
Bug Analysis in Jupyter Notebook Projects:
An Empirical Study

Taijara L. Santana1, Paulo A. da M. Silveira Neto2, Eduardo S. Almeida1, Iftekhar Ahmed3

1Federal University of Bahia, Institute of Computing (IC-UFBA) Salvador – Bahia – Brazil

2Federal University Rural of Pernambuco (UFRPE) Recife – Pernambuco – Brazil

3University of California, Irvine USA

taijara@gmail.com, paulo.motant@ufrpe.br, esa@rise.com.br, iftekha@uci.edu

Abstract. Computational Notebooks, such as Jupyter, have been widely adopted
in data science for building data-driven code. Despite their popularity, challen-
ges related to software development in these environments still need to be inves-
tigated. This study conducts a systematic analysis of bugs and difficulties faced
by Jupyter practitioners. A total of 14,740 commits from 105 GitHub projects
were mined, and 30,416 Stack Overflow posts were analyzed to identify common
issues. Additionally, 19 interviews with data scientists were conducted to gather
more details on these challenges. For validation, a survey with various profes-
sionals was carried out, along with an analysis based on the Apriori algorithm.
Based on these findings, a taxonomy of bugs was proposed to classify different
types of issues found in Jupyter projects.

1. Introduction
Data science and data analysis are emerging fields that attract professionals from vari-
ous areas, such as mathematics, statistics, and computer science. These professionals
combine technical knowledge with domain expertise to obtain strategic insights through
data exploration, quantification, qualification, and prediction [Dhar 2013, Tao et al. 2020,
Cao 2017]. Jupyter Notebook has become one of the most widely used tools in this con-
text, allowing the writing of text and code in a documentation structure that describes
the data analysis process [Pimentel et al. 2019, Koenzen et al. 2020]. However, despite
its popularity, Jupyter presents challenges, such as promoting inadequate development
practices and reproducibility issues [Wang et al. 2021, Head et al. 2019].

The growing use of Jupyter Notebook has brought benefits but also challenges,
such as code incompatible with Python standards, unused variables, and obsolete func-
tions [Wang et al. 2020]. Only 24.11% of the analyzed notebooks could be reprodu-
ced without errors [Pimentel et al. 2019], presenting issues like name-value incon-
sistency [Patra and Pradel 2021] and the absence of dependency declarations in 94%
of cases [Wang et al. 2021]. These factors lead data scientists to perceive notebooks
as ad-hoc and disposable tools [Kandel et al. 2012], often described as disorganized
[Kery et al. 2018, Rule et al. 2018]. Understanding these issues can help improve the re-
liability and usability of Jupyter notebooks.

Despite extensive research on software bugs in various domains
[Thung et al. 2012, Zhang et al. 2018, Islam et al. 2019], studies focusing specifi-
cally on Jupyter projects remain scarce. Analyzing bugs in Jupyter notebooks is crucial



for improving code quality and reliability [Wang et al. 2021, Chattopadhyay et al. 2020],
as these issues can significantly impact data science projects. A notable example is the
COVID-19 case, where errors in Jupyter notebooks led to significant discrepancies in
data reporting [Insider 2020].

Given these challenges, this work aims to investigate bugs in Jupyter projects, in-
cluding their characteristics, root causes, impacts, and the challenges faced by data scien-
tists. To achieve this, we analyze commits from GitHub repositories and Stack Overflow
posts related to Jupyter bugs [Agrawal and Srikant 1994]. Additionally, interviews with
data scientists and a survey were conducted to validate the findings. By shedding light on
these problems, we hope to contribute to the development of better tools and practices for
Jupyter users, improving both the usability and robustness of computational notebooks.

As a result of this work, the main contributions can be enumerated: Comprehen-
sive understanding of bug classes and their root causes in the context of Jupyter Proposal
of a taxonomy with eight bug categories specific to Jupyter projects. Recommendations
for researchers and practitioners based on data collected from GitHub, Stack Overflow,
and interviews. Availability of materials for reproducible research, including datasets and
interview data (available on the project website1) .

2. Related Work

The main related work were grouped into five conceptual areas:

Extensions to Improve Notebooks: The Jupyter Notebook project aims to
provide the data science community with a simple graphical interface to promote
computational narrative, focusing on usability, collaboration, and portability. Se-
veral studies have proposed extensions to improve these aspects. For example,
[Rule et al. 2018] investigated how ”cell folding”can improve notebook navigation and
reading, while [Head et al. 2019] developed a solution to collect and organize code ver-
sions. [Kery et al. 2020] created an API for interacting with graphical outputs, and
[Wang et al. 2020, Wang et al. 2021] focused on improving notebook reproducibility.

How Data Scientists Use Jupyter Notebooks: Studies also explore how data
scientists use notebooks in their daily work. [Koenzen et al. 2020] analyzed code dupli-
cation, identifying that although there is an 8% rate of duplicate code in GitHub reposi-
tories, users refer not to duplicate their own code. [Wang et al. 2019] studied real-time
collaboration, highlighting that synchronous notebooks encourage exploration but require
greater team coordination.

Notebook Quality: Notebook quality is a recurring theme.
[Chattopadhyay et al. 2020] cataloged nine main problems faced by data scientists
when using notebooks. [Rule et al. 2018] analyzed the structure of 1 million notebooks,
identifying that most lack proper cleaning and documentation, hindering readability and
reproducibility. [Pimentel et al. 2019, Pimentel et al. 2021] conducted large-scale studies
on reproducibility issues, showing that only 24.11% of notebooks run without errors.

Empirical Studies on Bugs: Some studies analyze bugs in different domains,
such as deep learning [Zhang et al. 2018], IoT [Makhshari and Mesbah 2021], and auto-

1https://github.com/bugsjupyterempiricalstudy/BugJupyterPaper



nomous vehicles [Garcia et al. 2020]. However, this is the first empirical study focused
on bugs in Jupyter Notebook projects.

Studies on Bugs with Taxonomies: Four studies have approaches similar to our
research, identifying and characterizing bugs in specific domains, such as autopilot soft-
ware [Wang et al. 2021] and Infrastructure as Code scripts [Rahman et al. 2020]. These
studies used techniques such as data mining, manual classification, and expert validation
to build bug taxonomies.

3. Methodology

Figura 1. Research Methodology.

Research Design and Data Collection. This study seeks to answer four research questi-
ons (RQs): RQ1: What types of bugs are most frequent? RQ2: What are the root causes
of bugs? RQ3: What are the frequent impacts of bugs? RQ4: What challenges do data
scientists face when using Jupyter Notebooks? To answer these questions, a total of 105
GitHub repositories written in Jupyter Notebook were selected based on criteria such as
the number of stars, contributors, and 14,740 commits, with 855 bug-fixing commits. Ad-
ditionally, 30,416 posts related to Jupyter Notebooks were collected from StackOverflow,
filtered by tags and score. Bugs were manually classified by four experts using two-cycle
coding techniques, identifying bug types, root causes, and impacts through the analysis
of commit messages, pull requests, and StackOverflow posts. Validation was performed
using Cohen’s Kappa coefficient, achieving an agreement level of 0.80.

Data Scientist Interviews and Survey. Semi-structured interviews were conduc-
ted with 19 data scientists from 12 companies to address challenges in using Jupyter No-
tebooks. The interviews were transcribed, coded, and resulted in 52 codes, 7 categories,
and 5 main challenges. To validate the results and the proposed taxonomy, a survey was
conducted with 91 developers, including both open and closed questions. Likert scales
were used to assess agreement with bug categories and root causes.



4. Results
The results provide a detailed analysis of the types of bugs found in Jupyter Notebook
projects, their root causes, impacts, and the challenges faced by data scientists, as well as
an initial taxonomy (Figure 2).

Figura 2. Taxonomy of Jupyter Notebook bugs.

4.1. Types of Bugs in Jupyter Projects (RQ1)

Eight main types of bugs were identified in Jupyter Notebook projects, organized into an
initial taxonomy:

Kernel Bugs (KN) – (StackOverflow: 10.8% — GitHub: 2.9%) This type of
bug occurs in kernel operations when using Jupyter Notebooks, including crashes, ini-
tialization issues, and unresponsiveness. Kernel Crash: The kernel unexpectedly stops
working, sometimes displaying an error message. Usually resolved by restarting. Ker-
nel Not Found: Happens when Jupyter Notebook fails to link to a kernel, often due to
installation issues. Initialization Bugs: Errors during kernel startup, usually caused by in-
correct installations or conflicts. Kernel Restart: The kernel restarts unexpectedly during
use. Example: These bugs can lead to data loss and project delays. In bug #107937815
(GitHub) and #35673530 (StackOverflow), a Python update caused package incompati-
bilities, as reported by DS13: ✓ DS13: ”The Kernel bugs are the most frequent ones (...).
It impacts project execution time since it interrupts the data analysis.”

Conversion Bugs (CV) - (StackOverflow - 6.7% — GitHub - 10.6%) These bugs
occur during the conversion of .ipynb notebooks to other formats, leading to corrupted
files or poor rendering. Conversion Interrupted: The process stops before completion.
Conversion with Defects: The file is converted but has issues (e.g., missing images in
PDFs). Nbconvert Bugs: Errors in the nbconvert module prevent conversion from
starting. Example: Bugs #99244384 (GitHub) and #46415269 (StackOverflow) relate to
nbconvert issues, impacting user experience, especially for beginners: ✓ DS12: ”It
happens with new users, who spend considerable time performing the export procedure.”

Portability Bugs (PB) - (StackOverflow - 2.7% — GitHub - 1.3%) These bugs
occur when running Jupyter Notebooks in different environments, causing compatibi-
lity, rendering, or configuration issues. GitHub Bugs: Issues rendering .ipynb files
on GitHub, leading to display errors. Nbviewer Bugs: Similar to GitHub, but affecting



the nbviewer platform. Different Platforms: Errors when running a notebook on a diffe-
rent OS, machine, browser, or platform (e.g., Google Colab, JupyterLab) due to configu-
ration differences. Example: These issues hinder analysis sharing. Bugs #200722670
(GitHub) and #47868625 (StackOverflow) highlight GitHub rendering problems. ✓
DS11: ”GitHub has a tool to view Jupyter notebooks, but it’s random—it opens whe-
never it wants. It doesn’t always work in the browser.”

Environments and Settings (ES) - (StackOverflow - 43.2% — GitHub - 35.6%)
These bugs arise from development environment and configuration issues, including mis-
sing/deprecated libraries, installation errors, OS incompatibilities, and package manager
problems (e.g., Anaconda, PIP). Update/Downgrade Issues: Incompatibilities requiring
version changes in libraries or extensions. Installation Bugs: Errors due to incorrect
installation or missing dependencies. Incompatible Components: Conflicts between note-
book components or extensions. Example: Setting up the environment is time-consuming.
Bugs #200722670 (GitHub) and #35561126 (StackOverflow) show issues caused by
Python version mismatches. ✓ DS13: ”Depending on the project and dependencies,
environment setup is laborious. Jupyter Notebooks could help manage it, avoiding confi-
guration problems.”

Connection Bugs — CN - (StackOverflow - 6.2% — GitHub - 0.9%) These
bugs occur when connecting notebooks to external resources like databases, hardware,
and repositories. External Resource Access Bugs: Notebook loses access to external re-
sources. Disconnection Bugs: Notebook loses connection to its server. Example: Bugs
#107937815 (GitHub) and #63863571 (StackOverflow) involve URL and external image
connection issues. DS2 highlighted similar problems when using Arduino: ✓ DS2: ”...
using Arduino, we tried several workarounds—disconnecting, reconnecting, replacing the
board—until it finally connected to Jupyter.”

Processing — PC - (StackOverflow - 4.9% — GitHub - 1.9%) Processing bugs
involve memory issues, timeouts, and long-running tasks. Memory Leak: Inefficient me-
mory allocation causing execution delays. RAM and GPU Bugs: Memory overflow and
slow processing. Example: These bugs increase analysis time and cause data loss. Bugs
#86884600 (GitHub) and #643288550 (StackOverflow) report high-resolution image pro-
cessing issues. Chattopadhyay et al. [Chattopadhyay et al. 2020] also noted Jupyter’s li-
mitations in handling large datasets, echoed by DS10: ✓ DS10: ”It happened several
times while handling large datasets. Debugging and identifying the root cause took time.”

Cell Defect (CD) - (StackOverflow - 3.6% — GitHub - 2.6%) Bugs related to
notebook cell rendering, including code, markdown, and outputs, often occurring with
interactive components, LaTeX, and graphics. Layout Bugs: Issues like text overflowing,
unexpected formulas, blank cells, and visualization errors. Interactive Components Bugs:
Errors with interactive elements within cells. Example: Bugs #237890763 (GitHub) and
#69695030 (StackOverflow) report issues with ”input()”and scrollbars. DS14 mentioned:
✓ DS14: ”For some reason, the cell size reduced and ended up cutting the text in half. I
couldn’t identify the cause, and it happens a lot.”

Implementation — IP - (StackOverflow - 22% — GitHub - 44.2%) Bugs rela-
ted to syntax, logic, uninstantiated variables, algorithms, and semantics. Semantic Error:
Code executes but produces incorrect output due to logic mistakes. Syntax Error: Issues



like incorrect variable/function declarations, missing/misplaced parentheses, and nonstan-
dard Python (PEP8). Data Science lib wrong usage: Misuse of functions from libraries
like Pandas, Scikit-learn, and TensorFlow. Data Science Algorithm Error: Errors in sta-
tistical analysis or machine learning logic. Example: Bugs #222507066 (GitHub) and
#45946060 (StackOverflow) involve duplicate code and out-of-order execution. DS14
noted: ✓ DS14: ”When writing in a notebook, it’s easy to lose context. Running cells out
of order makes everything confusing.”

4.2. Root Causes of Bugs (RQ2)

Understanding the root causes of bugs helps identify their origin and potential solutions.
Table 1 presents the distribution of bug types by root cause. In the following, we describe
each category and its percentage of occurrence.

Root Causes ES IP KN CV CN PC CD PB Total
SO GH SO GH SO GH SO GH SO GH SO GH SO GH SO GH

Install and
Configuration
Problems

635 117 36 0 56 12 44 0 42 0 0 0 6 7 12 3 970

Coding error 3 0 20 0 34 0 2 0 7 0 78 12 0 1 1 0 724
Version Problems 17 18 397 185 4 3 12 49 4 4 0 3 17 7 4 0 682
Unknown 16 0 3 0 2 0 1 0 1 1 1 0 0 0 0 0 413
Hardware soft-
ware limitations 21 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 224

Logic error 4 0 7 0 5 0 9 0 18 0 6 1 0 0 0 0 169
Memory Error 2 1 32 114 9 1 0 0 0 0 4 0 4 2 0 0 158
TimeOut 12 0 15 0 5 0 20 39 19 1 36 0 33 4 32 8 50
Deprecation 374 158 0 25 45 7 24 2 30 0 0 0 11 0 6 0 25
Permission
denied 34 9 58 54 117 2 60 1 38 2 1 0 22 1 14 0 25

Total 1118 304 569 378 278 25 172 91 160 8 126 16 93 22 69 11
(KN) Kernel, (CV) Conversion, (PB) Portability, (ES) Environment and Settings, (CN) Connection, (PC)
Processing, (CD) Cell Defect, (IP) Implementation.

Tabela 1. Frequency of Bug Type vs Root Cause

Install and Configuration Problems - (StackOverflow - 32.1% — GitHub -
16.3%). These bugs arise when setting up the development environment, often leading to
process interruptions and productivity loss. Due to the exploratory nature of data analysis,
users frequently require additional tools and configurations, increasing the likelihood of
these issues.

Version Problems - (StackOverflow - 19.0% — GitHub - 22.5%) and Depreca-
tion - (StackOverflow - 0.9% — GitHub - 0.1%). Incompatible software versions neces-
sitate updates or downgrades, often resulting in conflicts. Unlike classic IDEs, Jupyter
Notebook lacks intelligent version controls, leaving users to manage dependencies ma-
nually. Deprecation-related bugs occur when discontinued components or features cause
issues.

Coding Errors - (StackOverflow - 17.6% — GitHub - 31.5%) and Logic Errors
- (StackOverflow - 2.0% — GitHub - 13.7%). Coding errors involve incorrect variable
assignments, redundant structures, or library misuse, typically manifesting as runtime
errors. Logic errors, on the other hand, stem from flawed code logic, impacting results
without necessarily causing runtime failures.



Hardware and Software Limitations - (StackOverflow - 6.7% — GitHub -
6.1%) and Memory Errors - (StackOverflow - 5.6% — GitHub - 1.5%). Performance
constraints, such as slow execution or failures, often arise from hardware or software li-
mitations. Memory errors, caused by overflows, lead to crashes and require re-execution.

Permission Denied - (StackOverflow - 0.9% — GitHub - 0.1%) and TimeOut -
(StackOverflow - 1.9% — GitHub - 0.1%). Permission errors occur when Jupyter No-
tebook is blocked from accessing external resources, such as databases. Timeout issues
arise when processes take too long to execute, resulting in crashes.

Unknown - (StackOverflow - 13.3% — GitHub - 8.1%). These bugs lack clear
root causes and often have no effective solutions.

Tables 1 highlights that the most frequent root causes are Install and Configuration
Problems (StackOverflow - 32.1% — GitHub - 16.3%), Version Problems (StackOverflow
- 19.0% — GitHub - 22.5%), and Coding Errors (StackOverflow - 17.6% — GitHub -
31.5%). These issues mainly stem from configuration errors, incompatible versions, and
coding mistakes, significantly affecting productivity and workflow.

4.3. Impacts of Bugs (RQ3)
The impact caused by a bug can help increase its severity and serve as a prioritization
model and alert for users. Tables 2 shows the distribution of bug types according to their
impact. Below, we describe each category and its occurrence percentage.

Impacts ES IP KN CV CN PC CD PB Total
SO GH SO GH SO GH SO GH SO GH SO GH SO GH SO GH

Run Time Error 900 197 1 0 275 11 49 0 142 0 8 1 4 0 8 0 1753
Incorrect Functi-
onality 41 90 18 46 1 0 2 0 2 0 46 14 1 3 0 0 840

Crash 142 16 64 261 0 10 96 91 7 8 1 0 86 19 55 11 657
Bad Performance 7 1 472 65 2 4 24 0 9 0 71 1 2 0 6 0 141
Warning 28 0 14 6 0 0 1 0 0 0 0 0 0 0 0 0 49
Total 1118 304 569 378 278 25 172 91 160 8 126 16 93 22 69 11

(KN) Kernel, (CV) Conversion, (PB) Portability, (ES) Environment and Settings, (CN) Connection, (PC)
Processing, (CD) Cell Defect, (IP) Implementation

Tabela 2. Frequency of Impact vs Root Cause

Run Time Error - (StackOverflow - 57.5% — GitHub - 31.2%) and Incorrect
Functionality - (StackOverflow - 13.5% — GitHub - 57.3%). Run Time Errors are
characterized by execution failures, often accompanied by error messages, and are the
most frequent impact in the StackOverflow dataset. Incorrect Functionality bugs produce
unwanted or incorrect outputs, being the most common impact on GitHub.

Crash - (StackOverflow - 24.3% — GitHub - 3.3%). These bugs cause a break
in one or more components of the platform, interrupting its operation or initialization.
Kernel Crash, a common issue, often requires restarting the kernel to resolve.

Bad Performance - (StackOverflow - 3.0% — GitHub - 7.5%) and Warning -
(StackOverflow - 1.7% — GitHub - 0.7%). Bad Performance bugs do not prevent exe-
cution but degrade quality or performance, while Warning bugs trigger alerts without
affecting functionality.

The most frequent impacts from bugs in Jupyter notebooks are: Run Time Er-
ror (StackOverflow - 57.5% — GitHub - 31.2%), Incorrect Functionality (StackOverflow



- 13.5% — GitHub - 57.3%), and Crash (StackOverflow - 24.3% — GitHub - 3.3%).
These impacts are primarily associated with bug types such as Environments and Set-
tings, Implementation, and Kernel. Kernel Crash, a common issue, is often resolved by
restarting the kernel, as highlighted by users.

4.4. Challenges in Jupyter Notebook Projects (RQ4)

Data science is a multidisciplinary field, and Jupyter Notebook users come from diverse
backgrounds, including physics, mathematics, statistics, and IT. This diversity influences
how users perceive and handle bugs, leading to several challenges. Below, we discuss the
main issues identified by professionals during interviews.

Backgrounds, Code Quality, and Programming Practices. The diversity of
user backgrounds significantly impacts how bugs are identified and fixed. Users without
a computing background often produce messy notebooks, leading to errors. The simplis-
tic layout of Jupyter, compared to traditional IDEs, can discourage the use of development
standards that improve code quality. As one professional noted: ✓DS3: ”Data science
combines statistics and computing. People from physics or engineering may not priori-
tize structured, readable, or documented code, unlike those with a software engineering
background.”

This lack of emphasis on code quality is exacerbated by Jupyter’s flexibility, which
allows users to duplicate and rearrange cells without enforcing good software engineering
practices. Many users, especially those new to programming, develop bad habits, such
as neglecting testing and linting. As highlighted by: ✓DS14: ”I write better code in
IDEs like VSCode or RStudio than in Jupyter. The lack of functionality discourages good
practices.”

Testing, Debugging, and Bug Resolution. The absence of basic testing and de-
bugging tools in Jupyter is a significant challenge. Users often rely on trial and error to
fix bugs, and those with a software engineering background miss features like linting and
unit testing. This lack of support makes it harder to identify and resolve issues, as reflec-
ted in StackOverflow data, where only 27.9% of questions receive accepted answers, and
the average time to resolve a bug is 21 days. ✓DS11: ”I miss unit testing and linting in
Jupyter. Tools like Black, Pylint, and Flake8 are hard to use in notebooks, which affects
code quality.”

Deployment and Production Challenges. While Jupyter is excellent for explo-
ratory analysis and prototyping, it lacks tools to facilitate deployment into production
systems. Many interviewees reported challenges in converting notebook code into de-
ployable products. This gap is particularly problematic for industrial projects, where
Jupyter notebooks are often integrated into larger systems. ✓DS7: ”Deploying Jupyter
code into a system is not trivial. Tools to support this process would be valuable.”

Data scientists perceive bugs differently based on their experience with software
engineering, and the lack of testing and debugging tools in Jupyter makes it harder to
identify and fix bugs, leading to longer resolution times and lower acceptance rates on
platforms like StackOverflow. Additionally, transforming Jupyter analyses into deploya-
ble products is challenging due to the absence of tools to improve code quality and sup-
port deployment, which can lead to bad programming habits, especially among beginners.



Enhancing Jupyter with features that promote good practices and facilitate deployment is
crucial for its use in industrial and production environments.

5. Conclusion
In this work, we proposed a taxonomy of Jupyter notebook-specific bugs by analyzing
these bugs. In particular, we identify eight classes of bugs, ten types of root causes, and
the impact of bugs. The most frequent bugs in the Jupyter notebook are those related to
Environments and Settings and Implementation. Regarding the root causes, the most fre-
quent were: Configuration issues, Version issues, and Coding Errors. They are the cause
of most Implementation and Environments and Settings bugs. The most frequent bug im-
pact was Run Time Error, followed by Incorrect Functionality. In addition, we found that
the data scientist’s background determines how the bugs are identified, highlighting the
importance of testing and debugging tools. Finally, we identified the Jupyter notebook
deployment as a challenging and poorly supported task.

We believe this study can facilitate practitioners’ understanding of the nature of
bugs and define possible strategies to mitigate them. Our findings can guide future rese-
arch in related areas, such as developing tools for detecting and recommending bug fixes
in the Jupyter notebook and an empirical study to understand the issues in private projects.

References
Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in large

databases. In International Conference on Very Large Data Bases, pages 487–499.

Cao, L. (2017). Data science: A comprehensive overview. ACM Comput. Surv.

Chattopadhyay, S., Prasad, I., Henley, A. Z., Sarma, A., and Barik, T. (2020). What’s
wrong with computational notebooks? pain points, needs, and design opportunities. In
CHI ’20, pages 1–12.

Dhar, V. (2013). Data science and prediction. Commun. ACM.

Garcia, J., Feng, Y., Shen, J., Almanee, S., Xia, Y., and Chen, Q. A. (2020). A com-
prehensive study of autonomous vehicle bugs. In ICSE ’20, pages 385–396.

Head, A., Hohman, F., Barik, T., Drucker, S. M., and DeLine, R. (2019). Managing
messes in computational notebooks. In CHI Conference, page 270.

Insider, B. (2020). Thousands of coronavirus cases were not reported for days in the uk
because officials exceeded the data limit on their excel spreadsheet.

Islam, M. J., Nguyen, G., Pan, R., and Rajan, H. (2019). A comprehensive study on deep
learning bug characteristics. In ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 510–
520.

Kandel, S., Paepcke, A., Hellerstein, J. M., and Heer, J. (2012). Enterprise data analysis
and visualization: An interview study. IEEE Trans. Vis. Comput. Graph., 18:2917–
2926.

Kery, M. B., Radensky, M., Arya, M., John, B. E., and Myers, B. A. (2018). The story
in the notebook: Exploratory data science using a literate programming tool. In CHI
Conference, page 174.



Kery, M. B., Ren, D., Hohman, F., Moritz, D., Wongsuphasawat, K., and Patel, K. (2020).
mage: Fluid moves between code and graphical work in computational notebooks. In
UIST ’20, pages 140–151.

Koenzen, A. P., Ernst, N. A., and Storey, M. D. (2020). Code duplication and reuse
in jupyter notebooks. In IEEE Symposium on Visual Languages and Human-Centric
Computing, pages 1–9.

Makhshari, A. and Mesbah, A. (2021). Iot bugs and development challenges. In Interna-
tional Conference on Software Engineering, pages 460–472.

Patra, J. and Pradel, M. (2021). Nalin: Learning from runtime behavior to find name-
value inconsistencies in jupyter notebooks. In International Conference on Software
Engineering.

Pimentel, J. F., Murta, L., Braganholo, V., and Freire, J. (2019). A large-scale study
about quality and reproducibility of jupyter notebooks. In International Conference on
Mining Software Repositories, pages 507–517.

Pimentel, J. F., Murta, L., Braganholo, V., and Freire, J. (2021). Understanding and
improving the quality and reproducibility of jupyter notebooks. Empir. Softw. Eng.

Rahman, A., Farhana, E., Parnin, C., and Williams, L. (2020). Gang of eight: A defect
taxonomy for infrastructure as code scripts. In International Conference on Software
Engineering, pages 752–764.

Rule, A., Tabard, A., and Hollan, J. D. (2018). Exploration and explanation in computa-
tional notebooks. In CHI Conference, page 32.

Tao, Y., Jiang, J., Liu, Y., Xu, Z., and Qin, S. (2020). Understanding Performance Con-
cerns in the API Documentation of Data Science Libraries, pages 895–906.

Thung, F., Wang, S., Lo, D., and Jiang, L. (2012). An empirical study of bugs in machine
learning systems. In International Symposium on Software Reliability Engineering,
pages 271–280.

Wang, A. Y., Mittal, A., Brooks, C., and Oney, S. (2019). How data scientists use com-
putational notebooks for real-time collaboration. Proc. ACM Hum.-Comput. Interact.

Wang, D., Li, S., Xiao, G., Liu, Y., and Sui, Y. (2021). An exploratory study of auto-
pilot software bugs in unmanned aerial vehicles. In ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software En-
gineering, pages 20–31.

Wang, J., Li, L., and Zeller, A. (2020). Better code, better sharing: On the need of
analyzing jupyter notebooks. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: New Ideas and Emerging Results, pages 53–56.

Zhang, Y., Chen, Y., Cheung, S.-C., Xiong, Y., and Zhang, L. (2018). An empirical study
on tensorflow program bugs. In ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 129–140.


