018]. Recent studies infer sibling relationships using data from network opera-
tors [Chen et al. 2023, Arturi et al. 2023]. Our approach also leverages route collector
data but extends beyond detection to identify ASes squatting on other ASes’ communi-
ties, which may indicate sibling relationships or other agreements. By relying solely on
public data, our method uncovers undocumented relationships that existing approaches,
which depend on public documentation, may miss [Arturi et al. 2023].

6. Conclusion

This thesis addresses the challenges of inferring the semantics of BGP communities using
only public route announcements. We propose automated classification techniques that
work well in the wild for a subset of community types. Our algorithms perform well
in identifying location communities, achieving a precision of 93% and a recall of 81%
for major Internet providers (Tier-1 and Tier-2 ASes). Our method provides similar ac-
curacy but identifies a far greater number of communities than CAIDA’s manually built
database. Also, our work automatically identifies action communities and community
squatters. Analyzing data from December 2018 to 2023, our algorithm for identifying ac-
tion communities achieves an average precision of 92.5% and an average recall of 86.5%,
demonstrating the robustness of our approach over multiple periods.
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