Understanding and Automating Application-level Caching
Jhonny Mertz and Ingrid Nunes (Advisor)

'Programa de P6s-Graduagido em Computagdo (PPGC), Instituto de Informatica
Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

{jmamertz, ingridnunes}@inf.ufrgs.br

Abstract. Application-level caching has increasingly been adopted to improve
the performance and scalability of web applications. It consists of an addi-
tional caching layer that is manually added to the application code in selected
locations. Because it requires a manual application analysis and selection of
cacheable points as well as implementation, it is a time-consuming and error
prone activity. In this paper, we introduce our key contributions in the con-
text of application-level caching: (i) a comprehensive survey and taxonomy of
work on this topic; (ii) a qualitative study that captures the state-of-practice of
application-level caching, complemented by proposed guidelines and patterns;
(iii) an adaptive component that autonomously manages admission of cache
content; (iv) a framework that implements our proposal; and finally (v) an eval-
uation that provides evidence of the effectiveness of our proposal.

1. Introduction

With the increasing popularity of web applications and distributed software systems,
which deal with a high number of service requests, many techniques to improve their
performance and scalability have been adopted. Such improvements are frequently ob-
tained by means of caching. Recently, application-level caching has been explored as a
new caching layer, expanding the granularity of cached content, such as methods, when
compared to traditional forms of caching, being an application-tailored form of caching.
In application-level caching, developers identify particular pieces of code that produce
outputs that provide benefits if cached—because they are frequently accessed or expen-
sive to compute—and manually manage a cache component and its content. Due to the
required manual design and implementation, adding application-level caching to applica-
tions is not trivial, demanding high effort and expertise as well as deep knowledge of the
application behavior. Not only are these activities manual but they are also done without
proper guidance [Mertz and Nunes 2017a]. Moreover, because workload characteristics
and request patterns change over time, implemented caching must evolve accordingly to
keep providing improvements [Mertz and Nunes 2017b]. This calls for approaches that
address the challenges of application-level caching and reduce the development costs.

In response, this paper outlines our research in this context. We provide guidance
to adopt application-level caching with an in-depth survey and proposed patterns and
guidelines. We also automate a key task of application-level caching, namely the selection
of cacheable content. More specifically, we provide the following contributions:

e an understanding of state-of-the-art research on static and adaptive application-
level caching with a proposed taxonomy of existing approaches;
e a qualitative study that captures the state-of-practice of application-level caching;

pg?!'g;ﬁ:zz;;i:?lieg:e { \ (@ic class ProductRepository { \
9 public class OrderService { /** some database-related logic */

public List<Product> search(String query) { Jgisomeiblsiesslogicy

Cache cache = Cache.getinstance("productsCache"); publichordlundateRioduci Groductipoduciil

_n o . public Order processOrder(Order order, Cache.getinstance("productsCache")
CEEO CEEE ey S {RCERR S CRE Customer customer) { .delete("products:*");
/** order processing logic */ DBAccess.update(product);

List< products = cache.get(cacheKey);
if (products == null)
products = DBAccess.search(query);

if (orderOk) }
Cache.getInstance("productsCache") public void deleteProduct(Product product) {
.delete("products:*"); Cache.getInstance("productsCache")

; } .delete("products:*");
cache.put(cacheKey, products, 30); /TTL 30 seconds DBAccess.delete(product);

Q return products; j & j

(a) Code Example
Application-level

Caching

Static Cache
Management

A 4

Cache
Implementation

A 4

Adaptive Cache
Management

. . Content Consistency Size-limitation Content Consistency Size-limitation
Blograpmaticl [Coppesiiona) Admission Maintenance Management Admission Maintenance Management
- Abstract - Declarative - Recommendation | |- Expiration-based ||- Cache Size - Dynamic Selection|| o . .00 1 oceq||” Cache Size
- Concrete - Seamless - Automated - Invalidation-based| |- Replacement| |- Reactive Filtering P - Replacement

(b) Taxonomy of Application-level Caching Approaches

Figure 1. Application-level Caching Overview

e structured knowledge in the form of guidelines and patterns for the design, imple-
mentation and maintenance of application-level caching;

e an adaptive approach to automate the identification of caching opportunities;

e a framework built on top of up-to-date technologies, named APLCache, that al-
lows developers to seamlessly integrate our approach with web applications; and

e an evaluation that gives empirical evidence of the effectiveness of our approach.

2. Taxonomy of Existing Work on Application-level Caching

To better understand the challenges associated with application-level caching, we intro-
duce in Figure 1(a) an example in which this type of caching is used to lower the database
workload. As can be seen, the caching logic is spread in different classes and tangled with
the business code, causing maintainability problems. Moreover, developers must decide
what to cache and identify when business operations require deletion of cached content.

To provide guidance to practitioners and promote research on caching
at the application level, we performed a comprehensive survey of existing ap-
proaches [Mertz and Nunes 2017a], which were summarized, compared and categorized
according to a proposed taxonomy (Figure 1(b)). Our taxonomy classifies approaches
into three main groups. The first, cache implementation, refers to approaches that sup-
port the development of application-level caching by providing guidance or building
blocks that ease its implementation, e.g. frameworks and libraries. The second and third
groups include static and adaptive approaches, respectively, that (semi-)automate tasks
of application-level caching. Adaptive (as opposed to static) cache management refers to
approaches that evolve their output according to the dynamics of the application behavior.

Figure 1(b) highlights the categories to which our two proposed approaches—
guidelines and patterns, and adaptive approach to cache content admission—belong. Ex-
isting work on the latter is limited to: (i) analyzing and caching methods of only specific
types, such as those that access external application components; (i) considering applica-

tions that have particular characteristics, e.g. are database-centric; or (iii) recommending
caching opportunities (that need to be revised) by means of an off-line extensive profiling
analysis. Our proposal, in contrast, does not make any assumptions regarding the methods
to be cached or the target application and provides a fully automated caching at runtime.

3. Application-level Caching Guidelines and Patterns

Although existing cache implementation approaches provide ready-to-use components
that reduce the effort needed to implement application-level caching, caching decisions
as well as the maintenance of this type of caching are manually done in an ad hoc way.
Nevertheless, many existing (large) software systems have incorporated application-level
caching to improve performance and scalability. This practical knowledge can thus be
used to evolve application-level caching development from an ad hoc to a systematic and
disciplined way. We therefore performed a novel qualitative study to understand, extract,
structure and document implicit application-level caching knowledge that is spread in
existing applications. This allowed us to propose derived guidelines and patterns.

3.1. Foundations: Qualitative Study

Following the comparative and interactive principles of grounded theory, our
study [Mertz and Nunes 2017a] involved the investigation of different types of artifacts
from ten (open-source and commercial) web applications with different characteristics
to take a holistic and comprehensive understanding of caching practices adopted by de-
velopers. We undertook mainly a subjective analysis of the data, collecting: (i) typical
caching design, implementation and maintenance strategies; (ii) motivations, challenges
and problems behind caching, and (iii) characteristics of caching decisions.

We investigated different application-level caching concerns, which are associated
with the three key research questions: (1) what and when is data cached at the application
level? (2) how is application-level caching implemented? and (3) which design choices
were made to maintain the efficiency of the application-level cache? In addition to identi-
fying recurrent styles of solutions (detailed as follows), there are interesting findings that
reinforce the challenges associated with application-level caching, such as: (i) the indica-
tion, by developers, of uncertainty regarding what and when data should be cached, which
can cause missed caching opportunities; (i1) the choice for simple cache design solutions
(possibly non-optimal), possibly due to design effort and caching gains trade-off; and (iii)
the presence of bugs and problems due to caching.

3.2. Catalog of Guidelines and Patterns

Our findings and observations were used as foundation for the provision of practical guid-
ance for developers with respect to application-level caching [Mertz and Nunes 2017a].
In total, we derived 16 guidelines (high-level directions to develop caching solutions)
and 4 patterns (systematic ways to address a caching issue) classified into three cate-
gories: design, implementation and maintenance. To illustrate, we show in Figure 2(a),
the flowchart of one of the patterns, Cacheability pattern, which is used to help decide
whether a method call should be cached.

4. Automating the Design and Implementation of Application-level Caching

Although the Cacheability pattern is a form of abstract reuse that helps to decide what
to cache, questions associated with the pattern are not straightforward to answer as they

Crit. Evaluation (Informal Description)

ST Yes, if the method always returns the same value when it receives
a particular set of parameter values.

C Yes, if the percentage of calls to the method returning different
values for the same parameters is k standard deviations above the
mean of this metric considering all methods.

F Yes, if the number of stored traces of the method is above a re-
quired sample size, calculated based on a specified confidence
level and margin of error.

S Yes, if the percentage of calls to the method with the same set of
s the data _ Yes/Not Sure parameter values is k standard deviations above the mean of this
size large? metric considering all methods.

E Yes, if the mean time taken by a method to execute is k standard

deviations above the mean of this metric considering all methods.
LD Yes, if there is no enough space in the cache for the method re-
turned value considering its estimated size.
LC No, when LD is satisfied. LD and LC are evaluated together.

(a) Pattern Flowchart (b) Objective Criteria Evaluation

Figure 2. Cacheability Pattern

require a subjective evaluation of different criteria. Developers must thus be aware of
and consider the application requirements, workload, domain, access patterns and busi-
ness logic, which is still a challenge. To provide further support to cacheability deci-
sions, we went beyond our pattern and proposed an approach that automates these deci-
sions [Mertz and Nunes 2018], introduced next.

4.1. Adaptive Approach to Automate the Admission of Cache Content

Each decision in the flowchart presented in Figure 2(a) is associated with a criterion that
must be evaluated to answer the decision question, they are: staticity (ST), changeability
(O), frequency (F), shareability (SH), expensiveness (E), large data (LD), and large cache
(LC). Our approach to automate the decision regarding the admission of cache content
provides an objective means of evaluating each criterion. An informal description of how
each of them is evaluated is summarized in Figure 2(b).

This objective evaluation of criteria is undertaken within a feedback loop of an
adaptive component to be added to a web application. The loop has four main steps,
illustrated in Figure 3(a): (1) the target web application is monitored at runtime; (2) traces
are generated and stored for potentially cacheable method calls; (3) the cacheability of
method calls is evaluated using our objective evaluation (Figure 2(b)) of the Cacheability
pattern; and (4) the web application is modified to cache the selected method calls. Step 3
is executed periodically and, consequently, caching decisions evolve according to the
current application usage patterns, thus making our approach adaptive.

4.2. APLCache Framework

Our approach, described above, was implemented as a framework, named APLCache,
that can be instantiated to be seamlessly integrated with (existing) web applications.
APLCache is implemented in Java and relies on a set of technologies that provide an
appropriate infrastructure for the framework. The technologies used to implement each
step of our approach are highlighted in Figure 3(b). To collect data to be analyzed and
manage cacheable methods, our framework intercepts method executions using aspect-
oriented programming. APLCache provides a set of alternative implementations based

Monitoring Cacheablllty
Execution Traces Evaluauon

ethodInfo: {

{JSON}@"“"S O
: Objective :

Omongons | >(G)-,
‘I

JavaScript Object Notatio

signature: public Object C1.proc, L
returnedValue: Object A g T Cacheablllty .
2 Pt Pattern :
Generalinfo: { @ [S :
executionTime: 500 : AspeCt *
f Bee 1 1 '
—h e TE T T e e o = : 4 ! toA - P —— '
X public class C1() { < i = ' 5 %’ g M
1| public Object proc() { :(_| Calss 1 - g redis e :
: /ldoing business logic... (1. java.lang.Object pkg.C1.proc() N c3 $ Java) : '
h ;etum content; 1 |2. model.Person pkg.C2.load(Long id) A Class A % 3. mongo
' ! |3.java.lang.Object pkg.Cl.load() | 77 c2 |7 (e
! 2 ___________________ ,' 4. model.Person pka.C3.proc(Obiect) . t—orrH &= o5) 5 . | EH 77777777 HE .

— Cache
(1) e At (4)) @ @

(a) Conceptual Overview (b) APLCache Framework Technologies

Figure 3. Adaptive Approach to Automate the Admission of Cache Content

on the most popular web frameworks to obtain application-specific information. How-
ever, the implementation is decoupled from particular caching components, cache policies
and algorithms, which can be configured through property files and annotations. There-
fore, APLCache provides a fully customizable environment to be used with the proposed
approach to automate the admission of cacheable content. The analysis process is per-
formed asynchronously to prevent an application performance decay—it can even run on
a dedicated machine.

4.3. Evaluation

We empirically evaluated our approach by simulating real-world workloads in three open-
source web applications, from different domains and with varying sizes. Our simulations
consisted of variations of simultaneous users constantly navigating through each applica-
tion. We tracked caching decisions, measured the application performance, and compared
the results obtained with APLCache and the cache manually implemented by developers
(human-made decisions), using the application with no cache as a baseline. There is no
automated approach to be compared with ours [Mertz and Nunes 2018].

Figure 4(a) shows that our approach cached a higher number of cacheable meth-
ods (47%-300%) than the human-made decisions. It indicates that developers may be
conservative while identifying cacheable methods, mainly because they cache all calls to
the method, not just selected combinations of inputs and outputs as in our approach. Re-
garding performance, measured by throughput (number of requests handled per second)
shown in Figure 4(b), our approach provided improvements in all cases, with gains rang-
ing from 3% to 17% with respect to human-made caching. As conclusion, our approach
not only reduced development time and effort, and thus costs, by automating a task that
is currently manual, but also surpassed the improvements made by developers.

5. Final Remarks

Our work consists of substantial theoretical and practical advances towards the systematic
development and automation of application-level caching, by providing contributions in
many directions. First, it provides an introduction to this relevant topic with a survey
and taxonomy of the state-of-the-art for both practitioners and researchers. Second, it
investigates the state-of-practice leading to fruitful insights associated with application-
level caching as well as structured knowledge (in the form of patterns and guidelines)

EN

Without Caching

N

@ Human-made Caching
@ APLCache

System Total H A HNA

Cloud Store 812 4 8 4
Pet Clinic 205 1 4 1
Shopizer 5212 15 22 15

[N SEN
1802

(=)
o 5 o
© g B
N

Requests handled per second
with 5 simultaneous users

B2 OO ONSA~O O

Pet Clinic Shopizer Cloud Store

(a) Caching Decisions (b) Throughput

Figure 4. Evaluation Results: Human-made Caching (H) vs. APLCache (A)

to support its development. Third, it proposes an adaptive approach that automates a
key task associated with this type of caching, namely admission of cache content, which
was implemented in a customizable framework and had its effectiveness demonstrated
by empirical evaluation. The relevance of our work has been recognized by the software
engineering community mainly through three publications in high impact international
journals, according to the ISI Journal Citation Reports.

e ACM Computing Surveys [Mertz and Nunes 2017b] (Qualis AI), which has one
of the highest impact factors among all computer science journals.

e [IEEE Transactions on Software Engineering [Mertz and Nunes 2017a] (Qualis
Al), which is considered the leading journal in software engineering.'

e Software: Practice and Experience (Qualis A2) [Mertz and Nunes 2018], an inter-
nationally respected journal with an emphasis on practical experience.

In addition to the great visibility of these journals, we presented our work at the
ACM Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE 2017)—a top-level software engineering
conference'—as a journal-first paper to further disseminate our work. Our initial ideas
for this work were discussed at the Workshop of Thesis and Dissertations at CBSoft
2016 [Mertz and Nunes 2016]. Finally, our approach was used in a research project in the
context of smart homes during a visit to the University of Grenoble [Mertz et al. 2017].

References

Mertz, J. and Nunes, 1. (2016). Seamless and Adaptive Application-level Caching. In VI
Workshop de Teses e Dissertacoes do CBSoft (WTDSoft 2016), pages 70-76.

Mertz, J. and Nunes, 1. (2017a). A Qualitative Study of Application-Level Caching. IEEE
Transactions on Software Engineering, 43(9):798-816.

Mertz, J. and Nunes, 1. (2017b). Understanding Application-level Caching in Web Ap-
plications: a Comprehensive Introduction and Survey of State-of-the-art Approaches.
ACM Computing Surveys (CSUR), 50(6):98:1-34.

Mertz, J. and Nunes, 1. (2018). Automation of application-level caching in a seamless
way. Software: Practice and Experience. https://doi.org/10.1002/spe.2571.

Mertz, J., Zapalowski, V., Lalanda, P., and Nunes, I. (2017). Autonomic management of
context data based on application requirements. In IJECON 2017, pages 8622—-8627.

'See doi.org/10.1016/3.infsof.2006.08.004 and csrankings.org.

