1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I.I} CTD - Concurso de Teses e Dissertagdes Belém do Pard, PA

Armazenamento distribuido de dados e checkpointing de
aplicacoes paralelas em grades oportunistas”

Autor: Raphael Y. de Camargo'
Orientador: Prof. Dr. Fabio Kon'

'Departamento de Ciéncia da Computacio
Instituto de Matematica e Estatistica
Universidade de Sao Paulo (USP), Sao Paulo-SP, Brasil
{rcamargo, kon}@ime.usp.br

Resumo. Grades computacionais oportunistas utilizam recursos ociosos de
mdquinas compartilhadas para executar aplicagbes que necessitam de um alto
poder computacional e/ou trabalham com grandes quantidades de dados. Neste
trabalho, projetamos, implementamos e avaliamos uma infra-estrutura de soft-
ware que permite a execucdo destas aplicacoes em grades oportunistas. Esta
infra-estrutura é constituida por: (1) um mecanismo de tolerdncia a falhas
baseado em checkpointing que permite a execugcdo de aplicagées paralelas
mesmo com a presenca de falhas em nos de execucdo e (2) um middleware,
denominado OppStore, que permite a criacdo de uma infra-estrutura de ar-
mazenamento distribuido de dados de baixo custo e que utiliza o espaco livre
em disco de mdquinas compartilhadas da grade. Avaliamos nossa abordagem
através de simulagoes e experimentos em redes de grande drea.

1. Introducao

Existe uma grande classe de aplicagdes que necessitam de um alto poder computa-
cional e trabalham com grandes quantidades de dados. Estas aplica¢des incluem o
seqlienciamento de genes, enovelamento de proteinas, andlise de sinais (ex: SETI),
andlises financeiras, mineracdo de dados, fisica de particulas e simulacdes em engen-
haria. Mas cientistas, pesquisadores, analistas e engenheiros muitas vezes ndo tém acesso
a uma infra-estrutura computacional que lhes permita a execucdo destas aplicagdes, nor-
malmente por trabalharem em instituicdes que dispdem de recursos limitados. Por outro
lado, estas mesmas instituicdes normalmente possuem centenas ou milhares de maquinas
utilizadas pelos seus membros e que permanecem ociosas pela grande maioria do tempo.
Se pudéssemos utilizar os ciclos computacionais ociosos e o espago livre em disco destas
maquinas, seria possivel executarmos uma parte significativa destas aplicagdes.

Grades computacionais oportunistas [Thain et al. 2002, Goldchleger et al. 2004,
de Camargo et al. 2006b] foram desenvolvidas com o objetivo de utilizar o tempo ocioso
de maquinas compartilhadas para realizar computagdo ttil, de modo a aumentar o
poder computacional de uma institui¢do sem a necessidade de adquirir hardware adi-
cional. Aplicagdes sdo executadas nas maquinas apenas quando estas estdo ociosas, de
modo a ndo alterar a Qualidade de Servico percebida pelo dono da méaquina. O In-
teGrade' [Goldchleger et al. 2004] é um middleware que permite a criacio de grades

*Texto da tese disponivel em http://www.ime.usp.br/~rcamargo.
'Disponivel em http://www.integrade.org.br.

SBC 2008

17

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o CTD - Concurso de Teses e Dissertacdes Belém do Pard, PA

computacionais oportunistas. Ele é organizado como uma federacdo de aglomerados,
onde cada aglomerado contém maquinas que disponibilizam seus recursos ociosos para
utilizagdo por aplicacdes da grade.

Mas garantir a execucdo robusta de aplicacdes paralelas em mdaquinas nao-
dedicadas pertencentes a um ambiente dinamico e heterogéneo, como o de grades opor-
tunistas, € uma tarefa dificil. Mdaquinas podem falhar, ficar indisponiveis ou mudar de
ociosas para ocupadas inesperadamente, comprometendo a execugdo das aplicacoes. Para
tal, checkpoints contendo o estado de uma aplicacdo podem ser periodicamente gerados e
armazenados, permitindo a reinicializacdo da aplicacdo, em caso de falha em um de seus
processos, a partir de um estado intermedidrio de sua execucdo. Além disso, no caso de
aplicacdes paralelas, 0 mecanismo precisa considerar as dependéncias entre 0s processos
da aplicagdo ao obter seu estado global.

Os checkpoints gerados precisam ser salvos em um meio de armazenamento
estavel. Além disso, aplicacdes da grade tipicamente manipulam grandes quantidades
de dados e necessitam de uma infra-estrutura de armazenamento de dados confiavel, de
alta capacidade e acessivel de qualquer ponto da grade. A solucdo imediata seria insta-
lar servidores dedicados para o armazenamento dos dados de aplicacdes. Mas para tal
teriamos que manter estes servidores dedicados, que além do custo de aquisicdo, geram
calor, consomem energia, utilizam espaco e precisam ser gerenciados. Ao mesmo tempo,
grades oportunistas sio compostas por maquinas compartilhadas, que tipicamente pos-
suem quantidades significativas de espaco livre em disco. Utilizar estes recursos ociosos
permitiria que obtivéssemos grandes quantidades de espaco de armazenamento a um
baixo custo e sem a aquisicdao de hardware extra.

1.1. Principais contribuicoes

Neste trabalho desenvolvemos uma infra-estrutura de software que permite a utilizagao de
maquinas ndo-dedicadas tanto para a execugdo de aplicacoes paralelas de longa duracao
como para o armazenamento de dados. Esta infra-estrutura € importante para viabilizar a
utilizagdo prética de grades computacionais oportunistas.

As principais contribuicdes cientificas obtidas foram: (1) usamos reflexdo com-
putacional para instrumentar aplicacdes paralelas BSP para gerar checkpoints portaveis,
(2) analisamos diversas estratégias para o armazenamento de checkpoints de aplicacOes
paralelas, (3) propusemos o conceito de identificadores virtuais, que permitem realizar o
balanceamento dinamico de carga entre nds heterogéneos utilizando como base a infra-
estrutura de roteamento do Pastry, (4) projetamos e implementamos o middleware Opp-
Store, que utiliza o espacgo livre em disco das maquinas provedoras de recursos para o
armazenamento distribuido de dados de aplicagdes da grade e (5) avaliacdo experimental
e por simulacao da viabilidade do uso do espaco livre em disco de mdquinas ociosas para
armazenar dados de aplicagdes.

2. Execucao Tolerante a Falhas de Aplicacoes Paralelas

Aplicagdes paralelas computacionalmente intensivas freqlientemente utilizam dezenas de
mdquinas durante muitas horas. A falha de uma tnica maquina neste periodo normal-
mente faz com que toda a computacgdo ja realizada seja perdida. Deste modo, numa grade
oportunista, onde maquinas ficam indisponiveis vdrias vezes em um dnico dia, a execug¢ao
deste tipo de aplicagdo sem um mecanismo de tolerancia a falhas € inviavel.

SBC 2008

18

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I.I} CTD - Concurso de Teses e Dissertagdes Belém do Pard, PA

Desenvolvemos um mecanismo de recuperacdo por retrocesso baseada em
checkpointing [Elnozahy et al. 2002] que permite reiniciar uma execugdo interromp-
ida de uma aplicagdo a partir do dltimo checkpoint gerado [de Camargo et al. 2006c,
de Camargo et al. 2006a]. Fornecemos suporte a aplicagdes seqiienciais, paralelas de-
sacopladas (bag-of-tasks) e paralelas acopladas do tipo BSP (Bulk Synchronous Par-
allel). Um programa BSP é executado como uma seqiiéncia de super-passos, onde
cada super-passo € composto por uma fase de computagdo e uma de comunicagdo, que
termina com uma barreira de sincronizacdo. Uma vez que o modelo BSP ja possui
uma fase de sincronizagdo, optamos por utilizar um protocolo de checkpointing coor-
denado [Elnozahy et al. 2002] para obter o estado global de uma aplicacao BSP.

No mecanismo de checkpointing que implementamos, a aplicacio € responsavel
por fornecer os dados que devem ser armazenados no checkpoint € por recuperar seu
estado a partir dos dados presentes em um checkpoint [Bronevetsky et al. 2003]. Como a
aplicag@o possui informagdo semantica sobre os dados que estdo sendo armazenados ou
recuperados, nosso mecanismo cria checkpoints portaveis, isto €, que podem ser gerados
e recuperados em arquiteturas heterogéneas [de Camargo et al. 2005]. Finalmente, para
que o programador nao precise modificar o codigo-fonte de sua aplicacdo manualmente,
desenvolvemos um pré-compilador baseado na ferramenta OpenC++ [Chiba 1995], que
automaticamente analisa o codigo-fonte de uma aplicacdo C e o modifica de modo que
esta armazene seu estado.

A geracdo do arquivo contendo o estado da aplicacdo € realizada pela biblioteca
de checkpointing. Esta biblioteca também realiza a coordenacdo entre os processos de
uma aplicacao paralela no momento de gerar checkpoints globais consistentes, contendo o
estado de todos os processos da aplicagdao. O armazenamento dos checkpoints é realizado
pelo OppStore, descrito na Se¢do 3.

Desenvolvemos também um mdédulo gerenciador de execugdes, denominado Ex-
ecution Manager (EM), que monitora a execu¢do de aplicacdes em um aglomerado In-
teGrade e, sempre que um dos processos de uma aplicacdo falha, este modulo inicia e
coordena o processo de reinicializacdo daquela aplicagdo. Para tal, o EM notifica to-
dos os processos da aplicagdo sobre a falha e fornece a estes processos a localizacdo do
ultimo checkpoint armazenado. Estes processos entdo obtém este checkpoint e reiniciam
sua execugao a partir do estado nele contido.

3. Armazenamento Distribuido de Dados

Uma infra-estrutura que permita a execucao de aplicacOes em maquinas ndo-dedicadas
precisa também gerenciar os dados referentes a estas aplicacdes, sejam estes checkpoints,
dados de entrada ou dados de saida. Além dos ciclos ociosos, as maquinas conectadas
a uma grade oportunista normalmente possuem grandes quantidades de espaco livre em
disco. Para permitir a utilizac@o deste espaco livre para o armazenamento distribuido de
dados, desenvolvemos o middleware OppStore [de Camargo and Kon 2007]. Nosso prin-
cipal desafio foi como desenvolver um middleware que gerenciasse milhares de maquinas
heterogéneas, utilizadas de modo oportunista e distribuidas geograficamente.

Optamos por organizar as maquinas da grade em uma federacdo de aglomerados,
onde cada aglomerado é constituido por maquinas fisicamente proximas, por exemplo,
em um mesmo laboratério ou departamento. Cada aglomerado contém uma maquina que

SBC 2008

19

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I.I} CTD - Concurso de Teses e Dissertagdes Belém do Pard, PA

instancia um médulo que gerencia as maquinas daquele aglomerado, denominado CDRM
(Cluster Data Repository Manager). As demais maquinas funcionam como repositdrios
de dados e instanciam o médulo ADR (Autonomous Data Repository).

Os CDRMs se comunicam através de uma rede peer-to-peer, utilizando o pro-
tocolo Pastry [Rowstron and Druschel 2001] como substrato. Cada CDRM possui um
identificador unico, que € utilizado para determinar os locais onde os arquivos serdo ar-
mazenados. Os ADRs funcionam como repositdrios de dados que recebem requisi¢oes
para armazenamento e recuperacdo de dados em uma méaquina. ADRs utilizam poucos
recursos computacionais € podem ser configurados pelo dono da miquina para realizar
transferéncias de dados somente quando a méquina estd ociosa ou a qualquer momento.

rApplicagé\o ' -
| da glrad& |
o, oy I Aol

Rede peer-to-peer |_ |

Figure 1. Arquitetura do OppStore.

Na Figura 1 podemos visualizar a arquitetura do OppStore e seus principais com-
ponentes. O sistema € organizado em dois niveis: (1) rede peer-to-peer composta pe-
los CDRMs e (2) aglomerados compostos por um CDRM e varios ADRs cada. Esta
organizagdo em dois niveis facilita o gerenciamento do dinamismo da grade, uma vez que
as constantes mudancas de estado das maquinas podem ser tratadas internamente em cada
aglomerado pelo CDRM.

Como os dados sdo armazenados em maquinas nao-dedicadas, precisamos uti-
lizar um mecanismo de redundancia para garantir a disponibilidade destes dados. Opp-
Store codifica arquivos que serdao armazenados em fragmentos redundantes, utilizando
um tipo de codificacdo de rasura (erasure coding) denominado IDA (Information Dis-
persal Algorithm)[Rabin 1989]. Nesta codificacdo, sdo gerados n fragmentos, sendo que
quaisquer k fragmentos, onde £ < n, sdo suficientes para reconstruir o arquivo original.
Estudos analiticos mostram que, para um dado nivel de redundancia, dados armazenados
com codificacdo de rasura possuem uma disponibilidade média varias vezes maior que
utilizando replicacdo [Weatherspoon and Kubiatowicz 2002].

Aplicagdes e usudrios da grade acessam o OppStore através de uma biblioteca
denominada access broker, que funciona como um intermediador de acesso ao sistema
e esconde do usudrio os detalhes dos protocolos utilizados internamente pelo OppStore.
Esta biblioteca possui uma interface que disponibiliza métodos que permitem o armazena-
mento e recuperacao de arquivos. Diversos tipos de dados podem ser armazenados num
sistema de grade, com cada tipo de dados possuindo diferentes requisitos. OppStore

SBC 2008 20

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I.I} CTD - Concurso de Teses e Dissertagdes Belém do Pard, PA

permite que aplicacOes clientes escolham entre dois métodos de armazenamento para os
arquivos: (1) armazenamento perene e (2) armazenamento efémero.

No modo de armazenamento perene, os fragmentos codificados sdo distribuidos
em diversos aglomerados da grade. Esta distribui¢do melhora a disponibilidade de da-
dos armazenados, uma vez que estes podem ser recuperado mesmo quando aglomerados
inteiros da grade ficam indisponiveis. Além disso, durante a recuperacdo de arquivos,
aplicacdes podem obter fragmentos localizados nos aglomerados mais proximos, melho-
rando o desempenho e diminuindo o trafego de dados na rede. Este modo € utilizado para
armazenar arquivos de entrada e saida de aplicacdes.

Ja no modo de armazenamento efémero, os dados sdo armazenados apenas em
maquinas do aglomerado de onde a requisicdo foi realizada. A vantagem deste modo
€ que os dados trafegam apenas pela rede local, gerando uma laténcia menor para o
armazenamento e recuperacdo de dados. Este modo é utilizado, por exemplo, para ar-
mazenar checkpoints peridédicos de aplicagoes.

Finalmente, as maquinas de uma grade computacional normalmente sao het-
erogéneas e possuem diferentes padrdes de utilizacio. E preferivel armazenar frag-
mentos em maquinas que permanecem ociosas por longos periodos de tempo, possuem
conexdes de maior velocidade e maior quantidade de espaco livre em disco. Por outro
lado, esta selecdo de maquinas deve ser balanceada, de modo a ndo sobrecarregar algu-
mas maquinas. Apesar de existirem técnicas para a distribuicdo de carga em redes peer-
to-peer, sendo a principal delas o uso de servidores virtuais [Stoica et al. 2001], estas
possuem limitacdes, como o alta sobrecarga gerada.

Para resolver este problema de heterogeneidade, propusemos o conceito de iden-
tificadores virtuais [de Camargo and Kon 2006], onde atribuimos a cada CDRM, além do
identificador Pastry, um identificador virtual, que pode ser facilmente alterado para re-
fletir a capacidade de cada aglomerado da grade. Conseqilientemente, podemos definir
a probabilidade de que um aglomerado seja escolhido para armazenar um determinado
fragmento em funcdo de uma métrica de capacidade desejada.

4. Experimentos

Realizamos diversos experimentos para avaliar a sobrecarga do mecanismo de checkpoint-
ing sobre o tempo de execucdo de aplicacdes e o impacto do uso de diferentes estratégias
de armazenamento sobre esta sobrecarga. Na Figura 2, apresentamos a sobrecarga do uso
de checkpointing em uma aplicacdo paralela do tipo BSP que realiza uma seqiiéncia de
multiplicacdes de matrizes, utilizando diferentes estratégias de armazenamento e difer-
entes tamanhos de matrizes. Para cada caso, realizamos 16 execug¢des da aplicacdo e cal-
culamos a média e o desvio padrdo do tempo de execucdo. O eixo x contém 5 estratégias
de armazenamento: (1) execucdo sem checkpointing, (2) armazenamento de 2 réplicas
do checkpoint, (3) codificacdo utilizando paridade, (4) codificacdo com IDA gerando 8
fragmentos, dos quais 7 sd@o necessarios para a recuperacao do arquivo e (5) codificagao
com IDA gerando 8 fragmentos, dos quais 6 sao necessarios. O eixo y contém o tempo
de execucdo médio para cada cendrio e as barras representam o desvio padriao. Os valores
nCkp = ... representam o numero médio de checkpoints gerados durante a execugdo da
aplicacdo em cada cenério.

Os resultados mostram que a utilizagdo de IDA (cendrios 4 e 5) causa a maior

SBC 2008 21

Y={® Anais do Xxvill Congresso da SBC 12218 de julho

g.I. o CTD - Concurso de Teses e Dissertacdes Belém do Pard, PA
3200x3200
125%
=]
L5 R B L B T T R PP PPN
=
]
> 1]5% ...
w
3
& 1]0% ...
g 105% e
S 2 OO OO PO VPO PYPPPOUOVPOPRVOPOPPOOUONN rerror. . creres SUOTOOURVORUROVOTORN vpvosro-co-soveu FNSTRRRPTUON OO
100% —— - -
original replicas paridade IDA(7.1) IDA(6.2)
nCkp =0 nCkp =18.0 nCkp =18.1 nCkp =18.2 nCkp =18.7

Figure 2. Sobrecarga do armazenamento de checkpoints sobre o tempo de
execucao da aplicacao de multiplicacao de matrizes.

sobrecarga. Isto era esperado, dado que € necessdrio realizar a codificagdo dos dados.
No caso de matrizes de tamanho 3200x3200, onde sdo gerados checkpoints globais de
351.6MB com um intervalo minimo de 60s, a sobrecarga é de aproximadamente 7.5%
para a estratégia IDA(m=6,k=2). Podemos facilmente reduzir esta sobrecarga para valores
menores que 2% aumentando o intervalo entre checkpoints para 5 minutos. Deste modo,
vemos que mesmo para uma aplicacdo que gera checkpoints de tamanhos elevados, a
sobrecarga do mecanismo ¢é bastante baixa.

Avaliamos o OppStore utilizando simulagdes e experimentos. No primeiro caso,
simulamos uma grade oportunista em condi¢des realistas, utilizando padrdes de uso obti-
dos em medi¢des de mdaquinas reais, que mostram que estas maquinas permanecem
ociosas entre 25% e 80% do tempo, dependendo do aglomerado e do periodo do dia.
Simulamos o procedimento de armazenamento para 10 mil arquivos, para entdo realizar
sua recuperagdo, com o objetivo de avaliar a quantidade de arquivos que conseguimos
recuperar considerando que podemos obter apenas fragmentos de miquinas ociosas.

A partir de simula¢des, mostramos que, utilizando apenas os periodos ociosos de
maquinas compartilhadas para armazenar e recuperar dados, podemos obter disponibil-
idades de dados de 99.9% utilizando um fator 3 de replicagcdo e 93.2% utilizando um
fator 2 de replicacdo [de Camargo and Kon 2007]. Estes excelentes indices de disponibil-
idade de dados foram obtidos em fun¢ao do uso de identificadores virtuais para realizar a
escolha dos locais de armazenamento de fragmentos.

Realizamos experimentos com o OppStore em um ambiente real de uma grade
oportunista composta por cinco aglomerados, trés em Sao Paulo (spl, sp2 e sp3), um em
Goiania (go) e um em Sao Luiz (sl), conectados pela Internet publica. Goidnia e Sao
Luiz estao distantes 900km e 3000km de Sao Paulo, respectivamente. O access broker foi
instanciado em um computador Athlon64 de 2GHz com 4GB de memoéria RAM e sistema
operacional Linux 2.6, localizado no aglomerado spl, em Sao Paulo.

Realizamos o armazenamento e recuperacdo de arquivos com tamanhos entre
100KB e 500MB. Configuramos o access broker para codificar o arquivo em 5 frag-
mentos, sendo 2 suficientes para reconstrui-lo. O grafico a esquerda na Figura 3 mostra
o tempo necessdrio para finalizar o processo de codificagdo dos dados (linha pontilhada)
e para finalizar o processo de armazenamento (linha continua), com relacdo ao tamanho

SBC 2008 22

Y={® Anais do Xxvill Congresso da SBC 12218 de julho

PAO[0s] cTD - Concurso de Teses e Dissertagdes Belém do Pard, PA
Armazenamento de arquivos Recuperacio de arquivos
1000 £ 1000 g
= r o =
Q 1&
£100 <100
5 K &
é i Q(Q’b § -
2 r \a g T
g = o
g 10 S B S 10
E S g, E
g, E BY =] o
BN =)
E L S e F
= L G L
| 1 |
]0.1 1 10 100 500]O.l 1 10 100 500
Tamanho do arquivo (MB) Tamanho do arquivo (MB)

Figure 3. Armazenamento e recuperacao de dados armazenados.

do arquivo. No caso de um arquivo de 5S00MB, o access broker utilizou 60 segundos para
codificar o arquivo e de 560 segundos para transferir os 5 fragmentos de S00MB gerados.
O tempo de armazenamento € limitado pela conexao mais lenta, neste caso a conexao
entre Sao Paulo e Goidnia, com uma taxa de transferéncia média de 400KB/s. J4 para a
recuperacdo, basta recuperar 2 dos 5 fragmentos armazenados. Na Figura 3, o gréfico a di-
reita mostra o tempo necessario para recuperar um arquivo utilizando os dois repositorios
com as conexodes mais rapidas (linha tracejada) e mais lentas (linha continua), com relagdo
ao tamanho do arquivo. Utilizando os servidores mais rapidos, foram necessarios apenas
58 segundos para obter os fragmentos e reconstruir o arquivo.

5. Conclusoes

Grades oportunistas, como o InteGrade, permitem o acesso a grandes quantidades de
recursos computacionais utilizando miquinas ja presentes nas instituicoes. Estas grades
sdo particularmente importantes no cendrio brasileiro, onde universidades e centros de
pesquisa normalmente possuem poucos recursos humanos, financeiros e de espaco fisico.

A infra-estrutura computacional que desenvolvemos neste trabalho permite a
utilizagdo destas maquinas de modo eficiente e tolerante a falhas através dos middlewares
InteGrade e OppStore. Os resultados experimentais indicam que OppStore prové uma
plataforma vidvel e de baixo custo para resolver o problema do armazenamento de dados
em grades computacionais oportunistas.

Durante o desenvolvimento do trabalho realizamos diversas publica¢des, que nos
permitiram divulgar o trabalho desenvolvido e obter valiosas sugestdes que permitiram o
seu aprimoramento. Como trabalho em andamento, estamos continuando o desenvolvi-
mento do middleware OppStore e realizando experimentos em redes de grande escala
compostas por centenas de maquinas. Pretendemos implantar € monitorar o uso do Opp-
Store sobre o InteGrade em uma grade de grande drea de modo a verificar seus padroes
de uso e assim, aprimorar os seus protocolos.

References

Bronevetsky, G., Marques, D., Pingali, K., and Stodghill, P. (2003). Automated
application-level checkpointing of MPI programs. In PPoPP ’03: 9th ACM SIGPLAN
Symp. on Principles and Practice of Parallel Programming, pages 84—89.

SBC 2008

23

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I.I} CTD - Concurso de Teses e Dissertagdes Belém do Pard, PA

Chiba, S. (1995). A metaobject protocol for C++. In OOPSLA ’95: Proceedings of
the 10th ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 285-299.

de Camargo, R. Y., Cerqueira, R., and Kon, F. (2006a). Strategies for checkpoint storage
on opportunistic grids. IEEE Distributed Systems Online, 18(6).

de Camargo, R. Y., Goldchleger, A., Carneiro, M., and Kon, F. (2006b). The Grid archi-
tectural pattern: Leveraging distributed processing capabilities. In Pattern Languages
of Program Design 5, pages 337-356. Addison-Wesley Publishing Company.

de Camargo, R. Y., Goldchleger, A., Kon, F., and Goldman, A. (2006c). Checkpoint-
ing BSP parallel applications on the InteGrade Grid middleware. Concurrency and
Computation: Practice and Experience, 18(6):567-579.

de Camargo, R. Y. and Kon, F. (2006). Distributed data storage for opportunistic grids.
In MDS °06: Proceedings of the 3rd ACM/IFIP/USENIX International Middleware
Doctoral Symposium, Melbourne, Australia.

de Camargo, R. Y. and Kon, F. (2007). Design and implementation of a middleware for
data storage in opportunistic grids. In CCGrid ’07: Proc. of the 7th IEEE/ACM Int.
Symposium on Cluster Computing and the Grid, Rio de Janeiro, Brazil.

de Camargo, R. Y., Kon, F., and Goldman, A. (2005). Portable checkpointing and commu-
nication for BSP applications on dynamic heterogeneous Grid environments. In SBAC-
PAD’05: The 17th International Symposium on Computer Architecture and High Per-
formance Computing, pages 226-233, Rio de Janeiro, Brazil.

Elnozahy, M., Alvisi, L., Wang, Y.-M., and Johnson, D. B. (2002). A survey of rollback-
recovery protocols in message-passing systems. ACM Comp. Surveys, 34(3):375-408.

Goldchleger, A., Kon, F., Goldman, A., Finger, M., and Bezerra, G. C. (2004). Inte-
Grade: Object-oriented grid middleware leveraging idle computing power of desktop
machines. Concurrency and Computation: Practice and Experience, 16:449—-459.

Rabin, M. O. (1989). Efficient dispersal of information for security, load balancing, and
fault tolerance. Journal of the ACM, 36(2):335-348.

Rowstron, A. I. T. and Druschel, P. (2001). Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In Middleware 2001: IFIP/ACM Int.
Conf. on Distributed Systems Platforms, pages 329-350, Heidelberg, Germany.

Stoica, L., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. (2001). Chord: A
scalable peer-to-peer lookup service for internet applications. In SIGCOMM °01: The
2001 Conf. on Applications, Technologies, Architectures, and Protocols for Computer
Communications, pages 149-160.

Thain, D., Tannenbaum, T., and Livny, M. (2002). Condor and the grid. In Berman, F.,
Fox, G., and Hey, T., editors, Grid Computing: Making the Global Infrastructure a
Reality. John Wiley & Sons Inc.

Weatherspoon, H. and Kubiatowicz, J. (2002). Erasure coding vs. replication: A quantita-
tive comparison. In IPTPS ’01: Revised Papers from the First International Workshop
on Peer-to-Peer Systems, pages 328-338, London, UK. Springer-Verlag.

SBC 2008 24

