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Abstract. The goals of this work are to develop methods to analyze DNA 
microarray data, proposing a new normalization method, and two models to 
construct gene expression regulatory networks, one based on the dynamics of 
connectivity between genes along the cell cycle and another one which solves 
the dimensionality problem in which the number of microarrays experiments is 
smaller than the number of genes. We also present a toolbox with a user-
friendly graphical interface containing several data analyses techniques and 
also the methods developed in this work. This work originated four papers 
which we published in three of the main journals of the area. 

Resumo. Este trabalho tem como objetivos o desenvolvimento de métodos de 
análise de dados de microarrays, propondo uma nova forma de normalização, 
e dois modelos para a construção de redes regulatórias de expressão gênica, 
sendo uma baseada na conectividade dinâmica entre genes ao longo do ciclo 
celular e a outra que soluciona o problema da dimensionalidade, em que o 
número de experimentos de microarrays é menor que o número de genes. 
Apresenta-se, ainda, um pacote de ferramentas com uma interface gráfica 
amigável contendo diversas técnicas de análise de dados já conhecidas como 
também as abordagens propostas neste trabalho. Este trabalho originou 
quatro artigos publicados em três das principais revistas da área. 

Capítulo 1: Introdução 

 Nos últimos anos uma enorme massa de dados tem ficado disponível para 
análise de biólogos moleculares, bioquímicos e outros pesquisadores. Esta análise, 
entretanto, dificilmente pode ser feita manualmente, tornando imprescindível o 
desenvolvimento de ferramentas eficientes que auxiliem nesta análise de dados. Este é o 
principal objetivo deste trabalho. Em particular, estudamos três problemas de 
importante impacto em Biologia Computacional para os quais pudemos apresentar 
soluções computacionais: 

1. como normalizar os dados de microarray a fim de permitir uma melhor análise 
dos resultados obtidos com esta técnica; 
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2. como inferir interações entre genes ou proteínas ao longo do ciclo celular, a fim 
de que biólogos possam testá-las; 

3. como tratar massas de dados em que o número de observações é menor que o 
número de variáveis que podem influir no processo. 

Apresentamos também uma ferramenta com interface amigável em que estes 
métodos desenvolvidos, assim como outros de uso clássico na área foram 
implementados,tornando-os acessíveis por pesquisadores de outras áreas. 

 Nos capítulos seguintes apresentamos brevemente a descrição dos métodos 
publicados em seus respectivos artigos. 

Capítulo 2: Normalização de microarrays

 O microarray é uma técnica usada para a quantificação simultânea dos níveis de 
expressão de milhares de genes, ou seja, para obter uma visão geral dos níveis de 
transcrição dos genes na célula. Um grande desafio em Bioinformática consiste no pré-
processamento desses dados (normalização), ou seja, a remoção do viés existente nesta 
técnica. 

 Para a normalização de microarrays, propomos o uso de um método mais 
robusto em relação aos outliers, o Support Vector Regression (SVR) [Vapnik 1998], 
que pode ser útil na identificação de genes diferencialmente expressos. 

 Seja ����� ���� 	 � ��
� �
�� � 
 � 
  os dados de expressão gênica derivados 
dos experimentos de microarray, onde � é o log da intensidade de um microarray e � é 
o log da intensidade do outro. No �-SVR [Vapnik 1998], o objetivo é obter uma função ���� que tenha no máximo � de desvio de �� de todos os dados, e seja o mais "plano" 
possível. No caso de funções lineares �: ���� � ����� � �� � 

� � � 
 (1) 

 "Planaridade" em (1) significa encontrar um �  pequeno. Uma forma de 
assegurar isso é minimizando a norma, i.e., ���� � ���� ��. Isso pode ser formulado 
como um problema de otimização convexa: 

 Minimize 
�� ���� (2) 

 Sujeito a �� � ������ � � � ������� � � � �� � � (3) 

 Em (3) assumimos que existe uma função �  que, com precisão � , aproxima 
todos os pares ���� ���, em outras palavras, assume-se que este problema de otimização 
é viável. Mas há casos em que isso não é possível ou queremos permitir alguns erros. 
Para solucionar este problema, são introduzidas as variáveis de folga ��, ��� para garantir 
solução viável do problema de otimização, chegando a seguinte formulação [Vapnik 
1998]. 

 Minimize 
�� ���� �  ∑ ��� � �����"�  (4) 

 Limitado por �� � ������ � � � � � �� (5) ������ � � � �� � � � ��� (6) 
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��� ��� # $ (7) 

onde a constante  % $ determina a quantidade acima do qual os desvios maiores que �
são tolerados. 

 Após obter a função ����, segue o processo de normalização cíclica descrito em 
[Dudoit et al. 2002]. 

 Diversas simulações foram feitas com microarrays artificiais construídos 
conforme o modelo descrito em [Balagurunathan et al. 2002]. Em todas elas, o SVR 
mostrou ser mais robusto aos outliers, ou seja, a regressão que é a menos perturbada, 
tornando-se, para nossos testes, o melhor método de normalização para identificar genes 
diferencialmente expressos, inclusive na região de genes com alta ou baixa expressão, o 
que é um problema para métodos de normalização clássicos. 

 Este trabalho originou um artigo que recebeu mais de 2.000 acessos nos 
primeiros dois meses de publicação: Fujita, A., Sato, J.R., Rodrigues, L.O., Ferreira, 
C.E. and Sogayar, M.C. (2006) "Evaluating different methods of microarray data 
normalization", BMC Bioinformatics. 7:469 (Highly accessed). 

Capítulo 3: Inferência de redes regulatórias dinâmicas 

 A inferência de interações em redes regulatórias é um desafio muito importante 
em Bioinformática e Biologia Computacional. Em particular, quando observamos um 
organismo ao longo do tempo, desejamos descobrir interações que são ativadas e  
desativadas durante o ciclo celular. Inferir tais conexões, usando o conceito de 
causalidade de Granger [Granger 1969] foi o objetivo deste trabalho. 

 Seja�� um vetor de expressão gênica & � '  no instante ( . O modelo vetor 
autoregressivo dinâmico (DVAR - Dynamic Vector Autoregressive) é definido por �� � )�(� � *��(���+� � *��(���+� � ,� *-�(���+- � �� (8) 

onde �� é um vetor de variáveis aleatórias com média zero e matriz de covariância .�(�
dado por 

.�(� � /0��� �(� , 01��(�2 3 20�1�(� , 011� �(�4 (9) 

e )�(� e *� �5 � '�6� 	 � 7� são respectivamente um vetor e a matriz de coeficientes, 
dados por: 

)�(� � 8)��(�2)1�(�9 (10)          *��(� � 8:����(� , :1���(�2 3 2:�1��(� , :11��(�9 (11) 

 Assim, torna-se possível modelar a rede regulatória de um modo dinâmico para 
analisar o fluxo de informação ao longo do ciclo celular. Para estimar as funções 
variantes no tempo em )�(�, *��(� e .�(� consideramos a função de expansão wavelet. 
A wavelet é uma função que decompõe outras funções no domínio da freqüência, 
permitindo a análise em diferentes escalas de freqüência e de tempo. A idéia é que uma 
função;�(�  pode ser representada por uma combinação linear de funções wavelet<=�1�(� , onde os índices >  e ?  estão relacionados à escala e localização temporal, 
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respectivamente. As funções coeficientes autoregressivos :@A��(� podem ser escritas 
como: 

:@A��(� � ∑ ∑ B=�1���<=�1�(��C+�1"DE="1"+�  (12) 

onde a extensão da sére temporal F  e B=�1��� �> � �'�$�'� 	 � F � 'G ? � $�'�	 � 6= �'G 5 � '�6� 	 � 7�  são os coeficientes wavelet para o 5 -ésimo coeficiente da função 
autoregressiva :@A��(� e H �H � '�	 � 7� é a ordem do vetor autoregressivo. Um ponto a 
ser analisado aqui é de como determinar a resolução máxima do parâmetro I . Um 
critério objetivo pode ser obtido por validação cruzada. Por outro lado, a escolha do 
grau de suavidade pode ser baseada em mudanças esperadas de acordo com informações 
biológicas a priori ou no nível de detalhe desejado. Em nossas análises, definimos I=4 
porque temos a informação a priori de que a conectividade varia ao longo das quatro 
diferentes fases do ciclo celular (S, G2, M, G1). 

 A fim de medir o desempenho do DVAR e identificar as causalidades de 
Granger variantes no tempo, o DVAR foi aplicado em um conjunto de dados de células 
HeLa. A Figura 1 ilustra as redes estimadas usando o método proposto (DVAR) e o 
método clássico VAR (Vector Autoregressive). Nossos resultados mostram a 
identificação das causalidades variantes no tempo pelo DVAR. 

 Este trabalho originou o artigo: Fujita, A., Sato, J.R., Garay-Malpartida, H.M., 
Morettin, P.A., Sogayar, M.C. and Ferreira, C.E. (2007a) "Time-varying modeling of 
gene expression regulatory networks using the wavelet dynamic vector autoregressive 
method", Bioinformatics. 23:1623-1630. 
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Figura 1. Redes regultórias inferidas pelos métodos VAR e DVAR. Setas pontilhadas: p < 
0.10; setas contínuas: p < 0.05. Nas setas do DVAR estão representadas as causalidades 

de Granger variantes ao longo do ciclo celular.

Capítulo 4: Construção de redes regulatórias com número de observações 
inferior ao número de variáveis 

 Um problema que surge freqüentemente quando tratamos dados vindos de 
experimentos biológicos (como microarrays) é que o número de observações 
disponíveis pode ser menor que o número de variáveis que influem no processo. Inferir 
o funcionamento das redes sob estas condições é um problema que se coloca e exige o 
surgimento de novas técnicas de mineração de dados. Esta é a proposta do modelo vetor 
autoregressivo esparso. 

 Considere o modelo vetor autoregressivo esparso (SVAR - Sparse Vector 
Autoregressive) de ordem 1 como �� � *���+� � �� ( � 6�	 � F (13) 

onde �� é um vetor de expressão gênica & � ', �� é também um vetor  & � ' com média 
zero e matriz de precisão .+�, e *� é uma matriz & � & de parâmetros e J����K�� � ., 

onde  é uma matriz & � & e sendo que & (número de genes) pode ser eventualmente 
maior que F (tamanho da série temporal). Este modelo pode ser estimado simplesmente 
realizando uma regressão em cada uma das variáveis nas defasagens de cada uma delas 
e de outras variáveis. 

 Assim, pode-se re-escrever o modelo como L � MN � J  JOP�$� .�  5 � '�	 � & (14) 

onde define-se Q � F � ' e introduz-se a notação: L�A�
� � R���	 � ���	 � �STK � RU�� 	 � U�� 	 � U
TN�A�
� � *V� � RN��	 � N
TVM�A�
� � R��� 	 � �ATVJ�A�
� � R��� 	 � ��� 	 � �STV
 Por [Fan and Li 2001], [Fan and Peng 2004], [Hunter 2004] e [Hunter and Lange 
2004], a regressão LASSO (Least Absolute Shrinkage and Selection Operator) 
[Tibshirani, 1996] pode ser descrita por um procedimento iterativo: NW�1X� � �MKM � Y�Z�NW�1��+�MVU[\   5 � '�	 � & e ? � '�	 �P��  (15) 
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onde P��  é o número de iterações e Y  é o parâmetro que determina quanto de 
penalização deve ser atribuído, Z]NW�1^  é a diagonal da matriz definida por Z�_� �`5:��7Ka�_�b_�, com ? � '�	 � & e 7Ka�_� � Yc5&:H�_�. 
 A cada iteração, os coeficientes da regressão N de cada gene são sucessivamente 
penalizados até atingirem o valor zero. É necessário enfatizar que o número de variáveis 
marcadas como zero é dependente do valor atribuído ao parâmetro Y. Então, o valor de Y foi selecionado como o valor que minimiza o valor do critério da validação cruzada 
generalizada (GCV - Generalized Cross-Validation). O valor mínimo do GCV foi 
atingido com o uso do algoritmo L-BFGS-B [Bryd et al. 1995]. 

 Verificamos o desempenho do SVAR em simulações e em dados reais. O SVAR 
mostrou-se robusto na identificação de causalidades de Granger mesmo no contexto no 
qual o número de parâmetros a serem estimados é maior que o número de observações. 
Na aplicação em dados reais, o SVAR foi capaz de identificar conexões já conhecidas 
na literatura além de controlar a taxa de falsos positivos (Figura 2). 

 Este trabalho originou o artigo: Fujita, A., Sato, J.R., Garay-Malpartida, H.M., 
Yamaguchi, R., Miyano, S., Sogayar, M.C. and Ferreira, C.E. (2007b) "Modeling large 
gene expression regulatory networks with sparse vector autoregressive model", BMC 
Systems Biology. 1:39. 

Figure 2. Rede regulatória estimada pelo método SVAR. 

Capítulo 5: GEDI (Gene Expression Data Interpreter) 

 O GEDI (Figura 3) é um software livre sob a licensa GPL (General Public 
License) e que pode ser adquirido no link: 
http://www.iq.usp.br/wwwdocentes/mcsoga/gedi/. Este pacote possui a implementação 
em R (linguagem de programação estatística livre que pode ser adquirido em  
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http//www.r-project.org/) de todos os algoritmos apresentados nos capítulos anteriores. 
Este pacote de ferramentas está divido em quatro partes: (i) normalização de 
microarrays; (ii) identificação de genes diferencialmente expressos; (iii) classificadores 
de amostras e (iv) modelagem de redes regulatórias de genes. 

 Na seção (i) estão à disposição tanto os métodos baseados no popular método 
Loess, como os demais métodos mais avançados, como Splines, Wavelets e o método 
proposto neste trabalho, o SVR. Além destes, também adicionamos os métodos 
baseados em normalização por intensidade global, centralizados na média e mediana e 
também a normalização por quantis. Na seção (ii) tem se o clássico teste t e teste t com 
permutação, que permitem testar se duas médias são iguais, o teste não-paramétrico de 
Wilcoxon e o SAM (Significance Analysis of Microarrays) [Tusher and Tibshirani 
2001] estão implementados. Na seção (iii) estão implementados os métodos de 
clusterização e classificação de amostras, baseados nos algoritmos k-means, análise 
discriminante linear e quadrático e o Support Vector Machine. Por fim, na seção (iv) 
estão implementados diversos métodos de modelagem de redes como o tradicional VAR, 
DVAR e SVAR, além das populares correlações parciais de Pearson e de Spearman. 

Figure 3. GEDI - Gene Expression Data Interpreter. 

 Este trabalho foi publicado recentemente e já está classificado pela revista como 
Highly acessed: Fujita, A., Sato, J.R., Ferreira, C.E. and Sogayar, M.C. (2007c) "GEDI: 
a user-friendly toolbox for analysis of large-scale gene expression data", BMC 
Bioinformatics. 8:457. 
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