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Abstract. Recently, Barak et al. (2004) constructed explicit deterministic ex-
tractors and dispersers (these are polynomial-time computable functions) with
much better parameters than what was known before. We introduce the con-
cepts involved in such a construction and mention some of its applications; in
particular, we describe how it is possible to obtain much better bounds for the
bipartite Ramsey problem (a very hard problem) using the machinery developed
in that paper.
We also present some original results that improve on these constructions. They
are inspired by the work of Anup Rao (2005) and uses the recent breakthrough
of Jean Bourgain (2005) in obtaining 2-source extractors that break the “1/2-
barrier”.

1. Introduction
This dissertation studies in depth many results in the area of randomness extraction. In
order to understand this area, some concepts have to be introduced first.

A randomized algorithm can be viewed as an algorithm receiving two inputs. The
first is an encoding of an instance and the second is a sequence of random bits. The algo-
rithm then uses these random bits to make random decisions. Most analysis of randomized
algorithms assume that the sequence of random bits it receives is perfectly uniform. In the
application of such algorithms, however, these bits are generated by unknown probability
distributions which may be far from uniform.

To make things even worse, it is impossible to check if a distribution on a large
number of bits is close to uniform. In the randomness extraction setting, only a mild
assumption over the distribution, which we call source, is made.
Definition 1. Given a distribution D over X = {0, 1}n, the min-entropy of D is given by

H∞(D) = − log
(
max
a∈X
D(a)

)
.

If X is a random variable with distribution D we may write H∞(X) = H∞(D). A
k-source is a source with min-entropy at least k.

Note that the min-entropy of a source basically measures the weight of the most
likely element in the distribution. Anticipating the definitions that follow, any randomized
algorithm A that uses d� n random bits is incapable to convert a distributionD having a
heavy weight element into a uniform distribution with many bits. Aiming for a perfectly
uniform distribution in the output of A is not realistic. Therefore, one needs a notion of
distance between distribution so that it is possible to compare the output of A against the
uniform distribution.
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Definition 2. The statistical difference between two sources D1,D2 ⊆ X , is defined as1

1

2
‖D1 −D2‖1 =

1

2

∑
a∈Λ

∣∣D1(a)−D2(a)
∣∣.

We say thatD1 is α-close toD2 if the statistical distance betweenD1 andD2 is at most α.

We can now state formally the definition of extractors. Let us denote by Um the
uniform distribution over {0, 1}m.
Definition 3 (Seeded extractor). A function E : {0, 1}n × {0, 1}d → {0, 1}m is a seeded
extractor for min-entropy k and error ε > 0 if, for any k-sourceX , we have thatE(X,Ud)—
the distribution obtained by computing E(x, s) with x ∈R X and an independent uniform
seed s ∈R Ud—is ε-close to Um.
Definition 4 (Multiple sources extractor). An l-source extractor for min-entropy k and
error ε is a function

E : {0, 1}n×l → {0, 1}m

such that if X1, . . . , Xl are independent k-sources, then E(X1, . . . , Xl) is ε-close to Um.

One can generalize the above definition to allow the lengths and min-entropies of
the sources to be different.

2. Additive combinatorics and extractors
The field of randomness extraction experienced a revolution when breakthroughs in addi-
tive combinatorics provided the tools for powerful extractors which were not obtained
constructively before (although probabilistically the existence of optimal extractors is
known for a long time). The dissertation describes how these results in additive com-
binatorics can lead to such new construction in a fairly complete way, even going into
proofs of several of them.

In turn, these new extractors, and other different constructions discussed in the
thesis, can be used to explicitly construct Ramsey bipartite graphs which greatly improve
the previous bound (which was almost twenty five years old).

The connection between additive combinatorics and randomness extractor is some-
what technical and a large chapter (Chapter 4) of the dissertation is devoted to it. Here,
we shall present a high level idea of this connection, trying to keep things as simple and
non-technical as possible.

The sum-product estimate over finite fields is the statement that for any givenA ⊆
F, with |A| < |F|.99, where F is a suitable field (such as F = Z/(p) for a prime p), for
some ε > 0,

max{|A+ A|, |A · A|} ≥ |A|1+ε, (1)

where A ∗ A = {x ∗ y : x, y ∈ A}.
Barak, Impagliazzo and Wigderson noticed that they could use the sum-product

estimate to show that f(x, y, x) = x · y + z is a function such that if X , Y , Z are
independent k-sources then f(X, Y, Z) has min-entropy at least min{0.99, (1 + ε′)k}.
Iterating such a construction, they were able to obtain an extractor such that for any δ > 0,

1The 1/2 factor is just to keep the statistical distance in the range [0, 1].
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there exists a constant l = l(δ) and an explicit l-source extractor E : {0, 1}n×l → {0, 1}n
for min-entropy δn and error 2−Ω(n).

In order to prove that f has such a property, they had to deal with a several
problems. The sum-product estimate deals with sets and not general distributions. In
some sense, this is not a big problem, since one can decompose a distribution with min-
entropy k into several distributions which are uniform over sets of cardinality 2k. More-
over, the same set is used in the bound (1), while we do not make the assumption that X ,
Y and Z are identically distributed. Luckily, the celebrated Plunnecke–Rusza inequality
shows that if a set A has |A+A| large then |A+B| is also large for all B with |B| = |A|.

Most importantly, even if we assume that X , Y and Z are independent and uni-
formly distributed over A ⊆ F, there is no obvious connection between a set size estimate
like (1) and the min-entropy of f(X, Y, Z). That is where a recent result of Gowers de-
buts. This lemma of Gowers allows one to pass from a “density statement” to a “set size
statement”. Very roughly, the strategy is as follows: if f(X, Y, Z) is not ε-close to uni-
form, then there is a dense hypergraph H consisting of many triples (x, y, z) ∈ F3 such
that |f(H)| is small. From H being dense one can obtain a subset A′ ⊆ A that violates
the sum-product estimate, which is a contradiction.

In a recent paper accepted to LATIN–2008, I propose a more direct approach to the
general strategy above which dispenses much of the machinery of additive combinatorics
and instead focus on a proof entirely based on a density to set size argument over hyper-
graphs. Although several ideas behind this work were not mature enough at the time of
the writing of the dissertation, they certainly were sparkled by the research carried during
the preparation of my Master’s Thesis.

3. Ramsey constructions
The bipartite Ramsey problem can be described as follows. Obtain an N by N bipartite
graph with no K by K induced subgraph which is either empty or complete.

Suppose that N = 2n and K = 2k, and let E be a two-source extractor for
sources of n bits with min-entropy k, say E : {0, 1}n×2 → {0, 1}. Then, for any pair of
sets X, Y ⊆ {0, 1}n with |X|, |Y | ≥ K, we have E(X, Y ) = {0, 1}. If our bipartite
graph is constructed by considering two copies of {0, 1}n as the vertex classes and an
edge uv exists iff E(u, v) = 1, there can be no K by K induced subgraph which is either
complete or empty.

Actually, we have shown something stronger: the number of edges (x, y) ∈ X×Y
contained in the graph should be approximately 1

2
|X| |Y |. If we restrict ourselves to the

weaker definition that E(X, Y ) = {0, 1} we have an object which is called a disperser in
the randomness extraction literature.
Definition 5. A functionD : {0, 1}n×l → {0, 1}m is an l-source disperser for min-entropy
k with error ε if, for any independent k-sources X1, . . . , Xl, we have

∣∣D(X1, . . . , Xl)
∣∣ ≥

(1− ε)2m. In particular, when ε = 0 we have D(X1, . . . , Xl) = {0, 1}m.

Barak et al. constructed two-source dispersers where the min-entropy requirement
is any linear function on the length of the inputs. This breakthrough used much of the
machinery developed with the use of additive combinatorics. The philosophy behind
their construction is, roughly speaking, to make two independent sources work in the

SBC 2008 99



same place as four independent sources would be needed. This “magic” is accomplished
after providing a procedure to test the two inputs and decide a point where the inputs
would be partitioned into two (hence one gets 4 inputs of possibly different sizes). The
analysis is rather difficult since one has to show that, with some positive probability (over
an arbitrary distribution for which the only thing one knows is the min-entropy), the test
procedure will be partitioned in such a way that the four inputs are almost independent.

As a toy example of the above argument, let as assume one has three independent
sourcesX1, X2, X3. We say that a two-source extractorE for min-entropy k and error ε is
strong if, for any k-sourcesX and Y , with probability (1−ε) over the random choice y ∈R

Y , we have that E(X, y) is ε-close to uniform (and similarly for X). Therefore, a strong
extractor is one for which we can fix one of the inputs to a “typical” value and the output
will still be close to uniform. We can show that, although E(X1, X2) and E(X3, X2) can-
not be said to be independent, if E is a strong extractor, they can be analysed as they were
independent: fixing x2 ∈ X2, we have that E(X1, x2) and E(X3, x2) are independent
(since x2 is a constant).

It is possible to decompose the product distribution Z =
(
E(X1, X2), E(X3, X2)

)
into distributions where x2 ∈ X2 is fixed. After discarding those x2 for which E(Xi, x2)
is not close to uniform for some i ∈ {1, 2}, we get a distribution which is close to Z
and close to uniform at the same time. By the triangular inequality, Z is close to uniform
and, hence, it is close to having the first element of the pair independent from the second
element of the pair (since a uniform sequence of bits implies total independence between
bits).

Clearly, the case where only two sources are available is considerably harder.
There is no obvious choice for which value should be fixed as one of the inputs for
the extractors. The strategy employed by Barak et al. is called the challenge-response
mechanism. Loosely speaking, they define several possibilities for partitioning the two
inputs (for instance, if n = rs, they can partition x = x1 . . . xn ∈ {0, 1}n into x1 . . . xjs

and xjs+1 . . . , xn for some j ∈ [r]) and must decide which way they should be partitioned
in order to simulate four independent sources. A string called the challenge is computed
for each candidate partition. A set of guesses is also computed from the original inputs.
If one of the guesses includes the challenge, the partition is acceptable.

After testing the possible partitions, a minimal (with respect to some partial or-
der) acceptable partition is chosen and the four strings obtained from such a partition are
used as if they were independent. This, however, does not work as well as in our toy
case and the analysis can only prove that the challenge-response mechanism works with
some probability under the initial space (which can be an arbitrary product of two inde-
pendent k-sources). For the purposes of obtaining a disperser, this is more than enough:
clearly, the support of the output includes the support of the smaller space in which the
challenge-response can simulate independence. Since in the smaller space we actually
obtain closeness to uniformity, the conclusion is immediate.

4. Our contributions
In Chapter 10 of the thesis, we present a strategy to obtain many more bits from the
output of the constructions of extractors and dispersers in the work of Barak et al. This is
accomplished by replacing a brute-force optimal extractor that is used in the composition
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of their constructions. We remark, however, that our strategy employs the use of extractors
due to Bourgain which were not available by the time their results were announced (the
dissertation was written based on a preliminary version of their paper). Independently,
Rao2 obtained these same improvements and several other interesting results.

We also worked on the construction of better constant-seed condensers, a tool used
to obtain the extractors and dispersers of Barak et al. This work is not completely included
in the dissertation and appears in a separate paper to be presented in LATIN 2008.

This Master’s Thesis can be found on http://www.teses.usp.br/teses/
disponiveis/45/45134/tde-04052007-160412/.
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