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Abstract. The imminent rise of practical quantum computing threatens well-
established cryptography algorithms for secret key exchange in use today, such
as Diffie-Hellman and Elliptic Curve (ECC) based schemes. These algorithms
are currently being replaced by quantum-safe Crystals-Kyber, also known as
ML-KEM. This work aims to explore hardware acceleration through RISC-V
Instruction Set Extensions (ISEs) in a low-end 32-bit core in a comprehensive
evaluation comprising performance, energy consumption, memory footprint and
die area costs, enabling an efficient implementation of a cryptosystem that can
withstand attacks from the emergence of quantum computers and is compli-
ant to modern cryptographic standards and algorithm suites. Three different
parametrizations of Kyber symmetric primitives are evaluated: the well-known
SHA-3 and AES/SHA-2 based versions, as well as a novel parametrization using
Ascon. This work also explores ISE-enhanced implementations of algorithms for
authenticated encryption (AEAD) and hash functions at the 128 and 256 bit se-
curity levels, evaluating improvements due to the use of specialized instructions
in each algorithm.

1. Introduction

The advancement of quantum computing has raised concerns about the long-term se-
curity of current key exchange mechanisms, such as Diffie-Hellman and Elliptic Curve
Diffie-Hellman (ECDH), widely used in current cryptographic systems. These traditional
methods are vulnerable to quantum-based attacks, which could compromise the confi-
dentiality and integrity of sensitive information in the future. Consequently, researching
and deploying new key exchange algorithms based on mathematical foundations that are
naturally resistant to such attacks is crucial, introducing a new field of research called
Post-Quantum Cryptography (PQC). Lattice-based problems such as Learning with Er-
rors (LWE) and its variants, particularly Module Learning with Errors (MLWE), emerged
as potential solutions, showing resistance to classical and quantum-based attacks. Sev-
eral algorithms have been proposed using the MLWE problem as the basis for its security
guarantees.

To address this need, the National Institute of Standards and Technology (NIST)
initiated a competition to standardize new quantum-resistant key exchange algorithms.
After several submissions for Key Encapsulation Mechanisms (KEM), the winning al-
gorithm was announced in July 2022 to be the MLWE-based scheme Crystals-Kyber.
As a result of this competition, Kyber is now standardized under the name ML-KEM
[NIST 2024] since August 2024.



As with most lattice-based schemes, Kyber introduces performance and memory
usage overheads. These overheads become even more pertinent in embedded systems and
Internet of Things (IoT) devices, which feature low-complexity processors and limited
on-chip memory. It should be noted that such devices typically serve as the first point
of data collection from sensor interfaces, which are then forwarded to upstream complex
nodes. Upstream nodes possess greater computational power and are better equipped to
secure data effectively. However, the same cannot be said for downstream, less complex
nodes. The efficient provision of post-quantum secure communication in low-complexity
network endpoints is paramount for the further advancement of the IoT.

Parallel to the post-quantum competition, NIST has also promoted the lightweight
cryptography (LWC) competition, aiming to standardize algorithms tailored to devices
with constrained resources. The LWC competition accepted the submission of algorithms
that provide symmetric encryption and optional hashing capabilities. Such algorithms
should provide better performance and memory footprint than traditionally used algo-
rithms at the 128-bit security level. In February 2023, Ascon [Dobraunig et al. 2021] was
selected as the winner of the LWC competition. The intersection between Lightweight
Cryptography and Post-Quantum Cryptography is still an open research problem.

Hardware acceleration can significantly enhance performance, memory, and en-
ergy efficiency in crucial operations of an algorithm. One way to achieve hardware ac-
celeration is by implementing specialized instructions in a general-purpose processor, a
practice known as Instruction Set Extensions (ISEs). Compared to memory-mapped ac-
celerators, extending a base instruction set with specialized instructions for a given algo-
rithm provides benefits relevant to low-power embedded systems, including: (i) resource
sharing among generic and specialized components, such as the register file and RAM
interfaces; (ii) trivial data transfer among generic and specialized components via the
register file, avoiding costly memory accesses; (iii) no added system complexity to, e.g.
the bus and interrupt controllers.

The primary motivation for this work is the scarcity of research in the literature
concerning Kyber implementations and hardware acceleration via ISEs in low-resource
embedded systems, despite the clear need for post-quantum security solutions tailored
to the IoT context. Most previous efforts in Kyber implementations focus on software-
only implementations that do not explore hardware acceleration or highly complex,
performance-driven implementations that do not prioritize crucial metrics for IoT, such
as energy consumption and memory footprint. Given the increasing deployment of IoT
devices, addressing this issue is becoming more critical [Garcı́a-Morchón et al. 2019].

Since the NIST PQC competition, recommended algorithm sets encompassing all
cryptographic services usually needed for practical security are being updated to include
quantum-safe algorithms. Of such algorithm sets, the most relevant is the Commercial Na-
tional Security Algorithm Suite (CNSA) 2.0, maintained by the National Security Agency
(NSA), listing publicly-known algorithms recommended for use in US government sys-
tems [NSA 2023]. Even though the 128-bit security level is widely regarded as sufficient
for practical security, CNSA 2.0 demands the use of algorithms at the 256-bit security
level for symmetric cryptography and hash functions. The challenges in providing post-
quantum security are further aggravated by the need to support 256-bit level primitives if
CNSA 2.0 compliance is to be pursued.



2. Related Works
In this section, previous relevant works are presented and discussed in the context of
this work. For brevity, only Kyber-specific hardware acceleration is presented in this
document. For related works concerning hardware acceleration of symmetric primitives
used within Kyber and as standalone Hash and AEAD functions, please refer to the full
dissertation text.

[Fritzmann et al. 2019] propose two accelerators for hash (Keccak) and NTT op-
erations coupled to a main processor via an AHB bus. Subsequent enhancements are
discussed in [Fritzmann et al. 2020], where the Authors integrate the aforementioned co-
processors inside a general-purpose CV32E40P processor. Their approach requires the
presence of a floating point register file for the integration of the Keccak core, leading
to significant area overheads in a higher complexity processor than the Ibex processor.
Furthermore, the vectorized polynomial arithmetic component is implemented indepen-
dently of the existing integer arithmetic ALU in the base processor, not exploring resource
sharing.

[Nannipieri et al. 2021] show a superscalar 6-stage 64-bit CVA6 RISC-V proces-
sor extended with custom instructions for the Kyber and Dilhitium algorithms. These
instructions are implemented based on a separate functional block, named PQ-ALU. The
PQ-ALU implements the usual modular arithmetic operations, as well as a one-cycle CT
butterfly. This approach is not usable in a low-resource context due to a lack of resource
sharing, both within the PQ-ALU and among existing arithmetic elements in the base pro-
cessor. There are 5 16-bit multipliers in a combinational path within the PQ-ALU, which,
surprisingly, are reported to not be in the critical path of the extended processor. This
approach is reasonable considering the context of the CVA6 64-bit superscalar processor,
but not for the low-complexity Ibex core.

[Lee et al. 2022] present a co-processor based approach, with the usual opera-
tions needed for Kyber and other MLWE-based algorithms, such as Keccak, sampling,
and polynomial multiplication, as well as the standardized RISC-V scalar cryptography
extensions, accelerating AES and SHA-2. No quantitative results are presented, but we
can conclude that this approach is not optimal, considering that the arithmetic modules
are separated from the processor integer ALU, and intermediary results are committed to
a separate register file in the co-processor. Again, resource sharing is not explored to the
extent necessary for IoT applications.

[Alkim et al. 2020], hardware-software co-design is considered in the context of
a 32-bit 5-stage RISC-V processor. New instructions for optimizing the NTT computa-
tion are implemented such that twiddle factors can be generated locally instead of being
fetched from a pre-computed table stored in memory, as usually done in software imple-
mentations, reducing code size and the number of memory accesses. In the base processor
(VexRiscv), regular integer multiplication computations are distributed between pipeline
stages of the processor, and the same structure is followed for modular multiplication and
reductions. The Authors implement the modular multiplication and reduction completely
independently of the integer multiplication units in the base processor, such that the pro-
cessor can be instanced without the integer multiplier while the optimizations proposed
by the authors still apply. This is not an optimal use of resource sharing between regular
integer arithmetic elements and modular arithmetic elements.

https://fgmoraes.github.io/docs/dissertacoes/dissertacao_carlos.pdf


[Karabulut and Aysu 2020] present a different approach to optimizing the NTT.
Instead of implementing new instructions as in previous works, the Authors propose mod-
ifications to the base processor control signals, such that memory dependence prediction
and out-of-order execution are accomplished when purely software butterflies are detected
during code execution. Again, this proposal is made in the context of a complex processor
and does not apply to resource-constrained devices.

[Miteloudi et al. 2023] present a custom extension for polynomial arithmetic, sup-
porting the Kyber and Dilithium algorithms. The supported operations are modular ad-
dition, subtraction, and multiplication, as well as CT and GS butterflies, implemented in
a separate ALU decoupled from the regular integer arithmetic elements. As in previous
proposals, the Authors only consider the acceleration of modular arithmetic. The single-
cycle butterfly computations consider a register file with two write ports, which is unusual
and not expected to be present in most low-complexity RISC-V implementations.

In summary, none of the works reviewed adequately addresses the issue of PQC
and the Kyber algorithm in resource-constrained environments considering ISEs. Previ-
ously proposed solutions are either naturally high complexity or integrated inside complex
processors. An implementation that explores extensive resource sharing with existing in-
teger arithmetic elements in a naturally low-complexity processor is still missing in the
literature.

Previous works often overlook the evaluation of energy consumption and mem-
ory footprint for their proposed solutions. Our work addresses this gap by presenting
comprehensive analyses of both factors, offering a deeper evaluation of the implications
associated with hardware acceleration through ISEs. Additionally, reported area overhead
values are based on open-source synthesis tools or FPGA implementations, which may
not accurately reflect the metrics in practical ASIC implementations. In contrast, this
work employs a commercial synthesis tool with a manufacturable cell library, ensuring
high-quality results.

Table 1 summarizes characteristics of the reviewed works concerning their hard-
ware acceleration of symmetric primitives in Kyber, polynomial arithmetic, lightweight
SIMD, CBD sampling, and coefficient compression features.

Table 1. Related works comparison

Work Symmetric Primitives Modular Arithmetic SIMD CBD Sampling Compression

[Albrecht et al. 2018] X X

[Park et al. 2022] X

[Banerjee et al. 2019] X X

[Xin et al. 2020] X X

[Fritzmann et al. 2020] X X X

[Nannipieri et al. 2021] X

[Lee et al. 2022] X X

[Alkim et al. 2020] X

[Karabulut and Aysu 2020] X

[Miteloudi et al. 2023] X

This work X X X X X



3. Hardware Acceleration of Crystals-Kyber

Kyber performance relies on symmetric primitives for its internal sampling and hash-
ing operations. The evaluation of these symmetric primitives is presented only in the
context of Kyber, please refer to the full dissertation text for their evaluation in their
standalone use as hash functions and AEAD algorithms, as well as their hardware imple-
mentation within the Ibex processor. The choice of Kyber symmetric primitives for each
parametrization and the RISC-V extension used to accelerate them is shown in Table 2.

Table 2. Symmetric primitives for each Kyber parametrization.

Kyber Parameterization Extension XOF H G PRF KDF
Kyber-Keccak Zbkb SHAKE128 SHA3-256 SHA3-512 SHAKE256 SHAKE256

Kyber-90s Zkne/Zknh AES-256 CTR SHA-256 SHA-512 AES-256 CTR SHA-256
Kyber-Ascon Xascon Ascon-XOF Ascon-XOF Ascon-XOF Ascon-XOF Ascon-XOF

In addition to symmetric primitive acceleration, the XKyber extension is proposed,
containing 6 new instructions designed to optimize Kyber implementations in low cost
RISC-V 32 bit processors. Four of these instructions rely on the fact that Kyber poly-
nomial coefficients are 12 bit integers, stored in memory as arrays of 16 bit variables,
meaning that 2 coefficients can fit in the native 32 bit word size. Processing can be per-
formed in parallel for 2 coefficients at a time using regular integer arithmetic elements
in the base processor, without the need for costly vector co-processors or extensive addi-
tional logic. Single Instruction Multiple Data (SIMD) processing also reduces the amount
of memory accesses, seeing as 2 coefficients are loaded/stored from/to memory in a single
word-wide access. The instructions proposed in XKyber are presented in Table 3.

Table 3. XKyber instructions

Instruction Functionality
kybercbd2 RD, RS1 RD[11:0]← CBD2(RS1[3:0]);RD[27:16]← CBD2(RS1[7:4]); (Algorithm 5.1)
kybercbd3 RD, RS1 RD[11:0]← CBD3(RS1[5:0]);RD[27:16]← CBD3(RS1[11:6]); (Algorithm 5.1)

kyberadd RD, RS1, RS2 RD[11:0]← RS1[11:0] +RS2[11:0]mod q;RD[27:16]← RS1[27:16] +RS2[27:16]mod q;
kybersub RD, RS1, RS2 RD[11:0]← RS1[11:0]−RS2[11:0]mod q;RD[27:16]← RS1[27:16]−RS2[27:16]mod q;
kybermul RD, RS1, RS2 RD ← RS1[11:0]×RS2[11:0]mod q;

kybercompress RD, RS1, RS2 RD ← CompressRS2(RS1[11:0]); (Algorithm 5.2)

The XKyber implementation and integration into Ibex is illustrated in Figure 1,
along with other previously discussed ISEs, shown with dotted lines. Existing elements
are shown in green, added elements in blue and control signals in orange. ISEs Zknh
(SHA-2 sigma functions), Xascon (Ascon sigma functions), Zkne (AES) are implemented
as functional units, while Zbkb (bit-manipulation) is implemented in the ALU.

As Figure 1 shows, we employ fine-grained, tightly coupled acceleration. Fine-
grained acceleration executes only the most critical parts of the algorithms in dedicated
hardware. Tightly coupled accelerators are closely integrated into the processor, sharing
resources with its main architectural blocks. This contrasts with the co-processor accel-
eration approach, which implements the acceleration in a dedicated hardware block. This
approach reduces memory accesses and processing power, particularly advantageous for
resource-constrained embedded environments.

https://fgmoraes.github.io/docs/dissertacoes/dissertacao_carlos.pdf
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Figure 1. Ibex execution block with extensions

4. Experimental Evaluation
A comprehensive comparative evaluation of the Kyber-512, Kyber-768, and Kyber-1024
security levels was performed, considering the symmetric primitives parametrizations
Kyber-Keccak, Kyber-90s, and the novel Kyber-Ascon for each of the KeyGen, Enc,
Dec steps. In this document we present only the comparative evaluation of Kyber-512.
The evaluation is performed both with and without hardware acceleration for the sym-
metric primitives and Kyber-specific operations via the XKyber extension, comprising a
performance comparison as well as energy consumption, memory footprint and die area
cost analyses.

Metric AES-256 CTR SHAKE128 SHAKE256 Ascon-XOF
Clock Cycles 1,490 311 30,197 22,355 30,197 22,355 1,558 738
Instructions Retired 1,234 240 22,715 13,713 22,715 13,713 1,501 671
Cycles per byte 128 26 180 133 222 164 195 92
Instructions per byte 108 20 135 82 167 101 188 84

Table 4. Core operation profiling for each XOF and PRF choice (smaller is better)
(white = software, blue = hardware accelerated)

Figure 2 shows the performance of each of the KeyGen, Enc, Dec steps, consid-
ering the symmetric primitive choices of Kyber-Keccak, Kyber-90s and the novel Kyber-



Ascon. Software and ISE-accelerated implementations are hatched with circles and di-
agonal stripes, respectively. The observed performances follow the analysis of the core
operation throughputs shown in Table 4, with Kyber-90s being the fastest Kyber symmet-
ric parametrization. Notably, software only Kyber-90s is faster than hardware accelerated
Kyber-Keccak and Kyber-Ascon for all 3 Kyber steps. Kyber-Keccak and Kyber-Ascon
show very similar performance, with a slight advantage to Kyber-Ascon comparing soft-
ware only implementations (<1% difference) and a greater advantage to Kyber-Ascon
comparing hardware accelerated implementations (17% difference). Kyber-Ascon shows
the most significative performance benefits from the use of ISEs (28% difference).

Figure 2. Kyber performance with hardware acceleration of symmetric primitives

Figure 3 shows the performance of the 3 Kyber steps using the XKyber extension.
A baseline software implementation of Kyber-90s is compared to an implementation with
only the symmetric primitives accelerated with Zkne and Zknh and an implementation
with both symmetric acceleration and Kyber-specific acceleration. The impact of accel-
erating Kyber operations via XKyber is roughly the same as accelerating the symmetric
primitives via Zkne and Zknh. From Figure 2, Kyber-90s is the best case for hardware ac-
celeration of symmetric primitives. If the Kyber variant in question were Kyber-Keccak
or Kyber-Ascon, hardware acceleration via XKyber would outperform hardware acceler-
ation of symmetric primitives via Zbkb or XAscon.

Figure 3. Kyber-90s performance with XKyber extension

Internal Kyber operations show better code size, as depicted in Figure 4. The base-
line software implementations are hatched with circles, while XKyber-accelerated imple-
mentations are hatched with diagonal stripes. The baseline implementation of Kyber-512
shows a total code size of 5090 bytes (not including symmetric primitives), while the XKy-
ber-accelerated implementation shows a code size of 4314 bytes, a 15% improvement.

A more comprehensive memory footprint analysis is performed considering the
entire cryptosystem, not only the Kyber implementation but the symmetric primitives
used in Kyber as well. Table 51 compares 3 different practical cryptosystems considering

1Adapted from subproduct [Gewehr et al. 2024]



Figure 4. Memory footprint of Kyber operations accelerated by XKyber.

authenticated encryption (AES in CCM mode or Ascon-128), hash functions (SHA-2,
SHA-3 or Ascon-Hash) and KEM (Kyber-512).

Cryptosystem AES CCM + SHA-3 + Kyber-Keccak AES CCM + SHA-2 + Kyber-90s Ascon-128 + Ascon-Hash + Kyber-Ascon
Code size 10,238 10,076 11,842 10,490 9,788 10,080 9,842
Static data 1,480 1,480 2,248 1,223 1,223 256 256
Total 14,854 14,692 17,226 14,849 14,147 13,472 13,234

Table 5. Kyber-512 cryptosystem total memory footprint in bytes (white = soft-
ware, blue = [Zbkb, Zkne + Zknh, Xascon], green = Zkne + Zknh + XKyber)

The energy consumption of each Kyber step for each Kyber symmetric
parametrization is shown in Figure 5. Energy spent due to data and instructions memory
operations are shown, respectively, in yellow and green. Energy spent due to data pro-
cessing inside the Ibex processor is shown in blue. The baseline software-only implemen-
tations are shown with bars hatched with circles, while implementations with hardware-
accelerated symmetric primitives are shown in bars hatched with diagonal stripes.

Figure 5. Energy consumption of Kyber variants

The core energy dominates the total energy consumption due to the internal pro-
cessing of data rather than moving data to/from memory. Despite both having similar per-
formance, Kyber-Ascon shows higher energy consumption than Kyber-Keccak, as Kyber-
Ascon executes more instructions per time unit, increasing average power, and therefore,
total energy. Following the performance trend shown in Figure 2, software-only Kyber-
90s shows slightly better energy consumption than hardware-accelerated Kyber-Keccak,
which further improves with hardware acceleration.

Figure 6 shows the energy consumption of each Kyber step, considering a base-
line software-only implementation of Kyber-90s, an implementation with hardware ac-
celerated symmetric primitives only, and an implementation with hardware-accelerated



symmetric primitives and Kyber internal operations via XKyber. The total energy con-
sumption follows the trend for performance, with energy consumption gains obtained
from the Zkne and Zknh extensions being equivalent to gains obtained from the XKyber
extension. Note the scale difference for each plot.

Figure 6. Energy consumption of XKyber extension in Kyber-90s

Table 6 shows synthesis results for the Ibex core and each ISE being explored. The
Zkne and Zknh combination showing a 11% increase and Xascon showing a 9% increase.
Zbkb shows a smaller 1% cell area increase, but shows the greatest increase in cell count
at 13%. XKyber shows a similar increase of 4 kGE as the Zkne and Zknh case.

Synthesis results Ibex baseline Ibex + Zknh + Zkne Ibex + Zbkb Ibex + XAscon Ibex + Zknh + Zkne + XKyber
Cell Area (µm2) 11,238 12,447 11,307 12,210 13,734
Net Area (µm2) 6,992 7,278 5,142 8,181 7,568
Total Area (µm2) 18,230 19,726 16,449 20,391 21,302
Cell Count (# instances) 10,289 11,687 11,769 11,010 13,131
Equivalent NAND2 gates 34,433 38,132 34,642 37,408 42,076
Slack @ 500 MHz 0 0 0 0 0

Table 6. Area comparison of ISEs for Kyber hardware acceleration.

5. Conclusion
The choice of Kyber symmetric primitives significantly impacts the performance and en-
ergy consumption of Kyber in resource-constrained embedded systems. Compared to the
standard Kyber-Keccak, Kyber-90s offers 28% better performance while consuming 27%
less energy in a software-only implementation of Kyber-512. Kyber-Ascon shows simi-
lar performance to Kyber-Keccak, but may be an attractive option for severely memory-
constrained systems at the 128-bit security level.

Hardware acceleration of Kyber symmetric primitives also shows significant
gains. In Kyber-512, 32% gains for both performance and energy consumption for the
Kyber-90s parametrization are observed. Additionally, adding the XKyber extension for
accelerating internal Kyber operations can enhance performance and energy consumption
even further, providing gains of 46% and 44%, respectively, considering Kyber-512 with
hardware acceleration via Zkne and Zknh. As an extra benefit, XKyber reduces Kyber
code size by 15%. Hardware acceleration comes at an area cost of 10% of a baseline Ibex
core, both for symmetric primitives and XKyber.
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