
Armazenamento distribuı́do de dados e checkpointing de

aplicações paralelas em grades oportunistas∗

Autor: Raphael Y. de Camargo1

Orientador: Prof. Dr. Fabio Kon1

1Departamento de Ciência da Computação

Instituto de Matemática e Estatı́stica

Universidade de São Paulo (USP), São Paulo-SP, Brasil

{rcamargo,kon}@ime.usp.br

Resumo. Grades computacionais oportunistas utilizam recursos ociosos de

máquinas compartilhadas para executar aplicações que necessitam de um alto

poder computacional e/ou trabalham com grandes quantidades de dados. Neste

trabalho, projetamos, implementamos e avaliamos uma infra-estrutura de soft-

ware que permite a execução destas aplicações em grades oportunistas. Esta

infra-estrutura é constituı́da por: (1) um mecanismo de tolerância a falhas

baseado em checkpointing que permite a execução de aplicações paralelas

mesmo com a presença de falhas em nós de execução e (2) um middleware,

denominado OppStore, que permite a criação de uma infra-estrutura de ar-

mazenamento distribuı́do de dados de baixo custo e que utiliza o espaço livre

em disco de máquinas compartilhadas da grade. Avaliamos nossa abordagem

através de simulações e experimentos em redes de grande área.

1. Introdução

Existe uma grande classe de aplicações que necessitam de um alto poder computa-

cional e trabalham com grandes quantidades de dados. Estas aplicações incluem o

seqüenciamento de genes, enovelamento de proteı́nas, análise de sinais (ex: SETI),

análises financeiras, mineração de dados, fı́sica de partı́culas e simulações em engen-

haria. Mas cientistas, pesquisadores, analistas e engenheiros muitas vezes não têm acesso

a uma infra-estrutura computacional que lhes permita a execução destas aplicações, nor-

malmente por trabalharem em instituições que dispõem de recursos limitados. Por outro

lado, estas mesmas instituições normalmente possuem centenas ou milhares de máquinas

utilizadas pelos seus membros e que permanecem ociosas pela grande maioria do tempo.

Se pudéssemos utilizar os ciclos computacionais ociosos e o espaço livre em disco destas

máquinas, seria possı́vel executarmos uma parte significativa destas aplicações.

Grades computacionais oportunistas [Thain et al. 2002, Goldchleger et al. 2004,

de Camargo et al. 2006b] foram desenvolvidas com o objetivo de utilizar o tempo ocioso

de máquinas compartilhadas para realizar computação útil, de modo a aumentar o

poder computacional de uma instituição sem a necessidade de adquirir hardware adi-

cional. Aplicações são executadas nas máquinas apenas quando estas estão ociosas, de

modo a não alterar a Qualidade de Serviço percebida pelo dono da máquina. O In-

teGrade1 [Goldchleger et al. 2004] é um middleware que permite a criação de grades

∗Texto da tese disponı́vel em http://www.ime.usp.br/˜rcamargo.
1Disponı́vel em http://www.integrade.org.br.

SBC 2008 17



computacionais oportunistas. Ele é organizado como uma federação de aglomerados,

onde cada aglomerado contém máquinas que disponibilizam seus recursos ociosos para

utilização por aplicações da grade.

Mas garantir a execução robusta de aplicações paralelas em máquinas não-

dedicadas pertencentes a um ambiente dinâmico e heterogêneo, como o de grades opor-

tunistas, é uma tarefa difı́cil. Máquinas podem falhar, ficar indisponı́veis ou mudar de

ociosas para ocupadas inesperadamente, comprometendo a execução das aplicações. Para

tal, checkpoints contendo o estado de uma aplicação podem ser periodicamente gerados e

armazenados, permitindo a reinicialização da aplicação, em caso de falha em um de seus

processos, a partir de um estado intermediário de sua execução. Além disso, no caso de

aplicações paralelas, o mecanismo precisa considerar as dependências entre os processos

da aplicação ao obter seu estado global.

Os checkpoints gerados precisam ser salvos em um meio de armazenamento

estável. Além disso, aplicações da grade tipicamente manipulam grandes quantidades

de dados e necessitam de uma infra-estrutura de armazenamento de dados confiável, de

alta capacidade e acessı́vel de qualquer ponto da grade. A solução imediata seria insta-

lar servidores dedicados para o armazenamento dos dados de aplicações. Mas para tal

terı́amos que manter estes servidores dedicados, que além do custo de aquisição, geram

calor, consomem energia, utilizam espaço e precisam ser gerenciados. Ao mesmo tempo,

grades oportunistas são compostas por máquinas compartilhadas, que tipicamente pos-

suem quantidades significativas de espaço livre em disco. Utilizar estes recursos ociosos

permitiria que obtivéssemos grandes quantidades de espaço de armazenamento a um

baixo custo e sem a aquisição de hardware extra.

1.1. Principais contribuições

Neste trabalho desenvolvemos uma infra-estrutura de software que permite a utilização de

máquinas não-dedicadas tanto para a execução de aplicações paralelas de longa duração

como para o armazenamento de dados. Esta infra-estrutura é importante para viabilizar a

utilização prática de grades computacionais oportunistas.

As principais contribuições cientı́ficas obtidas foram: (1) usamos reflexão com-

putacional para instrumentar aplicações paralelas BSP para gerar checkpoints portáveis,

(2) analisamos diversas estratégias para o armazenamento de checkpoints de aplicações

paralelas, (3) propusemos o conceito de identificadores virtuais, que permitem realizar o

balanceamento dinâmico de carga entre nós heterogêneos utilizando como base a infra-

estrutura de roteamento do Pastry, (4) projetamos e implementamos o middleware Opp-

Store, que utiliza o espaço livre em disco das máquinas provedoras de recursos para o

armazenamento distribuı́do de dados de aplicações da grade e (5) avaliação experimental

e por simulação da viabilidade do uso do espaço livre em disco de máquinas ociosas para

armazenar dados de aplicações.

2. Execução Tolerante a Falhas de Aplicações Paralelas

Aplicações paralelas computacionalmente intensivas freqüentemente utilizam dezenas de

máquinas durante muitas horas. A falha de uma única máquina neste perı́odo normal-

mente faz com que toda a computação já realizada seja perdida. Deste modo, numa grade

oportunista, onde máquinas ficam indisponı́veis várias vezes em um único dia, a execução

deste tipo de aplicação sem um mecanismo de tolerância a falhas é inviável.

SBC 2008 18



Desenvolvemos um mecanismo de recuperação por retrocesso baseada em

checkpointing [Elnozahy et al. 2002] que permite reiniciar uma execução interromp-

ida de uma aplicação a partir do último checkpoint gerado [de Camargo et al. 2006c,

de Camargo et al. 2006a]. Fornecemos suporte a aplicações seqüenciais, paralelas de-

sacopladas (bag-of-tasks) e paralelas acopladas do tipo BSP (Bulk Synchronous Par-

allel). Um programa BSP é executado como uma seqüência de super-passos, onde

cada super-passo é composto por uma fase de computação e uma de comunicação, que

termina com uma barreira de sincronização. Uma vez que o modelo BSP já possui

uma fase de sincronização, optamos por utilizar um protocolo de checkpointing coor-

denado [Elnozahy et al. 2002] para obter o estado global de uma aplicação BSP.

No mecanismo de checkpointing que implementamos, a aplicação é responsável

por fornecer os dados que devem ser armazenados no checkpoint e por recuperar seu

estado a partir dos dados presentes em um checkpoint [Bronevetsky et al. 2003]. Como a

aplicação possui informação semântica sobre os dados que estão sendo armazenados ou

recuperados, nosso mecanismo cria checkpoints portáveis, isto é, que podem ser gerados

e recuperados em arquiteturas heterogêneas [de Camargo et al. 2005]. Finalmente, para

que o programador não precise modificar o código-fonte de sua aplicação manualmente,

desenvolvemos um pré-compilador baseado na ferramenta OpenC++ [Chiba 1995], que

automaticamente analisa o código-fonte de uma aplicação C e o modifica de modo que

esta armazene seu estado.

A geração do arquivo contendo o estado da aplicação é realizada pela biblioteca

de checkpointing. Esta biblioteca também realiza a coordenação entre os processos de

uma aplicação paralela no momento de gerar checkpoints globais consistentes, contendo o

estado de todos os processos da aplicação. O armazenamento dos checkpoints é realizado

pelo OppStore, descrito na Seção 3.

Desenvolvemos também um módulo gerenciador de execuções, denominado Ex-

ecution Manager (EM), que monitora a execução de aplicações em um aglomerado In-

teGrade e, sempre que um dos processos de uma aplicação falha, este módulo inicia e

coordena o processo de reinicialização daquela aplicação. Para tal, o EM notifica to-

dos os processos da aplicação sobre a falha e fornece a estes processos a localização do

último checkpoint armazenado. Estes processos então obtém este checkpoint e reiniciam

sua execução a partir do estado nele contido.

3. Armazenamento Distribuı́do de Dados

Uma infra-estrutura que permita a execução de aplicações em máquinas não-dedicadas

precisa também gerenciar os dados referentes a estas aplicações, sejam estes checkpoints,

dados de entrada ou dados de saı́da. Além dos ciclos ociosos, as máquinas conectadas

a uma grade oportunista normalmente possuem grandes quantidades de espaço livre em

disco. Para permitir a utilização deste espaço livre para o armazenamento distribuı́do de

dados, desenvolvemos o middleware OppStore [de Camargo and Kon 2007]. Nosso prin-

cipal desafio foi como desenvolver um middleware que gerenciasse milhares de máquinas

heterogêneas, utilizadas de modo oportunista e distribuı́das geograficamente.

Optamos por organizar as máquinas da grade em uma federação de aglomerados,

onde cada aglomerado é constituı́do por máquinas fisicamente próximas, por exemplo,

em um mesmo laboratório ou departamento. Cada aglomerado contém uma máquina que

SBC 2008 19



instancia um módulo que gerencia as máquinas daquele aglomerado, denominado CDRM

(Cluster Data Repository Manager). As demais máquinas funcionam como repositórios

de dados e instanciam o módulo ADR (Autonomous Data Repository).

Os CDRMs se comunicam através de uma rede peer-to-peer, utilizando o pro-

tocolo Pastry [Rowstron and Druschel 2001] como substrato. Cada CDRM possui um

identificador único, que é utilizado para determinar os locais onde os arquivos serão ar-

mazenados. Os ADRs funcionam como repositórios de dados que recebem requisições

para armazenamento e recuperação de dados em uma máquina. ADRs utilizam poucos

recursos computacionais e podem ser configurados pelo dono da máquina para realizar

transferências de dados somente quando a máquina está ociosa ou a qualquer momento.

ADR

ADR

ADR

CDRMADR

ADR

ADR

CDRM

CDRM CDRM

CDRM

ADR

ADR

ADR
ADR

ADR

ADR

ADR

ADR

ADR

Applicação
da grade

broker

Aglomerado
do OppStore

Rede peer-to-peer

Figure 1. Arquitetura do OppStore.

Na Figura 1 podemos visualizar a arquitetura do OppStore e seus principais com-

ponentes. O sistema é organizado em dois nı́veis: (1) rede peer-to-peer composta pe-

los CDRMs e (2) aglomerados compostos por um CDRM e vários ADRs cada. Esta

organização em dois nı́veis facilita o gerenciamento do dinamismo da grade, uma vez que

as constantes mudanças de estado das máquinas podem ser tratadas internamente em cada

aglomerado pelo CDRM.

Como os dados são armazenados em máquinas não-dedicadas, precisamos uti-

lizar um mecanismo de redundância para garantir a disponibilidade destes dados. Opp-

Store codifica arquivos que serão armazenados em fragmentos redundantes, utilizando

um tipo de codificação de rasura (erasure coding) denominado IDA (Information Dis-

persal Algorithm)[Rabin 1989]. Nesta codificação, são gerados n fragmentos, sendo que

quaisquer k fragmentos, onde k < n, são suficientes para reconstruir o arquivo original.

Estudos analı́ticos mostram que, para um dado nı́vel de redundância, dados armazenados

com codificação de rasura possuem uma disponibilidade média várias vezes maior que

utilizando replicação [Weatherspoon and Kubiatowicz 2002].

Aplicações e usuários da grade acessam o OppStore através de uma biblioteca

denominada access broker, que funciona como um intermediador de acesso ao sistema

e esconde do usuário os detalhes dos protocolos utilizados internamente pelo OppStore.

Esta biblioteca possui uma interface que disponibiliza métodos que permitem o armazena-

mento e recuperação de arquivos. Diversos tipos de dados podem ser armazenados num

sistema de grade, com cada tipo de dados possuindo diferentes requisitos. OppStore

SBC 2008 20



permite que aplicações clientes escolham entre dois métodos de armazenamento para os

arquivos: (1) armazenamento perene e (2) armazenamento efêmero.

No modo de armazenamento perene, os fragmentos codificados são distribuı́dos

em diversos aglomerados da grade. Esta distribuição melhora a disponibilidade de da-

dos armazenados, uma vez que estes podem ser recuperado mesmo quando aglomerados

inteiros da grade ficam indisponı́veis. Além disso, durante a recuperação de arquivos,

aplicações podem obter fragmentos localizados nos aglomerados mais próximos, melho-

rando o desempenho e diminuindo o tráfego de dados na rede. Este modo é utilizado para

armazenar arquivos de entrada e saı́da de aplicações.

Já no modo de armazenamento efêmero, os dados são armazenados apenas em

máquinas do aglomerado de onde a requisição foi realizada. A vantagem deste modo

é que os dados trafegam apenas pela rede local, gerando uma latência menor para o

armazenamento e recuperação de dados. Este modo é utilizado, por exemplo, para ar-

mazenar checkpoints periódicos de aplicações.

Finalmente, as máquinas de uma grade computacional normalmente são het-

erogêneas e possuem diferentes padrões de utilização. É preferı́vel armazenar frag-

mentos em máquinas que permanecem ociosas por longos perı́odos de tempo, possuem

conexões de maior velocidade e maior quantidade de espaço livre em disco. Por outro

lado, esta seleção de máquinas deve ser balanceada, de modo a não sobrecarregar algu-

mas máquinas. Apesar de existirem técnicas para a distribuição de carga em redes peer-

to-peer, sendo a principal delas o uso de servidores virtuais [Stoica et al. 2001], estas

possuem limitações, como o alta sobrecarga gerada.

Para resolver este problema de heterogeneidade, propusemos o conceito de iden-

tificadores virtuais [de Camargo and Kon 2006], onde atribuı́mos a cada CDRM, além do

identificador Pastry, um identificador virtual, que pode ser facilmente alterado para re-

fletir a capacidade de cada aglomerado da grade. Conseqüentemente, podemos definir

a probabilidade de que um aglomerado seja escolhido para armazenar um determinado

fragmento em função de uma métrica de capacidade desejada.

4. Experimentos

Realizamos diversos experimentos para avaliar a sobrecarga do mecanismo de checkpoint-

ing sobre o tempo de execução de aplicações e o impacto do uso de diferentes estratégias

de armazenamento sobre esta sobrecarga. Na Figura 2, apresentamos a sobrecarga do uso

de checkpointing em uma aplicação paralela do tipo BSP que realiza uma seqüência de

multiplicações de matrizes, utilizando diferentes estratégias de armazenamento e difer-

entes tamanhos de matrizes. Para cada caso, realizamos 16 execuções da aplicação e cal-

culamos a média e o desvio padrão do tempo de execução. O eixo x contém 5 estratégias

de armazenamento: (1) execução sem checkpointing, (2) armazenamento de 2 réplicas

do checkpoint, (3) codificação utilizando paridade, (4) codificação com IDA gerando 8

fragmentos, dos quais 7 são necessários para a recuperação do arquivo e (5) codificação

com IDA gerando 8 fragmentos, dos quais 6 são necessários. O eixo y contém o tempo

de execução médio para cada cenário e as barras representam o desvio padrão. Os valores

nCkp = ... representam o número médio de checkpoints gerados durante a execução da

aplicação em cada cenário.

Os resultados mostram que a utilização de IDA (cenários 4 e 5) causa a maior

SBC 2008 21



Figure 2. Sobrecarga do armazenamento de checkpoints sobre o tempo de
execução da aplicação de multiplicação de matrizes.

sobrecarga. Isto era esperado, dado que é necessário realizar a codificação dos dados.

No caso de matrizes de tamanho 3200x3200, onde são gerados checkpoints globais de

351.6MB com um intervalo mı́nimo de 60s, a sobrecarga é de aproximadamente 7.5%

para a estratégia IDA(m=6,k=2). Podemos facilmente reduzir esta sobrecarga para valores

menores que 2% aumentando o intervalo entre checkpoints para 5 minutos. Deste modo,

vemos que mesmo para uma aplicação que gera checkpoints de tamanhos elevados, a

sobrecarga do mecanismo é bastante baixa.

Avaliamos o OppStore utilizando simulações e experimentos. No primeiro caso,

simulamos uma grade oportunista em condições realistas, utilizando padrões de uso obti-

dos em medições de máquinas reais, que mostram que estas máquinas permanecem

ociosas entre 25% e 80% do tempo, dependendo do aglomerado e do perı́odo do dia.

Simulamos o procedimento de armazenamento para 10 mil arquivos, para então realizar

sua recuperação, com o objetivo de avaliar a quantidade de arquivos que conseguimos

recuperar considerando que podemos obter apenas fragmentos de máquinas ociosas.

A partir de simulações, mostramos que, utilizando apenas os perı́odos ociosos de

máquinas compartilhadas para armazenar e recuperar dados, podemos obter disponibil-

idades de dados de 99.9% utilizando um fator 3 de replicação e 93.2% utilizando um

fator 2 de replicação [de Camargo and Kon 2007]. Estes excelentes ı́ndices de disponibil-

idade de dados foram obtidos em função do uso de identificadores virtuais para realizar a

escolha dos locais de armazenamento de fragmentos.

Realizamos experimentos com o OppStore em um ambiente real de uma grade

oportunista composta por cinco aglomerados, três em São Paulo (sp1, sp2 e sp3), um em

Goiânia (go) e um em São Luiz (sl), conectados pela Internet pública. Goiânia e São

Luiz estão distantes 900km e 3000km de São Paulo, respectivamente. O access broker foi

instanciado em um computador Athlon64 de 2GHz com 4GB de memória RAM e sistema

operacional Linux 2.6, localizado no aglomerado sp1, em São Paulo.

Realizamos o armazenamento e recuperação de arquivos com tamanhos entre

100KB e 500MB. Configuramos o access broker para codificar o arquivo em 5 frag-

mentos, sendo 2 suficientes para reconstrui-lo. O gráfico à esquerda na Figura 3 mostra

o tempo necessário para finalizar o processo de codificação dos dados (linha pontilhada)

e para finalizar o processo de armazenamento (linha contı́nua), com relação ao tamanho

SBC 2008 22



Figure 3. Armazenamento e recuperação de dados armazenados.

do arquivo. No caso de um arquivo de 500MB, o access broker utilizou 60 segundos para

codificar o arquivo e de 560 segundos para transferir os 5 fragmentos de 500MB gerados.

O tempo de armazenamento é limitado pela conexão mais lenta, neste caso a conexão

entre São Paulo e Goiânia, com uma taxa de transferência média de 400KB/s. Já para a

recuperação, basta recuperar 2 dos 5 fragmentos armazenados. Na Figura 3, o gráfico à di-

reita mostra o tempo necessário para recuperar um arquivo utilizando os dois repositórios

com as conexões mais rápidas (linha tracejada) e mais lentas (linha contı́nua), com relação

ao tamanho do arquivo. Utilizando os servidores mais rápidos, foram necessários apenas

58 segundos para obter os fragmentos e reconstruir o arquivo.

5. Conclusões

Grades oportunistas, como o InteGrade, permitem o acesso a grandes quantidades de

recursos computacionais utilizando máquinas já presentes nas instituições. Estas grades

são particularmente importantes no cenário brasileiro, onde universidades e centros de

pesquisa normalmente possuem poucos recursos humanos, financeiros e de espaço fı́sico.

A infra-estrutura computacional que desenvolvemos neste trabalho permite a

utilização destas máquinas de modo eficiente e tolerante a falhas através dos middlewares

InteGrade e OppStore. Os resultados experimentais indicam que OppStore provê uma

plataforma viável e de baixo custo para resolver o problema do armazenamento de dados

em grades computacionais oportunistas.

Durante o desenvolvimento do trabalho realizamos diversas publicações, que nos

permitiram divulgar o trabalho desenvolvido e obter valiosas sugestões que permitiram o

seu aprimoramento. Como trabalho em andamento, estamos continuando o desenvolvi-

mento do middleware OppStore e realizando experimentos em redes de grande escala

compostas por centenas de máquinas. Pretendemos implantar e monitorar o uso do Opp-

Store sobre o InteGrade em uma grade de grande área de modo a verificar seus padrões

de uso e assim, aprimorar os seus protocolos.

References

Bronevetsky, G., Marques, D., Pingali, K., and Stodghill, P. (2003). Automated

application-level checkpointing of MPI programs. In PPoPP ’03: 9th ACM SIGPLAN

Symp. on Principles and Practice of Parallel Programming, pages 84–89.

SBC 2008 23



Chiba, S. (1995). A metaobject protocol for C++. In OOPSLA ’95: Proceedings of

the 10th ACM Conference on Object-Oriented Programming Systems, Languages, and

Applications, pages 285–299.

de Camargo, R. Y., Cerqueira, R., and Kon, F. (2006a). Strategies for checkpoint storage

on opportunistic grids. IEEE Distributed Systems Online, 18(6).

de Camargo, R. Y., Goldchleger, A., Carneiro, M., and Kon, F. (2006b). The Grid archi-

tectural pattern: Leveraging distributed processing capabilities. In Pattern Languages

of Program Design 5, pages 337–356. Addison-Wesley Publishing Company.

de Camargo, R. Y., Goldchleger, A., Kon, F., and Goldman, A. (2006c). Checkpoint-

ing BSP parallel applications on the InteGrade Grid middleware. Concurrency and

Computation: Practice and Experience, 18(6):567–579.

de Camargo, R. Y. and Kon, F. (2006). Distributed data storage for opportunistic grids.

In MDS ’06: Proceedings of the 3rd ACM/IFIP/USENIX International Middleware

Doctoral Symposium, Melbourne, Australia.

de Camargo, R. Y. and Kon, F. (2007). Design and implementation of a middleware for

data storage in opportunistic grids. In CCGrid ’07: Proc. of the 7th IEEE/ACM Int.

Symposium on Cluster Computing and the Grid, Rio de Janeiro, Brazil.

de Camargo, R. Y., Kon, F., and Goldman, A. (2005). Portable checkpointing and commu-

nication for BSP applications on dynamic heterogeneous Grid environments. In SBAC-

PAD’05: The 17th International Symposium on Computer Architecture and High Per-

formance Computing, pages 226–233, Rio de Janeiro, Brazil.

Elnozahy, M., Alvisi, L., Wang, Y.-M., and Johnson, D. B. (2002). A survey of rollback-

recovery protocols in message-passing systems. ACM Comp. Surveys, 34(3):375–408.

Goldchleger, A., Kon, F., Goldman, A., Finger, M., and Bezerra, G. C. (2004). Inte-

Grade: Object-oriented grid middleware leveraging idle computing power of desktop

machines. Concurrency and Computation: Practice and Experience, 16:449–459.

Rabin, M. O. (1989). Efficient dispersal of information for security, load balancing, and

fault tolerance. Journal of the ACM, 36(2):335–348.

Rowstron, A. I. T. and Druschel, P. (2001). Pastry: Scalable, decentralized object location,

and routing for large-scale peer-to-peer systems. In Middleware 2001: IFIP/ACM Int.

Conf. on Distributed Systems Platforms, pages 329–350, Heidelberg, Germany.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. (2001). Chord: A

scalable peer-to-peer lookup service for internet applications. In SIGCOMM ’01: The

2001 Conf. on Applications, Technologies, Architectures, and Protocols for Computer

Communications, pages 149–160.

Thain, D., Tannenbaum, T., and Livny, M. (2002). Condor and the grid. In Berman, F.,

Fox, G., and Hey, T., editors, Grid Computing: Making the Global Infrastructure a

Reality. John Wiley & Sons Inc.

Weatherspoon, H. and Kubiatowicz, J. (2002). Erasure coding vs. replication: A quantita-

tive comparison. In IPTPS ’01: Revised Papers from the First International Workshop

on Peer-to-Peer Systems, pages 328–338, London, UK. Springer-Verlag.

SBC 2008 24


