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Abstract. Methods based on basis functions and similarity measures are widely
used in machine learning and related fields. These methods often take for gran-
ted that data is fully observed and are not equipped to handle incomplete data in
an organic manner. This assumption is often flawed, as incomplete data is a fact
in various domains such as medical diagnosis and sensor analytics. Therefore,
one might find it useful to be able to estimate the value of these functions in the
presence of partially observed data. In this work, we present methodologies to
estimate the Gaussian Kernel, the Euclidean Distance, the Epanechnikov ker-
nel and arbitrary basis functions in the presence of possibly incomplete feature
vectors.

1. Introduction
Data completeness is a major assumption of most Machine Learning methods. In real-
world problems, however, several data instances may suffer from unobserved/missing
attributes. This issue, referred to as missing/incomplete data problem, may happen due to
a variety of reasons such as sensor problems, device malfunction and operator mistakes
[Eirola et al. 2014]. The simplest way to deal with missing data consists of removing
the instances with missing attributes (listwise deletion) from the dataset. Even though
this approach may work in some cases, discarding data samples usually leads to loss of
important information to build a learning model [Eirola et al. 2013]. Another widely used
approach is to perform a pre-processing step of missing data imputation. After filling
the missing entries, any conventional learning method can be used. Examples of such
an approach can be found in [Kang 2013], [Lobato et al. 2015], [Aste et al. 2015] and
[Gheyas and Smith 2010].

According to Acuña and Rodrigues in [Acuña and Rodriguez 2004], problems
with more than 5% of missing samples may require sophisticated handling methods. In
such situations, good results can be achieved by not considering the imputation as a se-
parate step. Instead, it is possible to design a learning method that can handle incomplete
data in its formulation. By doing so, the inherent uncertainty of the imputation process is
taken into account and it has shown to be beneficial in many cases [Sovilj et al. 2016].
On the other hand, direct imputation omits this uncertainty, which might be prejudi-
cial depending on the context. To illustrate such concept, let us consider the work of
[Eirola et al. 2013].

In [Eirola et al. 2013], the authors show a method to estimate the squared Eu-
clidean distance between two vectors with missing components. A proper estima-
tion of squared distances is fundamental in many machine learning algorithms such as
distance-based methods and kernel methods. Let Xi = (xi,1, . . . , xi,D)

T and Xj =



(xj,1, . . . , xj,D)
T be two (independent) possibly incomplete feature vectors. In a statis-

tical point-of-view, an imputation procedure can be seen as a method to fill the missing
components with the most probable value. In such case, we can compute the squared
Euclidean distance by using the expected values of each missing component. In this way,
the squared distance may be given by:

‖E[Xi]− E[Xj]‖2 =
D∑

d=1

(E[xi,d]− E[xj,d])
2, (1)

An alternative approach is proposed in [Eirola et al. 2013]. Instead of estimating
the expected value of the missing components, the authors propose a way to estimate the
expected value of the squared Euclidean distance directly. After some straightforward
mathematical developments, the authors find that the expected square Euclidean distance
is given by:

E[‖Xi −Xj‖2] =
D∑

d=1

(E[xi,d]− E[xj,d])
2 +Var[xi,d] + Var[xj,d], (2)

By observing Eqs. 1 and 2 we can notice that the imputation approach underes-
timates the value of the square distance. The difference between the two formulations
is given by the variances of the missing components. The method of [Eirola et al. 2013]
provides more precise estimates of the square distance and this fact also influences. Ins-
pired by the results of [Eirola et al. 2013], we propose several strategies to estimate the
expected values of other commonly used basis functions in the presence of missing data.

2. Main Contributions

The thesis in question has four major contributions, each addressing the use of important
building blocks in Machine Learning in the presence of missing data. These developments
mainly rely on the general assumption that data is missing-at-random (MAR) and that a
model for the data can be estimated, such as Gaussian Mixture Models (GMMs).

[Contribution 1] Gaussian Kernel for incomplete data: We present a method to
estimate the expected value of the Gaussian kernel in the presence of incomplete
data. For such, we model the square distance between two missing vectors as a
sum of gamma-distributed random variables, whose governing parameters depend
only on the non-central moments of the missing entries in the feature vectors. In
this scenario, we show how that the expected value of the quantity of interest can
be conveniently expressed in closed-form. The validity of the proposed method is
empirically assessed under a range of conditions on simulated and real problems
and the results compared to existing methods that indirectly estimate a Gaussian
kernel function by either estimating squared distances or by imputing missing
values and then calculating distances. Based on the experimental results, the pro-
posed method consistently proved itself a more accurate technique and further
extends the use of Gaussian kernels with incomplete data.



[Contribution 2] Euclidean distance estimation in incomplete datasets: We pre-
sent a method to estimate the expected value of the Euclidean distance between
two possibly incomplete feature vectors. Under the MAR assumption, we show
that the Euclidean distance can be modeled by a Nakagami distribution, for which
the parameters we express as a function of the moments of the unknown data
distribution. The proposed method, named Expected Euclidean Distance (EED),
was validated through a series of experiments using synthetic and real-world data.
Additionally, we show and application of EED to the Minimal Learning Machine
(MLM), a distance-based supervised learning method. Experimental results show
that EED outperforms existing methods that estimate Euclidean distances in an in-
direct manner. We also observe that the application of EED to the MLM provides
promising results.
[Contribution 3] Epanechnikov kernel for incomplete data: The Epanechnikov
Kernel (EK) is a popular kernel function that has achieved promising results in
many machine learning applications. We propose a method to estimate the EK
when input vectors are only partially observed, i.e., some of its features are mis-
sing. In the proposed method, named Expected Epanechnikov Kernel (EEK), the
expected value of the kernel function is estimated given the distribution of the data
and the observed values of the feature vectors.
[Contribution 4] Arbitrary basis functions for incomplete data: We presented
a methodology to estimate the value of basis functions from incomplete feature
vectors. The proposed strategies used the unscented transform to compute the
expected value of the transforms. It is important to highlight that our strategies
require O(1) samples, more specifically three, independent of the number of mis-
sing entries on the input vector. The proposed strategies were validated in artificial
and real-world scenarios, outperforming other methods in the literature.

3. Summary of publications
The publications that resulted from this thesis can be categorized into four groups accor-
ding to the aforementioned contributions they are related to. A brief explanation of each
paper is presented below.

[Group 1] An initial effort towards estimating the Gaussian kernel for incomplete
data is presented in [Mesquita and Gomes 2017]. In this paper, we use the expec-
ted Euclidean distance formulation presented in [Eirola et al. 2013] as a building
block to estimate the Gaussian kernel. Additionally, we present and application of
the method in a RBF neural network. In [Mesquita et al. 2016d], we also develo-
ped a k-means algorithm for incomplete data that was used to select the centroids
of the RBF network. The final formulation of the Gaussian kernel estimation, as
presented in the third chapter of the thesis, is under evaluation in a well-reputed
peer-reviewed journal.
[Group 2] Our first developments in estimating square distances began with an ap-
plication of the method presented in [Eirola et al. 2013] to the Minimal Learning
Machine [de Souza et al. 2015], which resulted in a MLM for incomplete data,
presented in [Mesquita et al. 2015c]. During the making of this thesis, we propo-
sed improvements [Mesquita et al. 2017c] for the MLM which served as building
blocks for the missing data extensions. The final formulation of the Euclidean



distance estimation, as presented in the fourth chapter of the thesis, is presented
in [Mesquita et al. 2017a] alongside a more elaborate version of the MLM for in-
complete data.
[Group 3] Drawing inspiration from the methodologies as mentioned earlier
we proposed to estimate the Euclidean distance and the Gaussian kernel, we
presented a method to estimate the expected value of the Epanechnikov kernel
[Mesquita et al. 2017b].
[Group 4] Our initial endeavor in this line, presented in [Mesquita et al. 2016c],
consisted in an extension of the well-known Extreme Learning Machines to han-
dle incomplete feature vectors using the unscented transform. A more general
formulation to deal with generic basis functions, as presented in the sixth chapter
of the thesis, is under evaluation in a well-reputed peer-reviewed journal.

Besides the contributions summarized above, other publications occurred as by-
products of the work being conducted. These comprehend both contributions to Ma-
chine Learning and applications in other areas. In partnership with software enginee-
ring researchers, we developed a reject-option framework for Software Defect Prediction
[Mesquita et al. 2016a]. We proposed the use of the Successive Projections Algorithm to
prune Extreme Learning Machines [Mesquita et al. 2015a]. We also explored the cons-
truction of MLM ensembles [Mesquita et al. 2015b], which motivated further improve-
ments in MLM methodology [Mesquita et al. 2017c]. Working on an application to the
textile industry, we developed an ELM variant to deal with uncertainty explicitly stated
with respect to input patterns [Mesquita et al. 2016b]

It worth noting that most contributions presented were already published in well-
established vehicles, which indicates the relevance of the work developed in this thesis.
Table 1 shows the distribution of these papers according to the QUALIS of the vehicle in
which these were published.

A1 A2 B1 B2 B3 B4
Journals 3 1 1
Conferences 4 2

Tabela 1. Distribution of publications with respect to the classification of the
publication vehicle.

In all of the publications mentioned so far, Mr. Mesquita is listed as first author.
Nonetheless, he contributed to other 4 conference ( split equally in B1 and B2 qualified
venues) publications and one Journal paper (QUALIS B2). For further information, the
reader can refer to Mr. Mesquita’s home page 1.

4. Concluding Remarks
This paper outlined the contributions in Mr. Mesquita’s Master’s thesis. The develop-
ments therein presented can be seen as building blocks for adapting several Machine
Learning methods to cope with incomplete data, making room for a range of possible
unfoldings. The products of the work developed during the making of the thesis comprise
seven conference papers and five journals articles, besides two papers still under review.

1http://lia.ufc.br/˜diegoparente/



Referências
Acuña, E. and Rodriguez, C. (2004). The Treatment of Missing Values and its Effect on

Classifier Accuracy. Springer Berlin Heidelberg, Berlin, Heidelberg.

Aste, M., Boninsegna, M., Freno, A., and Trentin, E. (2015). Techniques for dealing with
incomplete data: a tutorial and survey. Pattern Analysis and Applications, 18(1):1–29.

de Souza, A. H., Corona, F., Barreto, G. A., Miche, Y., and Lendasse, A. (2015). Minimal
learning machine. Neurocomput., 164(C):34–44.

Eirola, E., Doquire, G., Verleysen, M., and Lendasse, A. (2013). Distance estimation in
numerical data sets with missing values. Information Sciences, 240:115 – 128.

Eirola, E., Lendasse, A., Vandewalle, V., and Biernacki, C. (2014). Mixture of gaussians
for distance estimation with missing data. Neurocomputing, 131:32 – 42.

Gheyas, I. A. and Smith, L. S. (2010). A neural network-based framework for the recons-
truction of incomplete data sets. Neurocomputing, 73(16–18):3039 – 3065.

Kang, P. (2013). Locally linear reconstruction based missing value imputation for super-
vised learning. Neurocomputing, 118:65 – 78.

Lobato, F., Sales, C., Araujo, I., Tadaiesky, V., Dias, L., Ramos, L., and Santana, A.
(2015). Multi-objective genetic algorithm for missing data imputation. Pattern Recog-
nition Letters, 68, Part 1:126 – 131.

Mesquita, D. P., Gomes, J., Rodrigues, L. R., and Galvao, R. K. (2015a). Pruning extreme
learning machines using the successive projections algorithm. IEEE Latin America
Transactions, 13(12):3974–3979.

Mesquita, D. P., Gomes, J. P., Junior, A. H. S., and Nobre, J. S. (2017a). Euclidean
distance estimation in incomplete datasets. Neurocomputing, 248:11 – 18. Neural
Networks : Learning Algorithms and Classification Systems.

Mesquita, D. P., Rocha, L. S., Gomes, J. P. P., and Neto, A. R. R. (2016a). Classification
with reject option for software defect prediction. Applied Soft Computing, 49:1085 –
1093.
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