
Probabilistic data structures applied to implicit graph
representation

Juan P. A. Lopes1∗, Fabiano S. Oliveira1†, Paulo E. D. Pinto1†

1IME/DICC, Universidade do Estado do Rio de Janeiro (UERJ)
Av. São Francisco Xavier, 524, Maracanã – 20550-013 – Rio de Janeiro – RJ

jlopes@cos.ufrj.br, fabiano.oliveira@ime.uerj.br, pauloedp@ime.uerj.br

Abstract. In recent years, probabilistic data structures have been extensively
employed to handle large volumes of streaming data in a timely fashion. How-
ever, their use in algorithms on giant graphs has been poorly explored. We
introduce the concept of probabilistic implicit graph representation, which can
represent large graphs using much less memory asymptotically by allowing ad-
jacency test to have a constant probability of false positives or false negatives.
This is an extension from the concept of implicit graph representation, compre-
hensively studied by Muller and Spinrad. Based on that, we also introduce two
novel representations using probabilistic data structures. The first uses Bloom
filters to represent general graphs with the same space complexity as the ad-
jacency matrix (outperforming it however for sparse graphs). The other uses
MinHash to represent trees with lower space complexity than any deterministic
implicit representation. Furthermore, we prove some theoretical limitations for
the latter approach.

1. Introduction
The interest in probabilistic data structures has increased in the recent years. That is a di-
rect consequence to the emergence of applications that deal with large volumes of stream-
ing data. In those applications, it is often required the ability to answer queries quickly,
which is infeasible to do by querying over stored data due to high latency. Nevertheless,
such volumes do not generally fit into memory either. Probabilistic data structures offer a
good compromise for many applications, allowing less memory and CPU usage at cost of
decreased accuracy. In [Lopes 2017], we surveyed some of those data structures concern-
ing the problems of testing membership of an item in a (large) set and that of determining
the cardinality of (large) sets. We proposed the application of two data structures (Bloom
filters and MinHash) to the graph representation problem [Spinrad 2003]. Our main con-
tribution was a probabilistic representation for trees that has better space complexity than
the optimal deterministic representation. That will be further elaborated in Section 2.

1.1. Bloom filter

Bloom filter is a data structure that represents a set S and allows testing elements for set
membership with some probability of false positives, but no false negatives [Bloom 1970].
∗Currently D.Sc. student at COPPE/UFRJ.
†Partially supported by FAPERJ.
Dissertation available at:
http://www.ime.uerj.br/˜pauloedp/MEST/probabilistic_ds.pdf

It is implemented as an array M of m bits and k pairwise independent hash functions
hi : S → [1;m] for all 1 ≤ i ≤ k. The insertion of an element x is performed by
computing k hash values and setting these indexes in the array to 1, that is M [hi(x)]← 1
for all 1 ≤ i ≤ k. The membership query for some element x is done by verifying
whether all bits in positions given by the hash values are 1, that is M [hi(x)] = 1 for all
1 ≤ i ≤ k. If at least one bit is 0, that means with certainty that x is not in the set. If all
bits are 1, it is assumed that the element is in the set, although that may not be the case
(a false positive). The probability of a false positive when n elements are already stored
(event FALSEP) can be determined from the probability of collisions in all k hash values,
that is

Pr[FALSEP] = Pr

[∧
1≤i≤k

M [hi(x)] = 1

]
=

(
1−

(
1− 1

m

)kn)k

≈
(
1− e−kn/m

)k

Defining q = m/n, that is, q as the ratio between the size of M in bits and the
number of stored elements, it is possible to show that the probability of false positives is
minimized when k = q ln 2. So, Pr[FALSEP] ≈ (1 − e− ln(2))q ln(2) ≈ (0.6185)q. That
is, setting the dimension of M to 10 bits per element and using 7 hash functions, it is
possible to estimate set membership with less than 1% of false positives.

Bloom filters are commonly used in database systems, both to avoid fetch of non-
existing data, and to optimize communication costs in distributed joins. In summary,
Bloom filters are useful in contexts where performance gain in negative queries make up
for the cost of false positives.

1.2. MinHash

MinHash is a probabilistic data structure that represents sets A and B and allows es-
timating their Jaccard coefficient J(A,B) = |A∩B|

|A∪B| [Broder 1997]. The estimation is
done by computing a signature (a k-tuple of hash values) for each set S, using k pair-
wise independent hash functions h1, . . . , hk. Each element in the signature is given by
hmin
i (S) = min{hi(x) : x ∈ S} for all 1 ≤ i ≤ k. The probability of two sets A and B

having a common signature element can be shown to be equal to their Jaccard coefficient,
that is Pr[hmin

i (A) = hmin
i (B)] = J(A,B), for all 1 ≤ i ≤ k. Given two sets A, B, let Xi

denote the Bernoulli random variable such thatXi = 1 if hmin
i (A) = hmin

i (B), andXi = 0
otherwise. The set {X1, . . . , Xk} consists of an independent set of unbiased estimators
for J(A,B), in such a way that increasing k decreases the estimator variance. The error
bounds for the estimation of J(A,B) can be proved using the Chernoff inequalities. In
special, to achieve an error factor of θ with a probability greater than 1 − δ, k should be
defined such that k ≥ 2+θ

θ2
× ln(2/δ).

MinHash original motivation is still its most useful application: detect plagiarism.
It is possible to evaluate the similarity of two documents only by comparing their Min-
Hash signatures in constant time. It can also be used in conjunction with HyperLogLog
[Flajolet et al. 2008] to estimate the cardinality of set intersection without having both
sets in the same machine [Lopes et al. 2016a]. This was another contribution of this work.

2. Probabilistic implicit graph representations
An implicit graph representation is a vertex labelling scheme that allows testing the ad-
jacency between any two vertices efficiently by just comparing their labels [Muller 1988,
Kannan et al. 1992, Spinrad 2003]. More formally, given a graph class C with 2f(n)

graphs with n vertices, a representation is said to be implicit if

1. it is space optimal, that is, it requires O(f(n)) bits to represent graphs in C;
2. it distributes information evenly among vertices, that is, each vertex is represented

by a label using O(f(n)/n) bits;
3. the adjacency test is local, that is, when testing the adjacency of any two vertices,

only their labels are used in the process.

According to this definition, adjacency matrix is an implicit representation of the
class containing all graphs, because there are 2Θ(n2) graphs of n vertices and the adjacency
matrix can represent them using Θ(n2) bits. On the other hand, the adjacency list is
not an implicit representation, because it requires Θ(m log n) bits to represent the same
graph class, which may need Θ(n2 log n) bits in the worst case (e.g. complete graphs). In
contrast, adjacency list is space optimal to represent trees, asO(m log n) = O(n log n) for
trees and there are 2Θ(n logn) trees of n vertices, but it is still not an implicit representation
because it does not distribute information evenly: each tree vertex may use Θ(n log n)
bits to represent its adjacency in an adjacency list (e.g. center vertices of stars).

In [Lopes 2017], we explored the concept of probabilistic implicit graph repre-
sentations, which extends the concept of implicit representations by relaxing one of the
properties: the adjacency test is probabilistic, meaning that it has a constant probability of
resulting in false negatives or false positives. A 0% chance of false positives and negatives
implies an ordinary implicit representation. The main benefit of probabilistic representa-
tions is the ability to trade accuracy for memory, that is, to achieve more space efficient
representations by allowing some incorrect results. We present two novel probabilistic
implicit representations, each based on a distinct probabilistic data structure.

2.1. Representation based on Bloom filter

For this probabilistic implicit representation, Bloom filters are applied to represent the
adjacency set. That is, for each vertex, a Bloom filter is created, representing the set
of vertices adjacent to it. The set of Bloom filters of all vertices constitutes an implicit
probabilistic representation. This representation requires Θ(

∑
v∈V (G) d(v) = 2m) bits

to represent any graph, which makes it equivalent to the adjacency matrix in the worst
case (e.g. complete graphs). However, this representation has better space complexity
for sparse graphs than the deterministic one. In fact, it is better for any graph where
m = o(n2). Also, it has the property of not allowing false negatives in adjacency tests.
That is, it will never fail to report an existing edge, although it may report the existence
of non-existing edges with a small probability.

2.2. Representation based on MinHash

We introduced a representation based on MinHash in which the main idea is, for any
graph G = (V,E) in a class C and for some pair of constants 0 ≤ δA < δB ≤ 1, to
find representing sets Sv 6= ∅ for each v ∈ V such that the following two conditions
hold: (i) J(Su, Sv) ≥ δB if and only if (u, v) ∈ E, and (ii) J(Su, Sv) ≤ δA if and only

if (u, v) /∈ E. Therefore, no pairwise Jaccard coefficient among those representing sets
should lie within the interval (δA; δB). This way, the adjacency (u, v) can be tested by
determining J(Su, Sv) and comparing it with δA and δB. However, we shall use MinHash
to provide not the exact value, but an estimation of the Jaccard coefficients. Therefore,
the actual idea to test adjacency is to assume that (u, v) ∈ E if J(Su, Sv) > δ for some
δA ≤ δ ≤ δB. Note that only the signatures of the representing sets must be stored and
they require a constant number of elements. Furthermore, those signatures can be repre-
sented with a constant number of bits [Li and König 2010], and therefore a representation
based on MinHash requires O(n) bits to represent any class for which such representing
sets exist.

In [Lopes 2017], we presented an algorithm to build such representing sets for
trees with δA = 1/3 and δB = 1/2. Given a tree T , the construction is performed
recursively starting at an arbitrary vertex v, to which Sv is defined with ` arbitrary distinct
elements, where ` = min{2r : r ∈ N | 2∆(T) ≤ 2r}. Transforming T into a rooted
tree having v as the root, for each level, the procedure alternates between choosing Su as
a subset of Sp (selection phase) and choosing Su as a superset of Sp (extension phase),
where p is the parent of u in T . Figure 1 exemplifies this construction.

A

CB

{1, 2, 3, 4, 5, 6, 7, 8}

D E
F

G

{1, 3, 5, 7} {1, 4, 5, 8}

{1, 3, 5, 7, 9, 10, 11, 12}

{1, 3, 5, 7, 13, 14, 15, 16}

{1, 4, 5, 8, 17, 18, 19, 20}

{1, 5, 9, 11}

root

selection

extension

selectionH I J

{1, 5, 17, 19} {1, 8, 17, 20} {1, 5, 18, 20}

Figure 1. Example of representing sets for a given tree.

The selection phase is done as follows. For a set Sp = {a1, . . . , ax}, x/2 subsets
U1, . . . , Ux/2 are selected from it, each with x/2 elements, such that each pair of subsets
has x/4 common elements. This way, J(Ui, Uj) = 1/3 for all 1 ≤ i < j ≤ x/2
and J(Ui, Sp) = 1/2 for all 1 ≤ i ≤ x/2. Thus, each child of p must be assigned a
distinct subset among those as its representing set. The efficient implementation of such
selection procedure is based on the representation by a binary string ui, with length x/2,
of a subset Ui ⊂ Sp, such that if the jth bit of ui has the value b, then a2j−1+b belongs
to Ui. The generation of the strings that represent U1, . . . , Ux/2 can be done through
an iterative process, in which, starting from a 1 × 1 matrix, in each step, the matrix is
fourfolded, inverting the bits of the lower right quadrant. The construction process, for a
set Sp = {1, . . . , 8}, is illustrated in Figure 2. The extension phase is done through the
inclusion of unique |Sp| elements among all already defined representing sets.

The MinHash signature is then computed for each representing set. Those sig-
natures are then used as labels for each corresponding vertex. As this labelling scheme

1

3

2

4

0000

0011

0101

0110

Figure 2. Example of a subset selection of Sp = {1, . . . , 8}.

requires only O(n) to probabilistically represent trees, a class with 2Θ(n logn) graphs of
n vertices, we can say that it has better space complexity than the optimal deterministic
representation.

The theoretical predictions about this representation were verified through three
practical experiments. The experiments aimed to validate the rate of false positives and
negatives as some parameter changed. The results can be seen in the Figure 3.

0.1 0.2 0.3 0.4 0.5
0 %

2 %

4 %

6 %

8 %

10 %

Threshold (δ)

k = 128, n = 200

60 80 100 120 140 160 180 200

Number of vertices (n)

k = 128, δ = 0.375

20 40 60 80 100 120

Signature size (k)

n = 200, δ = 0.375

false positives
false negatives

Figure 3. Rate of false negatives and false positives varying parameters.

2.3. Considerations on bipartite graphs

[Spinrad 2003] shows that any hereditary graph class with 2Θ(n2) members of n vertices
should entirely include either the bipartite, co-bipartite or split graphs. Also, it is pos-
sible to transform any graph G = (V,E) into a bipartite graph G′ = (V ′, E ′) such that
V ′ = {v1, v2 : v ∈ V }, and E ′ = {(v1, u2), (u1, v2) : (v, u) ∈ E}. Any efficient
representation of G′ can be used to efficiently represent G. This makes the search for a
probabilistic implicit representation for bipartite graphs specially appealing. However, we
proved the non-existence of some representations. For example, it is impossible to con-
struct a MinHash-based representation with δA = 0.4 and δB = 0.6 for a graph as simple
as a complete bipartite K3,3. Our proof is based on the formulation of a corresponding
integer linear programming problem, which turns out to be infeasible. This suggests that
a further investigation concerning this probabilistic implicit graph representation is that
of characterizing the class of graphs that can be represented by it.

3. Conclusion
This paper summarizes the contributions in [Lopes 2017]. A few probabilistic data struc-
tures were studied, and empirical evidence confirming their theoretical behavior was pro-
vided. Moreover, a probabilistic extension to the theory of implicit graph representations
was introduced with a successful result regarding the representation of trees.

The results from this research were published in some conferences: 1. Estru-
turas de Dados Probabilı́sticas para Representação de Conjuntos, published at I En-
contro de Teoria da Computação [Lopes et al. 2016b]; 2. Estimativa de Cardinali-
dade da Interseção de Conjuntos Utilizando as Estruturas MinHash e HyperLogLog,
published at XXXVI Congresso Nacional de Matemática Aplicada e Computacional
[Lopes et al. 2016a]; 3. Representações Implı́citas Probabilı́sticas de Grafos, published
at II Encontro de Teoria da Computação [Lopes et al. 2017]. A full report of the contri-
butions is in the process of being submitted to a journal.

References
Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Com-

munications of the ACM, 13(7):422–426.

Broder, A. Z. (1997). On the resemblance and containment of documents. In Compression
and Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE.

Flajolet, P., Fusy, É., Gandouet, O., and Meunier, F. (2008). Hyperloglog: the analysis of
a near-optimal cardinality estimation algorithm. DMTCS Proceedings.

Kannan, S., Naor, M., and Rudich, S. (1992). Implicit representation of graphs. SIAM
Journal on Discrete Mathematics, 5(4):596–603.

Li, P. and König, A. C. (2010). b-bit minwise hashing. In Nineteenth International World
Wide Web Conference (WWW 2010). Association for Computing Machinery, Inc.

Lopes, J. P. A. (2017). Estruturas de dados probabilı́sticas aplicadas à representação
implı́cita. Master’s thesis, Universidade do Estado do Rio de Janeiro.

Lopes, J. P. A., Oliveira, F. S., and Pinto, P. E. D. (2016a). Estimativa de cardinalidade da
interseção de conjuntos utilizando as estruturas minhash e hyperloglog. In Proceeding
Series of the Brazilian Society of Computational and Applied Mathematics, volume 5.
SBMAC.

Lopes, J. P. A., Oliveira, F. S., and Pinto, P. E. D. (2016b). Estruturas de dados proba-
bilı́sticas para representação de conjuntos. In Anais do XXXVI Congresso da Sociedade
Brasileira de Computação. Sociedade Brasileira de Computação.

Lopes, J. P. A., Oliveira, F. S., and Pinto, P. E. D. (2017). Representações implı́citas
probabilı́sticas de grafos. In Anais do XXXVII Congresso da Sociedade Brasileira de
Computação. Sociedade Brasileira de Computação.

Muller, J. H. (1988). Local structure in graph classes. PhD thesis, Georgia Institute of
Technology.

Spinrad, J. P. (2003). Efficient graph representations. American mathematical society.

