
Aspectos para Construção de Aplicações Distribuı́das
Cristiano Amaral Maffort

Orientador: Marco Túlio de Oliveira Valente

Instituto de Informática
Pontifı́cia Universidade Católica de Minas Gerais

maffort@varginha.cefetmg.br, mtov@pucminas.br

Resumo. Neste resumo estendido, são apresentados os principais resultados de
uma dissertação de mestrado na qual foi projetado, implementado e validado
um sistema de apoio à programação distribuı́da que permite isolar a funciona-
lidade de distribuição da lógica de negócio de aplicações implementadas em
Java. Para alcançar esse objetivo, o sistema proposto se beneficiou da sinergia
gerada pela combinação de três tecnologias: aspectos, linguagens de domı́nio
especı́fico e geração e transformação de código. A expressividade e flexibilidade
do sistema projetado na dissertação foi comprovada por meio de sua utilização
em três sistemas distribuı́dos de médio porte.

1. Introdução
Plataformas de middleware são empregadas por engenheiros de software para simplificar
e tornar mais produtivo o desenvolvimento de aplicações distribuı́das. Basicamente, es-
tes sistemas encapsulam diversos detalhes inerentes a programação distribuı́da, incluindo
protocolos de comunicação, heterogeneidade de arquiteturas, serialização de dados, sin-
cronização, localização de serviços etc. No entanto, sistemas de middleware são, em ge-
ral, invasivos, pervasivos e transversais ao código de negócio de aplicações distribuı́das [7,
3, 2]. Como conseqüência, aplicações distribuı́das implementadas com o apoio de tais
sistemas não apresentam graus esperados de reusabilidade, separação de interesses e mo-
dularidade, o que dificulta o entendimento, manutenção e evolução das mesmas.

Neste resumo estendido, descrevem-se os principais resultados de uma dissertação
de mestrado na qual foi projetado, implementado e validado um sistema de apoio à
programação distribuı́da, chamado DAJ (Distribution Aspects in Java) [5, 6]1. DAJ per-
mite isolar a funcionalidade de distribuição da lógica de negócio de aplicações imple-
mentadas em Java. Para alcançar esse objetivo, o projeto de DAJ se beneficiou da sinergia
gerada pela combinação de três tecnologias: aspectos, linguagens de domı́nio especı́fico
e geração e transformação de código. No sistema proposto, aspectos são usados para
encapsular diversos detalhes de programação requeridos por plataformas de middleware;
linguagens de domı́nio especı́fico são usadas para elevar o grau de abstração quando da
definição de parâmetros de distribuição de uma determinada aplicação. Por fim, DAJ
inclui uma ferramenta de geração de código, responsável por gerar aspectos que intro-
duzem não-invasivamente código de distribuição usualmente requerido por plataformas
de middleware. A versão atual do sistema gera aspectos para duas plataformas de mid-
dleware nativas de ambientes de desenvolvimento Java: Java RMI e Java IDL. Java RMI
é um middleware utilizado com freqüência por aplicações distribuı́das cujos módulos

1O texto completo da dissertação está disponı́vel em: www.inf.pucminas.br/prof/mtov/maffort.pdf.

SBC 2008 57

são integralmente implementados em Java. A plataforma Java IDL, por sua vez, é uma
implementação do padrão CORBA e, portanto, permite que aplicações distribuı́das imple-
mentadas em Java acessem sistemas desenvolvidos em outras linguagens de programação.

Este resumido estendido está estruturado conforme descrito a seguir. A Seção 2
descreve a interface de programação de DAJ. A Seção 3 apresenta uma visão geral da
arquitetura usada na implementação do sistema. A Seção 4 resume os estudos de casos
realizados. A Seção 5 avalia o projeto de DAJ; a Seção 6 compara DAJ com trabalhos
relacionados e a Seção 7 apresenta as conclusões.

2. Interface de Programação

Em aplicações distribuı́das implementadas com o apoio do sistema DAJ, classes de negó-
cio não precisam seguir quaisquer convenções de programação, isto é, não precisam es-
tender classes da API de uma determinada plataforma de middleware, não precisam im-
plementar interfaces ou métodos get e set, não precisam ativar ou tratar exceções re-
motas etc. Em vez disso, no sistema proposto, descritores de distribuição são usados para
descrever o papel desempenhado por tais classes em um sistema de objetos distribuı́dos
baseado em uma determinada tecnologia de middleware. A partir das informações con-
tidas em um descritor de distribuição, a ferramenta de geração de código integrante do
sistema DAJ se encarrega de gerar automaticamente aspectos e classes que modularizam
o código de distribuição requerido pela aplicação base. Os aspectos gerados por DAJ são
implementados em AspectJ.

A Figura 1 resume o processo de desenvolvimento de aplicações distribuı́das
usando DAJ. A fim de melhor descrever esse processo, são descritos a seguir os prin-
cipais componentes de uma aplicação distribuı́da construı́da com apoio de DAJ.

Figura 1. Desenvolvimento de aplicações distribuı́das usando DAJ

Descritores de Distribuição: Por meio de tais componentes, organizados na forma de
documentos XML, são configurados os objetos remotos que compõem a aplicação, ou
seja, os objetos que recebem chamadas remotas de métodos. Além disso, são definidos

SBC 2008 58

os objetos que, em chamadas remotas de métodos, são passados por serialização e por re-
ferência remota. Em DAJ, objetos remotos que são registrados em um servidor de nomes
são chamados de servidores, e são especificados por meio de um nodo server, no qual
definem-se um identificador para o servidor, o nome de sua interface, o nome da classe
que implementa essa interface, o protocolo de comunicação utilizado (Java RMI ou Java
IDL) e o nome e a porta do servidor de nomes onde o servidor será registrado. No caso
de tipos passados por referência remota (nodo remote), deve-se informar a interface e
a classe desse tipo. No caso de tipos passados por serialização (nodo serializable),
deve-se informar a classe desse tipo.

Mostra-se a seguir um exemplo de descritor de distribuição para um sistema sim-
ples de controle de ações. Por meio deste descritor, configura-se uma implantação do
sistema com dois servidores: o primeiro deles utilizará Java IDL para comunicação e
será registrado com o nome StockMarketA (linhas 1 a 6); o segundo utilizará Java
RMI para comunicação e será registrado com o nome StockMarketB (linhas 7 a 12).
Além disso, define-se que, em chamadas remotas de métodos desses servidores, objetos
do tipo StockListenerImpl serão passados por referência remota (linhas 13 a 16) e
que objetos do tipo StockInfo serão passados por serialização (linhas 17 a 19).

1: <server id="StockMarketA">
2: <interface>stockMarket.StockMarket</interface>
3: <class>stockMarket.StockMarketImpl</class>
4: <protocol>javaidl</protocol>
5: <nameserver>skank.pucminas.br</nameserver>
6: </server>
7: <server id="StockMarketB">
8: <interface>stockMarket.StockMarket</interface>
9: <class>stockMarket.StockMarketImpl</class>

10: <protocol>javarmi</protocol>
11: <nameserver>patofu.pucminas.br:1530</nameserver>
12: </server>
13: <remote>
14: <interface>stockMarket.StockListener</interface>
15: <class>stockMarket.StockListenerImpl</class>
16: </remote>
17: <serializable>
18: <class>stockMarket.StockInfo</class>
19: </serializable>

Clientes: Em sistemas de objetos distribuı́dos, clientes obtêm referências para obje-
tos remotos e então chamam métodos dos mesmos. Em DAJ, um cliente deve utilizar
o método getReference para obter uma referência para um dos servidores configu-
rados no descritor de distribuição. A partir da referência obtida, o cliente pode chamar
métodos remotos desse servidor, passando parâmetros tanto por serialização quanto por
referência remota, sem precisar estar ciente do middleware que suporta esta comunicação.
Exemplifica-se a seguir a obtenção de referências para os servidores definidos no descritor
de distribuição mostrado anteriormente.

1: StockMarket s1,s2;
2: s1=(StockMarket)ServiceLocator.getReference("StockMarketA");

SBC 2008 59

3: s2=(StockMarket)ServiceLocator.getReference("StockMarketB");
4:
5: StockInfo info;
6: info= new StockInfo("petr3", 124.60, "10/04/2006 18:21");
7: s1.update(info);
8:
9: StockListener listener= new StockListenerImpl();

10: s1.subscribe("vale5", listener);
11: s2.subscribe("petr4", listener);

Nas linhas de 1 a 3, por meio do método getReference, este cliente obtém
referências para os servidores de nome StockMarketA e StockMarketB, definidos
no descritor de distribuição mostrado. Em seguida, o cliente chama o método update do
primeiro servidor passando um objeto do tipo StockInfo por valor (linhas 5 a 7). Por
fim, o cliente manifesta seu interesse em receber notificações sobre alterações nos preços
de duas ações (linhas 9 a 11). Veja que em ambas chamadas do método subscribe, o
cliente informa o mesmo objeto do tipo StockListener. Este objeto, passado sem-
pre por referência remota, receberá notificações do primeiro servidor via Java IDL e do
segundo servidor via Java RMI.

Servidores: DAJ gera uma classe de ativação para cada servidor configurado no descritor
de distribuição, a qual possui um método main contendo código para instanciar, ativar e
registrar o respectivo objeto remoto.

3. Arquitetura Interna
Descreve-se resumidamente nesta seção a arquitetura interna de DAJ. Basicamente, o sis-
tema se encarrega de gerar interfaces remotas, transformar classes de negócio em classes
remotas, obter referências para objetos remotos, ativar servidores e tratar exceções ativa-
das remotamente.

Interfaces Remotas: Interfaces remotas são interfaces com código de distribuição entre-
laçado. Essas interfaces são automaticamente geradas por DAJ a partir das informações
contidas nos descritores de distribuição. Tanto em Java RMI quanto em Java IDL, as inter-
faces geradas são adaptadas segundo as especificidades destas plataformas de middleware
e de acordo com o cenário de implantação configurado nos descritores de distribuição.

Classes Remotas: Uma classe remota é aquela resultante da introdução em uma classe
de negócio de código de distribuição requerido por uma determinada plataforma de mid-
dleware. Em DAJ existem dois tipos de classes remotas:

• Classes remotas usadas para instanciação de servidores: Como qualquer classe
remota, estas classes devem implementar uma interface remota gerada por DAJ.
Além disso, se houver necessidade de converter parâmetros de tipos de negócio
em tipos remotos, essa conversão é automaticamente realizada antes da chamada
efetiva do método remoto, por meio de aspectos.

• Classes remotas usadas para instanciação de objetos remotos: Nesse caso, são
realizadas as mesmas adaptações aplicadas em classes usadas para instanciação de
servidores. Além disso, introduz-se na classe um método responsável por realizar
a ativação de seus objetos, a fim de que eles possam receber chamadas remotas.

SBC 2008 60

Obtenção de Referências Remotas: Em DAJ, clientes conseguem referências para ser-
vidores remotos chamando o método getReference. Devido a incompatibilidades de
tipo entre a interface remota e a interface de negócio, o método getReference retorna
um proxy que encapsula uma referência para o objeto remoto. Este proxy possui duas
funções: tratar exceções remotas lançadas pela plataforma de middleware em caso de
falhas de comunicação e ativar o objeto remoto, quando o mesmo é utilizado como argu-
mento de uma chamada remota de método, cuja semântica seja por referência remota.

Tratamento de Exceções: Plataformas de middleware são responsáveis por transmitir
exceções ativadas no espaço de endereçamento do servidor para o espaço de endereça-
mento do cliente. Em Java IDL, um aspecto captura a ocorrência de uma exceção e
realiza as transformações necessárias para que esta exceção seja enviada para o espaço de
endereçamento do cliente. Já em Java RMI, exceções de negócio ativadas por métodos
remotos são simplesmente propagadas para o espaço de endereçamento do cliente, usando
o mecanismo de serialização nativo de Java.

4. Estudos de Casos
DAJ foi utilizado para modularizar código de distribuição presente em três aplicações:

• HealthWatcher: um sistema para gerenciamento de reclamações realizadas por ci-
dadãos sobre as condições sanitárias de estabelecimentos comerciais da área de
alimentação. Uma primeira experiência usando AspectJ para modularizar código
de distribuição Java RMI presente nesse sistema foi relatada em [7]. Essa ex-
periência foi repetida nesta dissertação, porém usando DAJ.

• Network Pricing System (NPS): um sistema financeiro para controle de ações ne-
gociadas em uma bolsa de valores [4]. Como NPS foi originalmente implemen-
tado usando Java IDL, sua inclusão como um dos sistemas avaliados na dissertação
teve como objetivo analisar a aplicabilidade de DAJ em sistemas desenvolvidos
originalmente nesta plataforma de middleware.

• Library: um sistema Java RMI para controle de uma biblioteca. Esse sistema foi
anteriormente usado para avaliar um framework para recuperação de diagramas de
seqüência UML a partir do código fonte de sistemas Java [1].

Inicialmente, o código de distribuição espalhado e entrelaçado pelas classes de
negócio destes três sistemas foi integralmente removido. Em seguida, foram definidos
descritores de distribuição para os mesmos. A ferramenta de geração de código de DAJ
foi então usada para gerar código de distribuição para essas aplicações, de acordo com
as especificações dos descritores de distribuição. Como resultado, DAJ foi capaz de mo-
dularizar o código de distribuição entrelaçado ao código de negócio destes três sistemas.
Também foi possı́vel disponibilizar novas versões destes sistemas usando uma plataforma
de middleware diferente daquela na qual o sistema foi originalmente implementado.

A Tabela 1 apresenta o número de linhas de código das versões original e refa-
torada dos sistemas avaliados. Como pode ser observado, o número de linhas da versão
refatorada do sistema HealthWatcher foi reduzido em cerca de 11%. O número de linhas
de código do sistema NPS foi reduzido em 75%, já que sua versão original utiliza di-
versas classes geradas pela plataforma Java IDL. Já o núcleo do sistema Library sofreu

SBC 2008 61

um aumento mı́nimo. O motivo é que classes da API de Java utilizadas no sistema como
parâmetro ou retorno de métodos remotos tiveram que ser reimplementadas, já que as
mesmas não são permitidas na interface remota de sistemas Java IDL (pois sendo uma
implementação de CORBA, Java IDL tem como objetivo prover independência de lin-
guagem de programação).

HealthWatcher NPS Library
Versão Original 5129 4417 4997
Versão DAJ 4566 (-10.98%) 1104 (-75.01%) 5011 (+0.28%)

Tabela 1. LOC das versões original e baseada em DAJ dos sistemas avaliados

5. Avaliação

Com base na experiência adquirida por meio dos estudos de caso realizados, apresenta-
se a seguir uma avaliação do projeto de DAJ, de acordo com os seguintes critérios:
modularização, usabilidade e flexibilidade, desempenho e portabilidade. Discutem-se
também tecnologias alternativas que poderiam ter sido empregadas no projeto do sistema.

Modularização: Usando DAJ foi possı́vel sintetizar aspectos e classes que modulariza-
ram o requisito de distribuição nos três sistemas avaliados. Como resultado, o núcleo
de tais sistemas tornou-se independente de qualquer código de distribuição e, portanto,
mais simples de entender, testar e evoluir. Particularmente, testes puderam ser realizados
sem considerar aspectos de distribuição, o que é uma caracterı́stica relevante no caso de
desenvolvimento orientado por testes.

Usabilidade e Flexibilidade: O uso de descritores de distribuição tornou bastante flexı́vel
a configuração do cenário de distribuição dos sistemas avaliados. Através desses des-
critores foi possı́vel, por exemplo, modificar parâmetros de configuração, tais como a
plataforma de middleware subjacente, a localização do servidor de nomes, os nomes
dos objetos remotos etc. Além disso, também foi possı́vel reconfigurar a arquitetura de
distribuição dos sistemas avaliados (por exemplo, adicionando novos servidores).

Desempenho: Para avaliar o desempenho de DAJ, foi medido o tempo para executar
métodos remotos do sistema de controle de ações descrito na Seção 2. Foram executadas
vinte séries de cada método remoto deste sistema. Em cada série foram realizadas dez mil
chamadas remotas. Então, para cada método, foi calculado o tempo médio de execução
das vinte séries. Além disso, foram avaliadas quatro versões do sistema: duas baseadas
em Java RMI (com e sem o uso de DAJ) e duas baseadas em Java IDL (com e sem o
uso de DAJ). Os resultados, apresentados na Tabela 2, demonstram que DAJ não impacta
significativamente o desempenho de uma aplicação distribuı́da, em relação à sua versão
original, orientada por objetos

Portabilidade: Utilizando DAJ, é possı́vel gerar versões de uma aplicação distribuı́da
para duas plataformas de middleware (Java RMI e Java IDL). Permite-se ainda que um
determinado objeto receba chamadas remotas utilizando simultaneamente estas duas pla-
taformas de middleware (conforme ilustrado no exemplo da Seção 2). A definição da
plataforma de middleware a ser utilizada requer somente a configuração adequada do
descritor de distribuição.

SBC 2008 62

Método remoto RMI IDL
DAJ OO % DAJ OO %

update 2767 2698 2.56 6473 6450 0.36
subscribe 5901 5803 1.69 13809 13634 1.28
unsubscribe 3010 2989 0.70 6428 6289 2.21
getStock retornando StockInfo 2631 2648 -0.64 6326 6332 -0.09
getStock retornando uma exceção 5089 5045 0.87 6401 5893 8.62

Tabela 2. Tempo médio (em ms) para executar dez mil chamadas de métodos
remotos.

Tecnologias Alternativas: Pelo menos duas outras tecnologias podem ser usadas para
automatizar a geração de código de distribuição requerido por plataformas de middleware:

• Ferramentas para manipulação de bytecodes: No entanto, linguagens orientadas
por aspectos, como AspectJ, oferecem abstrações de mais alto nı́vel para realizar
estas mesmas manipulações. Estas abstrações contribuı́ram para simplificar e tor-
nar mais produtivo o projeto e a implementação de DAJ.

• Geração de esqueletos de classes: Esta abordagem possui duas deficiências: (i)
o código requerido pelo middleware, apesar de não ser implementado manual-
mente, continua invasivo e espalhado pelo sistema, prejudicando seu entendi-
mento e evolução; (ii) uma vez implementado em uma determinada plataforma
de middleware, dificulta-se a migração de um sistema distribuı́do para uma outra
plataforma, já que seu código de negócio seria inserido diretamente no esqueleto
das classes geradas para o primeiro middleware escolhido.

6. Trabalhos Relacionados

Soares, Borba e Laureano descrevem uma experiência de uso de AspectJ para criar uma
versão orientada por aspectos do sistema HealthWatcher [7]. Em relação a esse tra-
balho, DAJ apresenta pelo menos três contribuições: DAJ oferece uma solução para
modularização de código de distribuição requerido tanto por Java RMI como por Java
IDL; DAJ permite passagem de parâmetros por serialização e por referência remota e
DAJ permite a geração de aspectos de distribuição independentemente da arquitetura de
software adotada no projeto da aplicação alvo.

Ceccato e Tonella descrevem um framework orientado por aspectos para transfor-
mar uma aplicação centralizada em uma aplicação distribuı́da [2]. De forma semelhante
ao que ocorre com DAJ, o núcleo da aplicação permanece livre do requisito de distribuição
e todos os aspectos necessários para introdução desse requisito são gerados automatica-
mente. Entretanto, a solução proposta é restrita a Java RMI. Além disso, objetos podem
ser passados como parâmetros de métodos remotos apenas com semântica de referência
remota.

Ghosh e colegas descrevem uma metodologia para implementar interesses de negó-
cio e interesses de distribuição providos por plataformas de middleware [3]. De forma se-
melhante a DAJ, eles propõem o uso de aspectos para separar os interesses de negócio das
funcionalidades especı́ficas de plataformas de middleware. Além disso, eles descrevem

SBC 2008 63

uma metodologia orientada por modelos para desenvolvimento de sistemas distribuı́dos.
Assim, consideramos que DAJ é um sistema que implementa e coloca em prática vários
dos princı́pios e conceitos propostos por Ghosh e colegas.

7. Conclusões
DAJ proporciona pelo menos dois benefı́cios a um engenheiro de sistemas distribuı́dos.
Primeiro, e mais importante, desenvolvedores podem se concentrar exclusivamente no
desenvolvimento do código funcional de sua aplicação, já que DAJ produzirá automa-
ticamente aspectos e classes que modularizam o código de distribuição requerido pela
aplicação. Segundo, este desenvolvedor não precisa dominar detalhes e convenções de
codificação requeridos por plataformas de middleware.

Do ponto de vista cientı́fico, o trabalho realizado apresenta as seguintes contri-
buições: a solução proposta inclui uma ferramenta para geração automática de aspectos
de distribuição; a solução proposta cobre duas plataformas de middleware; a solução
proposta permite passagem de parâmetros por serialização e por referência remota; a
solução proposta é flexı́vel para atender diversas arquiteturas e configurações de sistemas
distribuı́dos; a solução proposta foi validada por meio de três estudos de caso de média
complexidade.

Os primeiros resultados do trabalho foram apresentados em um artigo no XX
Simpósio Brasileiro de Engenharia de Software, o qual foi classificado como quinto me-
lhor artigo do evento [5]. Resultados consolidados do trabalho, incluindo os três estudos
de caso realizados, foram publicados em um artigo no Journal of the Brazilian Computer
Society [6].

Referências
[1] Lionel C. Briand, Yvan Labiche, and Johanne Leduc. Toward the reverse engineering of UML

sequence diagrams for distributed Java software. IEEE Transactions on Software Engineering,
32(9):642–663, 2006.

[2] Mariano Ceccato and Paolo Tonella. Adding distribution to existing applications by means of
aspect oriented programming. In 4th IEEE International Workshop on Source Code Analysis
and Manipulation, pages 107–116. IEEE Computer Society, 2004.

[3] S. Ghosh, R. B. France, A. Bare, B. Kamalalar, R. P. Shankar, D. M. Simmonds, G. Tandon,
P. Vile, and S. Yin. A middleware transparent approach to developing distributed applications.
Software Practice and Experience, 35(12):1131–1154, October 2005.

[4] Geoffrey Lewis, Steven Barber, and Ellen Siegel. Programming with Java IDL. John Wiley &
Sons, 1997.

[5] Cristiano Amaral Maffort and Marco Túlio Oliveira Valente. Aspectos para construção de
aplicações distribuı́das. In XX Simpósio Brasileiro de Engenharia de Software, October 2006.

[6] Cristiano Amaral Maffort and Marco Túlio Oliveira Valente. Modularizing communication mid-
dleware concerns using aspects. Journal of the Brazilian Computer Society, 13(4):81–95,
2007.

[7] Sergio Soares, Paulo Borba, and Eduardo Laureano. Distribution and persistence as aspects. Soft-
ware Practice and Experience, 36(7):711–759, 2006.

SBC 2008 64

