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Abstract. This paper presents our studies on three vertex coloring problems
on graphs and on a problem concerning subdivision of digraphs. Given an
arbitrarily colored graph G, the convex recoloring problem consists in finding
a (re)coloring that minimizes the number of color changes and such that each
color class induces a connected subgraph of G. This problem is motivated by
its application in the study of phylogenetic trees in Bioinformatics. In the k-
fold coloring problem one wishes to cover the vertices of a graph by a minimum
number of stable sets in such a way that every vertex is covered by at least k
(possibly identical) sets. The proper orientation problem consists in orienting
the edges of a graph so that adjacent vertices have different in-degrees and the
maximum in-degree is minimized. Our contributions in these problems are in
terms of algorithms, hardness, and polyhedral studies. Finally, we investigate a
long-standing conjecture of Mader on subdivision of digraphs: for every acyclic
digraph H , there exists an integer f(H) such that every digraph with minimum
out-degree at least f(H) contains a subdivision of H as a subdigraph. We give
evidences for this conjecture by proving it holds for classes of acyclic digraphs.

1. Introduction
We next present our studies on three coloring problems on graphs and on a prob-
lem related to a long-standing conjecture about subdivision of digraphs. These studies
form the PhD Thesis of Phablo F. S. Moura defended in 2017 at Universidade de São
Paulo [Moura 2017]. Owing to space limitation, we only mention the main results with-
out the proofs. We refer the reader to [Moura 2017] for more details.

Firstly, we focus on the coloring problems. Given an arbitrarily colored graph G
with positive weights assigned to its vertices, the convex recoloring problem consists in
finding a minimum weight (re)coloring such that each color class induces a connected
subgraph of G. We also address a generalization of the classic vertex coloring problem.
The k-fold coloring problem consists in covering the set of vertices of a graph into a
minimum number of stable sets in such a way that every vertex is covered by at least k
(possibly identical) stable sets. Note that, in the context of k-fold colorings, a coloring
can be viewed as a multiset of stable sets. The third coloring problem studied is associated
with oriented graphs. The proper orientation problem consists in orienting the edge set
of a given graph so that adjacent vertices have different in-degrees and the maximum in-
degree is minimized. Clearly, the in-degrees induce a partition of the vertex set into stable
sets, that is, a coloring (in the conventional sense) of the vertices.

In addition to the mentioned coloring problems on graphs, we study a problem
related to subdivision of directed graphs (or simply, digraphs). Given a graph G, the



subdivision of an edge uv in G is a graph operation in which uv is removed from G, a
new vertex, say w, and edges wu and wv are created. One may easily extend the concept
of subdivision to digraphs. Given a digraph D, the subdivision of an arc uv in D is a
digraph operation in which uv is removed from D, a new vertex w, and arcs uw and wv
are created. Note that the directions of arcs uw and wv are coherent to the direction of uv.
The graph (respectively, digraph) obtained from any sequence of subdivision operations
is called a subdivision of G (respectively, of D).

In the eighties, Mader conjectured that, for every acyclic digraph H , there exists
an integer f(H) such that every digraph with minimum out-degree at least f(H) contains
a subdivision of H as a subdigraph. In this context, the subdivision problem consists in
showing the existence of such a function for subclasses of acyclic digraphs.

During our studies we addressed the mentioned problems in terms of algorithms,
computational complexity, polyhedral combinatorics, and structural graph theory. As we
shall see, the contributions of the thesis are spread over these areas. In the following sec-
tions, for each problem, we present the definitions, known results and main contributions.

2. Convex recoloring

A coloring of the vertices of a connected graph is r-convex if each color class induces a
subgraph with at most r components. We address the r-convex recoloring problem (r-CR)
defined as follows. Given a graph G and a coloring of its vertices, recolor a minimum
number of vertices of G so that the resulting coloring is r-convex. One may naturally
define a weighted version of r-CR by assigning nonnegative weights to the vertices.

The 1-CR (or simply CR) problem has received considerable attention in the last
years. Kanj and Kratsch [Kanj and Kratsch 2009] proved that this problem is NP-hard
for paths even if each color appears at most twice. Campêlo et al. [Campêlo et al. 2014]
showed that the unweighted CR problem is NP-hard on 2-colored grids. Very recently,
Bar-Yehuda et al. [Bar-Yehuda et al. 2016] designed a 3/2-approximation algorithm for
general graphs in which each color appears at most twice.

The 1-CR problem was firstly investigated by Moran and Snir in 2005, motivated
by its application in the study of phylogenetic trees. Given a set of species, a phylogenetic
tree is a colored tree representing the course of evolution of these species. Its leaves cor-
respond to the given set of species and its internal vertices correspond to extinct species.
The colors of the vertices correspond to character states, where a character (coloring) is a
biological attribute shared among all the species, and a character state (color) is the state
of this character shown by a species (vertex). The more general concept of r-convexity,
for r ≥ 2, was proposed later, and it is also of interest in the study of protein-protein
interaction networks and phylogenetic networks.

Our aim in the study of convex recoloring problems is twofold. On the theoretical
side, we prove inapproximability and W [2]-hardness results which provide a better un-
derstanding of the difficulty associated with the various convex recoloring problems that
have been treated in the literature. More specifically, we proved the following theorems.

Theorem 2.1. For every r and k ≥ 2, and ε < 1, there is no n1−ε-approximation for the
CR problem on k-colored n-vertex bipartite graphs, unless P = NP.



Theorem 2.2. Let f : N → Q be a function of the form f(x) = 2poly(x). For every r
and k ≥ 2, there is no f(n)-approximation for the weighted r-CR problem on k-colored
n-vertex bipartite graphs, unless P = NP.

On the applied side, we propose an integer linear formulation for CR on general
graphs and we design an algorithm to tackle the CR problem on trees. We provide com-
putational experiments on instances that come from an application on phylogenetic trees
and show that our solution method (on input instances with many colors) performs better
than the best solving method described in the literature so far. We refer the reader to the
thesis for more details concerning the formulations and computational experiments.

Some results concerning the inapproximability and parameterized complexity
were published in an extended abstract [Moura and Wakabayashi 2017]. A full paper
containing these results was submitted to a journal.

3. k-Fold coloring
We also address a natural generalization of the classic vertex coloring problem, namely
the k-fold coloring problem, which was introduced in the Seventies. A k-fold x-coloring
of a graph G is an assignment of (at least) k distinct colors from the set {1, 2, . . . , x} to
each vertex such that any two adjacent vertices are assigned disjoint sets of colors. The
k-th chromatic number of G, denoted by χk(G), is the smallest x such that G admits a
k-fold x-coloring. Clearly, χ1(G) = χ(G) is the conventional chromatic number of G.

In the thesis, we present a dense theoretical study of the polytope associated with
an integer linear programming formulation which is based on the concept of class rep-
resentatives. We introduce an integer linear programming formulation (ILP) to deter-
mine χk(G) and study the facial structure of the corresponding polytope Pk(G). We
present facets that Pk+1(G) inherits from Pk(G) and show how to lift facets from Pk(G)
to Pk+`(G), for any ` ∈ Z>. We project facets of P1(G ◦ Kk) into facets of Pk(G),
where G ◦Kk denotes the lexicographic product of G by a clique with k vertices. In both
cases, we can obtain facet-defining inequalities from many of those known for the 1-fold
coloring polytope. We also derive facets of Pk(G) from facets of stable set polytopes of
subgraphs of G. In addition, we present classes of facet-defining inequalities based on
strongly χk-critical webs and antiwebs, which are structures that play an important role in
the description of stable set and coloring polytopes. We introduce this criticality concept
and characterize the webs and antiwebs having such a property. These results extend and
generalize known results for 1-fold coloring.

An extended abstract with some preliminary results was published in a confer-
ence [Campêlo et al. 2013]. A full paper containing our contributions concerning the
k-fold coloring problem was published in a journal [Campêlo et al. 2016].

4. Proper orientation
An orientation of a graph G is a digraph D obtained from G by replacing each edge
by exactly one of the two possible arcs with the same endpoints. For each v ∈ V (G),
the in-degree of v in D, denoted by d−D(v), is the number of arcs with head v in D. An
orientationD ofG is proper if d−D(u) 6= d−D(v), for all uv ∈ E(G). The proper orientation
number of a graph G, denoted by −→χ (G), is the minimum of the maximum in-degree over
all its proper orientations.



This graph parameter was introduced by Ahadi and Dehghan
in [Ahadi and Dehghan 2013]. It is well-defined for any graph G since one can al-
ways obtain a proper ∆(G)-orientation using the following procedure. Consider a vertex,
say v, of maximum degree in G, orient all edges incident to v towards it, and repeat this
procedure on G− v if it is not an empty graph. Hence, it holds that −→χ (G) ≤ ∆(G). Note
that every proper orientation of a graph G induces a proper vertex coloring of G. Further-
more, observe that, in any k-orientation of G, d−(v) ∈ {0, 1, . . . , k} for every v ∈ V (G).
Thus, it follows that −→χ (G) ≥ χ(G) − 1. Therefore, we have the following sequence of
inequalities: ω(G)−1 ≤ χ(G)−1 ≤ −→χ (G) ≤ ∆(G). These inequalities are best possible
in the sense that, for a complete graph K, ω(K)− 1 = χ(K)− 1 = −→χ (K) = ∆(K).

In their seminal paper [Ahadi and Dehghan 2013], Ahadi and Dehghan focused
on algorithmic aspects of the proper orientation number of regular graphs and planar
graphs. They proved that it is NP-complete to decide whether −→χ (G) = 2 for planar
graphs G. Additionally, they showed that computing the proper orientation number of
4-regular graphs is NP-hard.

The proper orientation problem has also been studied from a structural point of
view. Very recently, Araujo et al. [Araujo et al. 2016] showed that every cactus admits a
proper orientation with maximum in-degree at most 7. Moreover, they proved that if G
is a planar claw-free graph, then ∆(G) ≤ 6, which trivially implies −→χ (G) ≤ 6. Also
recently, Knox et al. [Knox et al. 2016] proved that 3-connected planar bipartite graphs
have proper orientation number at most 6

Our contributions on the proper orientation problem are twofold: algorithmic and
structural. From the structural point of view, we prove bounds for the parameter −→χ on
trees and general bipartite graphs. From the algorithmic point of view, we study the
computational complexity of computing the proper orientation number of bipartite and
bounded degree graphs. We now mention some of our main contributions on this topic.

Theorem 4.1. If G is a bipartite graph, then −→χ (G) ≤
⌊

∆(G)+
√

∆(G)

2

⌋
+ 1.

Theorem 4.2. If T is a tree, then −→χ (T ) ≤ 4.
Theorem 4.3. The following problem is NP-complete:
INPUT : A planar bipartite graph G with ∆(G) = 5.
QUESTION : −→χ (G) ≤ 3?

A full paper containing our contributions on the proper orientation problem was
published in a journal [Araujo et al. 2015].

5. Subdivision of digraphs
A subdivision of a graph G is a graph obtained from G by replacing some of its edges
by internally vertex-disjoint paths, that is, in a subdivision of G, for each uv ∈ E(G),
edge uv is replaced by a path Puv with endpoints u and v, and newly created internal
vertices. In the world of digraphs, arcs are replaced by directed paths. More precisely,
a subdivision of a digraph D is a digraph obtained from D by replacing some of its arcs
by internally vertex-disjoint directed paths with the same endpoints and oriented in the
same direction as the corresponding arcs. Given two (di)graphs H and G, we say that G
contains a subdivision of H if there exists a subgraph (respectively, subdigraph) G′ of G
such that G′ is isomorphic to some subdivision of H .



Let k ∈ N. We denote by Kk the complete (undirected) graph on k vertices.
The complete digraph on k vertices, denoted by ~Kk, is obtained from Kk replacing every
edge of it by two arcs with the same endpoints and opposite directions, that is, every
edge of Kk is replaced by a copy of ~C2, the directed cycle on 2 vertices. A tournament
on k vertices is an orientation of the complete graph Kk. The transitive tournament on k
vertices, denoted by TTk, is a tournament on k vertices with no directed cycle. In the
sixties, Mader [Mader 1967] established the following theorem for (undirected) graphs.
Theorem 5.1 (Mader [Mader 1967]). For every positive integer k, there exists an inte-
ger f(k) such that every graph with minimum degree at least f(k) contains a subdivision
of Kk, the complete graph on k vertices.

Similarly, it would be interesting to find analogous results for digraphs. However,
the obvious analogue that a digraph with sufficiently large minimum in-degree and min-
imum out-degree contains a subdivision of the complete digraph of order n is false as
shown by Mader [Mader 1985].

Let γ be a digraph parameter. A digraph F is γ-maderian if there exists a least
integer maderγ(F ) such that every digraph D with γ(D) ≥ maderγ(F ) contains a sub-
division of F . For a digraph D, δ+(D) (respectively, δ−(D)) denotes the minimum out-
degree (respectively, in-degree) and δ0(D) = min{δ+(D), δ−(D)}. A natural question is
to ask what digraphs F are δ+-maderian (respectively, δ0-maderian). Observe that every
δ+-maderian digraph is also δ0-maderian and that maderδ+ ≥ maderδ0 .

On the positive side, Mader conjectured that every acyclic digraph is δ+-maderian.
Since every acyclic digraph is the subdigraph of the transitive tournament on the same
order, it is enough to prove that transitive tournaments are δ+-maderian.
Conjecture 5.2 (Mader [Mader 1985]). For every positive integer k, there exists a least
integer maderδ+(TTk) such that every digraph D with δ+(D) ≥ maderδ+(TTk) contains
a subdivision of TTk.

Mader proved that maderδ+(TT4) = 3, but even the existence of maderδ+(TT5)
is still open. Given the remarkable difficulty of this conjecture, it is natural to consider
subclasses of acyclic digraphs. An in-arborescence is an oriented tree in which all arcs
are directed towards a vertex called root. In [Moura 2017], we give new evidences for
Conjecture 5.2 by proving that all in-arborescences are δ+-maderian.

6. Concluding remarks
The problems mentioned in this work have brought quite different challenges during our
studies. Consequently, we had to address them also using different techniques, namely al-
gorithmic, structural and polyhedral. Therefore, the contributions in the thesis are spread
over these areas.

Despite the deep research carried out on those problems, there are still several
interesting open questions that may lead to further (theoretical and applied) research.
Question 6.1. Is our solving method for computing the convex recoloring efficient for
solving real-world instances from Bioinformatics?
Question 6.2. Can the facet-defining inequalities and the representatives formulation be
used in practice to compute k-fold colorings?
Question 6.3. Does there exist a constant k such that −→χ (G) ≤ k for planar graphs G?



Question 6.4. Does the Mader’s Conjecture 5.2 hold for general oriented trees?

To conclude, we remark that the results in the thesis [Moura 2017] have been
published in the Theoretical Computer Science [Araujo et al. 2015] and Discrete Op-
timization [Campêlo et al. 2016]. Additionally, we have submitted two full papers to
journals: one containing the results on the convex recoloring problem and the other
containing the results about subdivisions of digraphs. We have also presented prelimi-
nary results in international conferences as ICGT 2014 and LAGOS [Campêlo et al. 2013,
Moura and Wakabayashi 2017].
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