i :I.' Anais do XXVIII Congresso da SBC 12218 de julho
Q.I.I} CTD - Concurso de Teses e Dissertagdes Belém do Pard, PA

Aspectos para Construcao de Aplicacoes Distribuidas

Cristiano Amaral Maffort
Orientador: Marco Tulio de Oliveira Valente

Instituto de Informatica
Pontificia Universidade Catdlica de Minas Gerais

maffort@varginha.cefetmg.br, mtov@pucminas.br

Resumo. Neste resumo estendido, sdo apresentados os principais resultados de
uma dissertacdo de mestrado na qual foi projetado, implementado e validado
um sistema de apoio a programagdo distribuida que permite isolar a funciona-
lidade de distribuicdo da logica de negocio de aplicacdes implementadas em
Java. Para alcancar esse objetivo, o sistema proposto se beneficiou da sinergia
gerada pela combinacdo de trés tecnologias: aspectos, linguagens de dominio
especifico e geragdo e transformagcdo de codigo. A expressividade e flexibilidade
do sistema projetado na dissertacdo foi comprovada por meio de sua utilizacdo
em trés sistemas distribuidos de médio porte.

1. Introducao

Plataformas de middleware sao empregadas por engenheiros de software para simplificar
e tornar mais produtivo o desenvolvimento de aplicac¢des distribuidas. Basicamente, es-
tes sistemas encapsulam diversos detalhes inerentes a programacao distribuida, incluindo
protocolos de comunicacao, heterogeneidade de arquiteturas, serializacdo de dados, sin-
cronizagdo, localizagdo de servigos etc. No entanto, sistemas de middleware sdo, em ge-
ral, invasivos, pervasivos e transversais ao codigo de negdcio de aplicagdes distribuidas [7,
3, 2]. Como conseqiiéncia, aplicacdes distribuidas implementadas com o apoio de tais
sistemas nao apresentam graus esperados de reusabilidade, separacdo de interesses € mo-
dularidade, o que dificulta o entendimento, manutencao e evolucao das mesmas.

Neste resumo estendido, descrevem-se os principais resultados de uma dissertacao
de mestrado na qual foi projetado, implementado e validado um sistema de apoio a
programacdo distribuida, chamado DAJ (Distribution Aspects in Java) [5, 6]'. DAJ per-
mite isolar a funcionalidade de distribuicao da légica de negdcio de aplicacdes imple-
mentadas em Java. Para alcancar esse objetivo, o projeto de DAJ se beneficiou da sinergia
gerada pela combinacdo de trés tecnologias: aspectos, linguagens de dominio especifico
e geracdo e transformacdo de codigo. No sistema proposto, aspectos sdo usados para
encapsular diversos detalhes de programacao requeridos por plataformas de middleware;
linguagens de dominio especifico sdo usadas para elevar o grau de abstracdo quando da
definicdo de parametros de distribuicdo de uma determinada aplicagdo. Por fim, DAJ
inclui uma ferramenta de geracdo de cédigo, responsavel por gerar aspectos que intro-
duzem ndo-invasivamente cddigo de distribuicdo usualmente requerido por plataformas
de middleware. A versdo atual do sistema gera aspectos para duas plataformas de mid-
dleware nativas de ambientes de desenvolvimento Java: Java RMI e Java IDL. Java RMI
€ um middleware utilizado com freqiiéncia por aplica¢gdes distribuidas cujos mdédulos

10 texto completo da dissertagio estd disponivel em: www.inf.pucminas.br/prof/mtov/maffort.pdf.

SBC 2008 57

i :I.' Anais do XXVIII Congresso da SBC 12218 de julho
Q.I.I} CTD - Concurso de Teses e Dissertagdes Belém do Pard, PA

sdo integralmente implementados em Java. A plataforma Java IDL, por sua vez, ¢ uma
implementagdo do padrao CORBA e, portanto, permite que aplicagdes distribuidas imple-
mentadas em Java acessem sistemas desenvolvidos em outras linguagens de programacao.

Este resumido estendido estd estruturado conforme descrito a seguir. A Se¢do 2
descreve a interface de programacdo de DAJ. A Secdo 3 apresenta uma visao geral da
arquitetura usada na implementacdo do sistema. A Secdo 4 resume os estudos de casos
realizados. A Secdo 5 avalia o projeto de DAJ; a Secdo 6 compara DAJ com trabalhos
relacionados e a Sec¢ao 7 apresenta as conclusoes.

2. Interface de Programacao

Em aplicagdes distribuidas implementadas com o apoio do sistema DAJ, classes de neg6-
cio ndo precisam seguir quaisquer convencdes de programacao, isto €, ndo precisam es-
tender classes da API de uma determinada plataforma de middleware, ndo precisam im-
plementar interfaces ou métodos get e set, ndo precisam ativar ou tratar excegdes re-
motas etc. Em vez disso, no sistema proposto, descritores de distribui¢ao sdo usados para
descrever o papel desempenhado por tais classes em um sistema de objetos distribuidos
baseado em uma determinada tecnologia de middleware. A partir das informagdes con-
tidas em um descritor de distribui¢ao, a ferramenta de geragcdo de cddigo integrante do
sistema DAJ se encarrega de gerar automaticamente aspectos e classes que modularizam
o cbdigo de distribuicao requerido pela aplicacao base. Os aspectos gerados por DAJ sao
implementados em Aspect].

A Figura 1 resume o processo de desenvolvimento de aplicacdes distribuidas
usando DAJ. A fim de melhor descrever esse processo, sdo descritos a seguir 0s prin-
cipais componentes de uma aplicacdo distribuida construida com apoio de DAJ.

,Distribution %

Descriptor

\ %
Applicatfion

.. Middleware
: Programmer

.. Expert

DAJ Plain-Java

Compiler Business

Classes

Distribution

Aspects

Middleware
Related —> fh
Classes Sonpiicy

Java
Distributed
Application

Figura 1. Desenvolvimento de aplicacGes distribuidas usando DAJ

Descritores de Distribuicao: Por meio de tais componentes, organizados na forma de
documentos XML, sdo configurados os objetos remotos que compdem a aplicacdo, ou
seja, os objetos que recebem chamadas remotas de métodos. Além disso, sdo definidos

SBC 2008 58

i :I.' Anais do XXVIII Congresso da SBC 12218 de julho
Q.I.I} CTD - Concurso de Teses e Dissertagdes Belém do Pard, PA

os objetos que, em chamadas remotas de métodos, sao passados por serializa¢ao e por re-
feréncia remota. Em DAJ, objetos remotos que sdo registrados em um servidor de nomes
sdo chamados de servidores, e sdo especificados por meio de um nodo server, no qual
definem-se um identificador para o servidor, o nome de sua interface, o nome da classe
que implementa essa interface, o protocolo de comunicagao utilizado (Java RMI ou Java
IDL) e o nome e a porta do servidor de nomes onde o servidor serd registrado. No caso
de tipos passados por referéncia remota (nodo remote), deve-se informar a interface e
a classe desse tipo. No caso de tipos passados por serializacido (nodo serializable),
deve-se informar a classe desse tipo.

Mostra-se a seguir um exemplo de descritor de distribui¢do para um sistema sim-
ples de controle de acdes. Por meio deste descritor, configura-se uma implantagdo do
sistema com dois servidores: o primeiro deles utilizard Java IDL para comunicacio e
serd registrado com o nome StockMarketA (linhas 1 a 6); o segundo utilizard Java
RMI para comunicagdo e serd registrado com o nome StockMarketB (linhas 7 a 12).
Além disso, define-se que, em chamadas remotas de métodos desses servidores, objetos
do tipo StockListenerImpl serdo passados por referéncia remota (linhas 13 a 16) e
que objetos do tipo StockInfo serdo passados por serializacdo (linhas 17 a 19).

1: <server id="StockMarketA">

2 <interface>stockMarket.StockMarket</interface>
3: <class>stockMarket.StockMarketImpl</class>

4: <protocol>javaidl</protocol>

5: <nameserver>skank.pucminas.br</nameserver>

6: </server>

7: <server id="StockMarketB">

8: <interface>stockMarket.StockMarket</interface>
9: <class>stockMarket.StockMarketImpl</class>
10: <protocol>javarmi</protocol>
11: <nameserver>patofu.pucminas.br:1530</nameserver>
12: </server>

13: <remote>
14: <interface>stockMarket.StockListener</interface>
15: <class>stockMarket.StockListenerImpl</class>
16: </remote>

17: <serializable>
18: <class>stockMarket.StockInfo</class>

19: </serializable>

Clientes: Em sistemas de objetos distribuidos, clientes obtém referéncias para obje-
tos remotos e entdo chamam métodos dos mesmos. Em DAJ, um cliente deve utilizar
o método getReference para obter uma referéncia para um dos servidores configu-
rados no descritor de distribui¢cdo. A partir da referéncia obtida, o cliente pode chamar
métodos remotos desse servidor, passando parametros tanto por serializacdo quanto por
referéncia remota, sem precisar estar ciente do middleware que suporta esta comunicagao.
Exemplifica-se a seguir a obtencdo de referéncias para os servidores definidos no descritor
de distribuicao mostrado anteriormente.

1: StockMarket sl,s2;
2: sl=(StockMarket) ServiceLocator.getReference ("StockMarketA");

SBC 2008

59

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho

Q'I.I:' CTD - Concurso de Teses e Dissertagdes Belém do Pard, PA
3: s2=(StockMarket) Servicelocator.getReference ("StockMarketB");
4: e
5: StockInfo info;
6: info= new StockInfo ("petr3", 124.60, "10/04/2006 18:21");
7: sl.update(info);

[0}

9: StockListener listener= new StockListenerImpl () ;
10: sl.subscribe ("valeb", listener);
11: s2.subscribe ("petr4", listener);

Nas linhas de 1 a 3, por meio do método getReference, este cliente obtém
referéncias para os servidores de nome StockMarketA e StockMarketB, definidos
no descritor de distribui¢cao mostrado. Em seguida, o cliente chama o método update do
primeiro servidor passando um objeto do tipo StockInfo por valor (linhas 5 a 7). Por
fim, o cliente manifesta seu interesse em receber notificacdes sobre alteragdes nos precos
de duas acOes (linhas 9 a 11). Veja que em ambas chamadas do método subscribe, o
cliente informa o mesmo objeto do tipo StockListener. Este objeto, passado sem-
pre por referéncia remota, receberd notificagcdes do primeiro servidor via Java IDL e do
segundo servidor via Java RML.

Servidores: DAJ gera uma classe de ativag@o para cada servidor configurado no descritor
de distribuicao, a qual possui um método main contendo codigo para instanciar, ativar e
registrar o respectivo objeto remoto.

3. Arquitetura Interna

Descreve-se resumidamente nesta se¢ao a arquitetura interna de DAJ. Basicamente, o sis-
tema se encarrega de gerar interfaces remotas, transformar classes de negdcio em classes
remotas, obter referéncias para objetos remotos, ativar servidores e tratar excegdes ativa-
das remotamente.

Interfaces Remotas: Interfaces remotas sao interfaces com cédigo de distribui¢ao entre-
lacado. Essas interfaces sdo automaticamente geradas por DAJ a partir das informagdes
contidas nos descritores de distribui¢do. Tanto em Java RMI quanto em Java IDL, as inter-
faces geradas sdo adaptadas segundo as especificidades destas plataformas de middleware
e de acordo com o cendrio de implantacdo configurado nos descritores de distribuicao.

Classes Remotas: Uma classe remota € aquela resultante da introdu¢do em uma classe
de negdcio de codigo de distribui¢io requerido por uma determinada plataforma de mid-
dleware. Em DAJ existem dois tipos de classes remotas:

e Classes remotas usadas para instanciacdo de servidores: Como qualquer classe
remota, estas classes devem implementar uma interface remota gerada por DAJ.
Além disso, se houver necessidade de converter parametros de tipos de negdécio
em tipos remotos, essa conversao ¢ automaticamente realizada antes da chamada
efetiva do método remoto, por meio de aspectos.

e Classes remotas usadas para instanciacdo de objetos remotos: Nesse caso, sao
realizadas as mesmas adaptacdes aplicadas em classes usadas para instanciagao de
servidores. Além disso, introduz-se na classe um método responsavel por realizar
a ativacao de seus objetos, a fim de que eles possam receber chamadas remotas.

SBC 2008

60

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho
Q'I.I:' CTD - Concurso de Teses e Dissertagdes Belém do Pard, PA

Obtencao de Referéncias Remotas: Em DAJ, clientes conseguem referéncias para ser-
vidores remotos chamando o método getReference. Devido a incompatibilidades de
tipo entre a interface remota e a interface de negocio, o método get Re ference retorna
um proxy que encapsula uma referéncia para o objeto remoto. Este proxy possui duas
fungdes: tratar excegdes remotas lancadas pela plataforma de middleware em caso de
falhas de comunicagdo e ativar o objeto remoto, quando o mesmo € utilizado como argu-
mento de uma chamada remota de método, cuja semantica seja por referéncia remota.

Tratamento de Excecoes: Plataformas de middleware sao responsdveis por transmitir
excecOes ativadas no espago de enderecamento do servidor para o espaco de endereca-
mento do cliente. Em Java IDL, um aspecto captura a ocorréncia de uma excec¢do e
realiza as transformacdes necessarias para que esta exce¢do seja enviada para o espago de
enderecamento do cliente. Ja em Java RMI, excecdes de negdcio ativadas por métodos
remotos sao simplesmente propagadas para o espaco de enderecamento do cliente, usando
o mecanismo de serializac¢do nativo de Java.

4. Estudos de Casos

DAJ foi utilizado para modularizar cédigo de distribui¢do presente em trés aplicacoes:

e HealthWatcher: um sistema para gerenciamento de reclamacdes realizadas por ci-
daddos sobre as condi¢Oes sanitdrias de estabelecimentos comerciais da area de
alimentacdo. Uma primeira experi€ncia usando Aspect] para modularizar c6digo
de distribuicao Java RMI presente nesse sistema foi relatada em [7]. Essa ex-
periéncia foi repetida nesta dissertacdo, porém usando DAJ.

e Network Pricing System (NPS): um sistema financeiro para controle de a¢des ne-
gociadas em uma bolsa de valores [4]. Como NPS foi originalmente implemen-
tado usando Java IDL, sua inclusdo como um dos sistemas avaliados na dissertacao
teve como objetivo analisar a aplicabilidade de DAJ em sistemas desenvolvidos
originalmente nesta plataforma de middleware.

e Library: um sistema Java RMI para controle de uma biblioteca. Esse sistema foi
anteriormente usado para avaliar um framework para recuperacao de diagramas de
seqiiéncia UML a partir do cédigo fonte de sistemas Java [1].

Inicialmente, o cédigo de distribuicao espalhado e entrelacado pelas classes de
negdcio destes trés sistemas foi integralmente removido. Em seguida, foram definidos
descritores de distribui¢do para os mesmos. A ferramenta de geracdo de codigo de DAJ
foi entdo usada para gerar codigo de distribuicdo para essas aplicagdes, de acordo com
as especificacdes dos descritores de distribui¢ao. Como resultado, DAJ foi capaz de mo-
dularizar o cédigo de distribui¢do entrelacado ao c6digo de negdcio destes trés sistemas.
Também foi possivel disponibilizar novas versodes destes sistemas usando uma plataforma
de middleware diferente daquela na qual o sistema foi originalmente implementado.

A Tabela 1 apresenta o nimero de linhas de c6digo das versdes original e refa-
torada dos sistemas avaliados. Como pode ser observado, o nimero de linhas da versao
refatorada do sistema HealthWatcher foi reduzido em cerca de 11%. O niimero de linhas
de cddigo do sistema NPS foi reduzido em 75%, ja que sua versdo original utiliza di-
versas classes geradas pela plataforma Java IDL. J4 o nucleo do sistema Library sofreu

SBC 2008 61

i :I.' Anais do XXVIII Congresso da SBC 12218 de julho
Q.I.I} CTD - Concurso de Teses e Dissertagdes Belém do Pard, PA

um aumento minimo. O motivo é que classes da API de Java utilizadas no sistema como
parametro ou retorno de métodos remotos tiveram que ser reimplementadas, ja que as
mesmas nao sao permitidas na interface remota de sistemas Java IDL (pois sendo uma
implementacdo de CORBA, Java IDL tem como objetivo prover independéncia de lin-
guagem de programacao).

| HealthWatcher | NPS | Library |

Versao Original 5129 4417 4997
Versao DAJ 4566 (-10.98%) | 1104 (-75.01%) | 5011 (+0.28%)

Tabela 1. LOC das versées original e baseada em DAJ dos sistemas avaliados

5. Avaliacao

Com base na experi€ncia adquirida por meio dos estudos de caso realizados, apresenta-
se a seguir uma avaliacdo do projeto de DAJ, de acordo com os seguintes critérios:
modularizacdo, usabilidade e flexibilidade, desempenho e portabilidade. Discutem-se
também tecnologias alternativas que poderiam ter sido empregadas no projeto do sistema.

Modularizacao: Usando DAJ foi possivel sintetizar aspectos e classes que modulariza-
ram o requisito de distribuicdo nos trés sistemas avaliados. Como resultado, o nicleo
de tais sistemas tornou-se independente de qualquer cédigo de distribui¢do e, portanto,
mais simples de entender, testar e evoluir. Particularmente, testes puderam ser realizados
sem considerar aspectos de distribuicdo, o que é uma caracteristica relevante no caso de
desenvolvimento orientado por testes.

Usabilidade e Flexibilidade: O uso de descritores de distribuic@o tornou bastante flexivel
a configuracdo do cendrio de distribuicdo dos sistemas avaliados. Através desses des-
critores foi possivel, por exemplo, modificar parametros de configuracio, tais como a
plataforma de middleware subjacente, a localizacdo do servidor de nomes, 0s nomes
dos objetos remotos etc. Além disso, também foi possivel reconfigurar a arquitetura de
distribuicdo dos sistemas avaliados (por exemplo, adicionando novos servidores).

Desempenho: Para avaliar o desempenho de DAJ, foi medido o tempo para executar
métodos remotos do sistema de controle de acdes descrito na Secdo 2. Foram executadas
vinte séries de cada método remoto deste sistema. Em cada série foram realizadas dez mil
chamadas remotas. Entdo, para cada método, foi calculado o tempo médio de execugao
das vinte séries. Além disso, foram avaliadas quatro versdes do sistema: duas baseadas
em Java RMI (com e sem o uso de DAJ) e duas baseadas em Java IDL (com e sem o
uso de DAJ). Os resultados, apresentados na Tabela 2, demonstram que DAJ ndo impacta
significativamente o desempenho de uma aplicacdo distribuida, em relacdo a sua versao
original, orientada por objetos

Portabilidade: Utilizando DAJ, € possivel gerar versdes de uma aplicagdo distribuida
para duas plataformas de middleware (Java RMI e Java IDL). Permite-se ainda que um
determinado objeto receba chamadas remotas utilizando simultaneamente estas duas pla-
taformas de middleware (conforme ilustrado no exemplo da Secdo 2). A definicdo da
plataforma de middleware a ser utilizada requer somente a configuracdo adequada do
descritor de distribuicao.

SBC 2008

62

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho

PA00}s] cTD - Concurso de Teses e Dissertagoes Belém do Pard, PA
. RMI IDL
Método remoto DAJ T 00 | % DAJ T 00 %
update 2767 | 2698 | 2.56 || 6473 | 6450 | 0.36
subscribe 5901 | 5803 | 1.69 | 13809 | 13634 | 1.28
unsubscribe 3010 | 2989 | 0.70 || 6428 | 6289 | 2.21

getStock retornando StockInfo | 2631 | 2648 | -0.64 | 6326 | 6332 | -0.09
get Stock retornando uma excecdo || 5089 | 5045 | 0.87 || 6401 | 5893 | 8.62

Tabela 2. Tempo médio (em ms) para executar dez mil chamadas de métodos
remotos.

Tecnologias Alternativas: Pelo menos duas outras tecnologias podem ser usadas para
automatizar a geracao de codigo de distribuicdo requerido por plataformas de middleware:

e Ferramentas para manipulacdo de bytecodes: No entanto, linguagens orientadas
por aspectos, como Aspect], oferecem abstragdes de mais alto nivel para realizar
estas mesmas manipulacdes. Estas abstracdes contribuiram para simplificar e tor-
nar mais produtivo o projeto e a implementacao de DAJ.

e Geracdo de esqueletos de classes: Esta abordagem possui duas deficiéncias: (i)
o codigo requerido pelo middleware, apesar de ndo ser implementado manual-
mente, continua invasivo e espalhado pelo sistema, prejudicando seu entendi-
mento e evolucdo; (i) uma vez implementado em uma determinada plataforma
de middleware, dificulta-se a migracdo de um sistema distribuido para uma outra
plataforma, ja que seu codigo de negdcio seria inserido diretamente no esqueleto
das classes geradas para o primeiro middleware escolhido.

6. Trabalhos Relacionados

Soares, Borba e Laureano descrevem uma experiéncia de uso de Aspect) para criar uma
versdo orientada por aspectos do sistema HealthWatcher [7]. Em relacdo a esse tra-
balho, DAJ apresenta pelo menos trés contribuicdes: DAJ oferece uma solugdo para
modularizacdo de cddigo de distribuicao requerido tanto por Java RMI como por Java
IDL; DAJ permite passagem de parametros por serializacdo e por referéncia remota e
DAJ permite a geracdo de aspectos de distribui¢do independentemente da arquitetura de
software adotada no projeto da aplicacdo alvo.

Ceccato e Tonella descrevem um framework orientado por aspectos para transfor-
mar uma aplicacdo centralizada em uma aplicacdo distribuida [2]. De forma semelhante
ao que ocorre com DAJ, o nicleo da aplicacao permanece livre do requisito de distribui¢ao
e todos 0s aspectos necessdrios para introdugdo desse requisito sao gerados automatica-
mente. Entretanto, a solugdo proposta € restrita a Java RMI. Além disso, objetos podem
ser passados como pardmetros de métodos remotos apenas com semantica de referéncia
remota.

Ghosh e colegas descrevem uma metodologia para implementar interesses de nego-
cio e interesses de distribuicdo providos por plataformas de middleware [3]. De forma se-
melhante a DAJ, eles propdem o uso de aspectos para separar os interesses de negocio das
funcionalidades especificas de plataformas de middleware. Além disso, eles descrevem

SBC 2008 63

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho
Q'I.I:' CTD - Concurso de Teses e Dissertagdes Belém do Pard, PA

uma metodologia orientada por modelos para desenvolvimento de sistemas distribuidos.
Assim, consideramos que DAJ é um sistema que implementa e coloca em pratica varios
dos principios e conceitos propostos por Ghosh e colegas.

7. Conclusoes

DAJ proporciona pelo menos dois beneficios a um engenheiro de sistemas distribuidos.
Primeiro, e mais importante, desenvolvedores podem se concentrar exclusivamente no
desenvolvimento do cddigo funcional de sua aplicacdo, ja que DAJ produzird automa-
ticamente aspectos e classes que modularizam o cddigo de distribui¢do requerido pela
aplicacdo. Segundo, este desenvolvedor ndo precisa dominar detalhes e convengdes de
codificacdo requeridos por plataformas de middleware.

Do ponto de vista cientifico, o trabalho realizado apresenta as seguintes contri-
buigdes: a solugdo proposta inclui uma ferramenta para geracdo automdtica de aspectos
de distribui¢do; a solucdo proposta cobre duas plataformas de middleware; a solugao
proposta permite passagem de pardmetros por serializacdo e por referéncia remota; a
solucdo proposta € flexivel para atender diversas arquiteturas e configuragdes de sistemas
distribuidos; a solu¢@o proposta foi validada por meio de trés estudos de caso de média
complexidade.

Os primeiros resultados do trabalho foram apresentados em um artigo no XX
Simpdsio Brasileiro de Engenharia de Software, o qual foi classificado como quinto me-
lhor artigo do evento [5]. Resultados consolidados do trabalho, incluindo os trés estudos
de caso realizados, foram publicados em um artigo no Journal of the Brazilian Computer
Society [6].

Referéncias

[1] Lionel C. Briand, Yvan Labiche, and Johanne Leduc. Toward the reverse engineering of UML
sequence diagrams for distributed Java software. IEEE Transactions on Software Engineering,
32(9):642-663, 2006.

[2] Mariano Ceccato and Paolo Tonella. Adding distribution to existing applications by means of
aspect oriented programming. In 4th IEEE International Workshop on Source Code Analysis
and Manipulation, pages 107-116. IEEE Computer Society, 2004.

[3] S. Ghosh, R. B. France, A. Bare, B. Kamalalar, R. P. Shankar, D. M. Simmonds, G. Tandon,
P. Vile, and S. Yin. A middleware transparent approach to developing distributed applications.
Software Practice and Experience, 35(12):1131-1154, October 2005.

[4] Geoffrey Lewis, Steven Barber, and Ellen Siegel. Programming with Java IDL. John Wiley &
Sons, 1997.

[5] Cristiano Amaral Maffort and Marco Tulio Oliveira Valente. Aspectos para construcdo de
aplicacdes distribuidas. In XX Simposio Brasileiro de Engenharia de Software, October 2006.

[6] Cristiano Amaral Maffort and Marco Tulio Oliveira Valente. Modularizing communication mid-
dleware concerns using aspects. Journal of the Brazilian Computer Society, 13(4):81-95,
2007.

[7] Sergio Soares, Paulo Borba, and Eduardo Laureano. Distribution and persistence as aspects. Soft-
ware Practice and Experience, 36(7):711-759, 2006.

SBC 2008 64

