
Packing subgraphs in a graph

Gordana Manić, Yoshiko Wakabayashi

�
Departamento de Ciência da Computação do IME–USP, São Paulo – SP

gocam@ime.usp.br, yw@ime.usp.br

Abstract. For a fixed family
�

of graphs, an
�

-packing of a graph � is a set of
pairwise vertex-disjoint (or edge-disjoint) subgraphs of � , each isomorphic to
an element of

�
. We focus on the algorithmic aspects of the problem of finding

an
�

-packing that maximizes the number of covered edges. We present results
for

�������
	��
and

���
���
�����
	��
. For

���
���
	��
, we present approximation

algorithms for bounded degree graphs, improving the ratio known for the gen-
eral case. When

��������������	��
, we study the vertex-disjoint version. We prove

that this problem is APX-hard even on graphs with maximum degree � . Further-
more, we present a ������� ��!#" -approximation algorithm for arbitrary graphs, and
a $�%&� -approximation algorithm for graphs with maximum degree � .

1. Introduction

The maximum matching problem is a classical combinatorial optimization problem,
known to be polynomially solvable. A natural generalization of this problem is that of
finding an

�
-packing of a given graph � , where

�
is a fixed family of graphs. More

precisely, this problem is the following. Given a graph � , find a set of pairwise vertex-
disjoint (or edge-disjoint) subgraphs of � , each isomorphic to an element of

�
, that covers

a maximum number of edges of � . We consider two variants of this problem: the vertex-
disjoint and the edge-disjoint cases. Apart from its theoretical interest, this problem is
also important from practical point of view, as it arises naturally in applications such as
scheduling.

We point out that there is another variant of the
�

-packing problem, in which the
objective is to maximize the number of vertices that are covered. This variant is ')(-
hard, even when

�
consists of a single graph that has a component with at least three

vertices [Hell and Kirkpatrick 1983]; and also when
�

contains only complete graphs
with at least three vertices [Hell and Kirkpatrick 1984]. On the other hand, this (vertex
version) problem is polynomially solvable for some non-trivial families

�
, and many

important results in matching theory can be generalized to those cases. For example
when

�*�+���
��� %�%�% ���-,�� , .0/1� , these authors showed in 1984 that this problem is in (.

Approximation algorithms for '2(-hard
�

-packing problems have been investi-
gated for only a few families

�
. Among these families, a distinguished one is

�3�4���5	6�
,

the classical triangle packing problem. This, apparently simple case, still lacks more sat-
isfactory results, and is one of the subjects of our study. Another case we investigate here

1974

is when
�3�4���
�����
	��

. For all of them the objective is to maximize the number of edges
that are covered.

To distinguish the different problems we shall investigate here, we define each of
them and give a mnemonic name. We denote by VTP (resp. ETP) the Vertex-Disjoint
Triangle Packing (resp. Edge-Disjoint Triangle Packing) problem: given a graph � , find
a collection of vertex-disjoint (resp. edge-disjoint) triangles in � that has a maximum
cardinality. The problem ��� (arises in scheduling, while ��� (has applications in com-
putational biology [Caprara and Rizzi 2002]. Both problems are well known to be ')(-
hard (see [Karp 1975] and [Holyer 1981]). Note that both problems are

���5	��
-packing

problems (maximizing a collection of triangles in the packing is equivalent to finding a
collection of triangles that cover a maximum number of edges of �).

For the problems ��� (and ��� (one of the most relevant results was obtained
by [Hurkens and Schrijver 1989]. They designed a simple local search algorithm for the
maximum � -set packing problem which gives a (

	� � !)-approximation algorithm for
both ��� (and ��� (. This ratio is tight and is the best approximation ratio known so
far for both problems. There are only a few more results concerning maximum trian-
gle packings. Both problems admit a polynomial-time approximation scheme on planar
graphs [Baker 1994] and � -precision unit disk graphs (a result proved by Hunt et al. in
1998). The problem ��� (is ')(-complete when restricted to chordal graphs, while it is
polynomially solvable on split graphs and cographs [Guruswami et al. 2001].

The remaining of this paper is organized as follows. In Sections 2 and 3 we present
results for the problems ��� (and ��� (. We show a (�	�
 �

	� � !)-approximation algorithm
for ��� (on graphs with maximum degree 4, and a � 	 -approximation algorithm for ��� (
on graphs with maximum degree 5. We also give an exact linear-time algorithm for ��� (
on indifference graphs (or, equivalently, proper interval graphs). In Section 4 we show
results for the

���
������	��
-packing problem. We prove that the vertex-disjoint version of

this problem is � (�
 -hard even on graphs with maximum degree � . Furthermore, we
present a � ����� � !�" -approximation algorithm for arbitrary graphs, and a $�%&� -approximation
algorithm for graphs with maximum degree � . Finally, in Section 5 we mention some
ideas on how to extend the results for the

��� �����
	��
-packing problem to obtain results for

the
���
� � %�%�% ����,6� -packing problem.

1.1. Notation and some basic results

All graphs considered here are simple. Furthermore, for the problems ��� (and ��� (
we assume that the input graph is such that each of its edges belongs to some triangle;
these graphs will be called irredundant. We denote by ��� (- � (resp. ��� (- �), the prob-
lem ��� ((resp. ��� () on graphs with maximum degree � . We recall that both ��� (- �
and ��� (- � can be solved in polynomial time, whereas ��� (- � and ��� (- � are �)(�
 -
hard [Caprara and Rizzi 2002].

For a given collection � of sets, any subcollection of pairwise disjoint sets is called
a packing of � . The maximum � -set packing problem (where � is a positive integer) is

1975

defined as follows: given a collection � of sets of size � over a certain domain, find
a largest packing of � . Let ��� ��� " (resp. ��� ��� ") denote the collection of the sets of
vertices (resp. edges) of all triangles in � . When referring to ��� ��� " (resp. ��� � � ") we
adopt the convention that the packing refers to a subcollection of pairwise vertex-dsjoint
(resp. edge-disjoint) sets. Then ��� ((resp. ��� () can be stated as follows: given a graph
� , find a maximum size packing of ��� ��� " (resp. ��� ��� "). We also refer to a collection
of vertex-disjoint (resp. edge-disjoint) triangles of a graph � as a packing of ��� � � "
(resp. ��� ��� ").

The algorithm of [Hurkens and Schrijver 1989] for the maximum � -set packing
problem of a given collection � will be denoted as

�
	 � � � � " . It is a local search greedy
heuristic that, for a fixed positive integer � , starting with any collection of � -sets, while
possible, it replaces at most � � $ � -sets in the current collection with a set of ��
��
disjoint � -sets that are not in the current collection, and updates the current collection. Its
approximation ratio is � ��� � ! , where ! depends on � .
2. Vertex-disjoint triangle packing (VTP)

In this section we focus on the vertex-disjoint triangle packing problem. The terminology
we use is standard. One exception is that, when we write � ��� (for ������� or �������)
we assume that isolated vertices and edges that do not belong to any triangle on the graph
obtained by deleting � from � have been removed as well. Graphs � and � intersect
if ����� is a non-empty graph. The degree of a triangle � in a graph � , �� �!�)" , is
the number of triangles in � , different from � , that intersect � . We denote by ��� the
collection of all triangles in � , and by "$# �&% �&'�(the triangle with vertices # ,

%
and

'
. If

two triangles � � and � � of � have only one vertex in common and there is no other triangle
in � that intersects both � � and � � , we say that the subgraph � �*) � � is a butterfly in � ,
and denote by

%,+.-!+0/
the only vertex in common to � � and � � . A collection � of vertex-

disjoint triangles in � is locally optimal in � if
� � +21 ��3 � � is a maximum packing of

the family
� � +21 �43 ��� � � intersects a triangle in � � .

2.1. The problem 57698 on graphs with maximum degree :
We describe in this section an algorithm, called ��� �.; , for ��� (on graphs with maximum
degree 4. This algorithm performs some approximation-preserving reductions to trans-
form the input graph � into another graph �=< in which every triangle intersects at most �
other triangles. Then, on the intersection graph of ����> it applies the (� �
 � 	� � � 	@?
 � 	A � ;)-
approximation algorithm of [Chlebı́k and Chlebı́ková 2004], which we denote by BDC 	 �E;
(where � is a fixed integer parameter), for the problem of finding a maximum cardinality
independent set of vertices on graphs with maximum degree � . We note that for � � � the
above ratio is slightly less than $�% � � ; and for � /GF � it is slightly less than $�% � .

In each iteration of the algorithm ��� �H; , a set �I� ��� , J �DJK
 � , locally optimal in
� is repeatedly added to LNM (the set to be returned by the algorithm) and � is updated. If
� contains a triangle � with degree greater than � , the algorithm finds a certain subgraph

1976

� that contains � and applies an appropriate reduction (in a way that in the reduced graph
the triangles obtained by this reduction have degree at most �). The reduction is based on
the number of triangles in � that forms a butterfly with a triangle not in � .

Algorithm ����� ;
Input: A graph � with maximum degree � .
Output: A set of vertex-disjoint triangles in � .� � M��
	�

while exists a triangle in � with degree greater than �
� while exists
���
 � , �
���� � , locally optimal in � A ������������
 �
� if exists a triangle !#"$
 � with % � �&!'�)(��*

then + � maximal connected irredundant subgraph of � that,
contains ! and does not contain any butterfly- .'/ �10 ! < "$
 /3254 a triangle in
 �76
 / that forms a butterfly with ! < in �98:

if � .;/ �=< � then apply R �>%@?A���B��+C�D
else if � . / �E<GF� F then 0 take a triangle H! in
 / , IBJ@K / � H!ML C NPO�O�QR����+TSVUXW+ �Y8�E�

if � .;/ �@< � then I�J@K / � C NZO�O�Q[����+C��\� � M � � M L$I�J@K /� � if �^]< 	 then
� M � � M L`_bacId� ; � intersection graph of
 � �� � for every application of R �\%@?A���e��+C� do R �>f>��NPg@�@��+C��*

return
� M

Each of the procedures is described next in more detail.

1. A h>hPi@���6� �0" : Add � to L M and delete from � the vertices of all triangles in � .
2. C j@kCkCl ��� � " : Set m 1 �on . While � p�Tn , find a triangle � locally optimal in � ,

add � to m and delete � + from � . Return m .
3. R iH #qhPi�� � " : Take � < � � < <�3Mr / and s� < � s� < <�3 ����t � / such that � <) s� < and � < <) s� < <

are butterflies in � (possibly s� < � s� < <). Let	�u�v + > + > > 1 �4� � < � � < < �) C j=kCkCl ��� � � � + > � � + > > " �	�u�v + > + > > 1 �4� � < �) C j@kCkCl ��� � � � + > � % + > > W+ > > " �	�u�v + > + > > 1 �4� � < < �) C j@kCkCl ��� � � � + > > � % + > W+ > " �	�u�v + > + > > 1 � C j@kCkCl ��� � � % + > W+ > � % + > > W+ > > " %
(a) If J 	�u�v + > + > > J � J 	Yu�v + > + > > J � J 	�uBv + > + > > J � J 	�uBv + > + > > J , then Accept � 	�u�v + > + > > " .
(b) If the equalities in (a) are not satisfied and s� < � s� < < , then Accept � 	�u�v + > + > > " .
(c) If J 	�u�v + > + > > J � $ � J 	�u�v + > + > > J � J 	Yu�v + > + > > J � J 	�u�v + > + > > J and s� <Yp� s� < < then apply

R iH #qhPi $ � � " :
�xw ��� � � � / t � � + >) � + > > � " ") � / �

where � / 1 � " % < �&' �&% < < (, ' is a new vertex,
% < is any vertex of � < differ-

ent from
% + > W+ > , and

% < < is any vertex of � < < different from
% + > > W+ > > . Thus,

R iH #qhPi $ � � " replaces all triangles of � , except � < and � < < , with a new
triangle � / .

1977

(d) If J 	�uBv + > + > > J � J 	Yu�v + > + > > J � J 	Yu�v + > + > > J � J 	�u�v + > + > > J �5$ and s� < p� s� < < , then apply
R iH #qhPi � � � " :

� w ��� � � / ") � �/) �
�/ �

where � �/ 1 � " % + > W+ > �@' � �&'�(, �
�/ 1 � " ' �&' ���@% + > > W+ > > (and

' � , ' ,
' �

are new
vertices. Hence, this reduction replaces all triangles of � with the new
triangles � �/ and � �/ .

4. R i � � j .Bi � � " :
(a) If the reduction applied to � was R iH #qhPi $ � � " , then if � / belongs toL M before applying R i � � j�.ei � � " , this procedure removes � / from L M

and adds to it the set
	�u�v + > + > > (computed in the procedure R iH #qhPi � � ");

if � < � � < < 3�L M , then L M w L M) 	�uBv + > + > > ; if � <�3�L M , � < <0�34L M , thenL M w L M) 	�u�v + > + > > ; and if � < �3 L M , � < <�3 L M , then L M w L M) 	�u�v + > + > > .
(b) If, however, the reduction applied to � was R iH K#qh>i � � � " , then if � �/ be-

longs to L M before applying R i � � j�.ei � � " , this procedure adds
	Yu�v + > + > > toL M and removes � �/ ; if � �/ 3 L M , then adds

	�u�v + > + > > to L M and removes� �/ ; and if � �/ � � �/ �3 L M , then adds
	Yu�v + > + > > to L M .

Making use of the structural properties of the input graph, maximum degree � and ir-
redundancy (maintained in each iteration), we can prove that the graph � defined in the
algorithm is isomorphic to one of the graphs in Figure 1. Thus, for each iteration of ��� � ; ,
the cardinality of r / in line

�
is less than � . If J r / J�
�$, then � " � / (is a component of

� and
	�u�v /

is an optimal solution in that component. We can also prove that R iH #qhPi $,
R iH #qhPi � (and the corresponding restoration) and A hPh>i@��� are all approximation-preserving
reductions, and thus the approximation ratio of ��� �,; is that of BDC 	 �0; .
� ��
�

�
�

(a)

� ��
� �	�
�

(b)

��
�

�����
(d)

� ��
�

�
�

�
�

�
� ������

(c)
�
�

�� �
�

�
�

�
� �

�����
(e)

Figure 1. Possible configurations of graph + . Each square vertex is a ver-
tex common to two triangles in � whose union is a butterfly. The graph (c)
has at least

-
vertices.The graphs (d) and (e) have at least

D
vertices, and

��� U /�� is a component of � (in (d) dashed lines indicate edges not in � /).

Theorem 2.1 The algorithm ��� �.; is a � � �
 �
	� � � 	@?
 � 	A � ; " -approximation algorithm for

��� (- � . It has time complexity � ����� � ;"! " , where � is the order of the input graph.

2.2. The problem 57698 on indifference graphs

For the next result we use the following characterization obtained by Looges and Olariu
in 1993: a graph � is an indifference graph if, and only if, there exists a linear order #
(which we call canonical) on ��� such that, for every choice of vertices # ,

%
,
'

we have
that if #$# % # ' and # ' 3 ��� � then # % �&%K' 3 � � .

1978

Algorithm �������������
	��
	�����	
Input: An indifference graph � of order � .
Output: A maximum set of vertex-disjoint triangles in � .
$ Find a canonical order

% � # %�� # ����� # %�� on ���
� L M w n
� for l w $ to � � �
� do if

%��!%���� � 3 � � then
� � w " %�� �&%���� � �@%���� � (, L M w L M) � , �^w � � � + �

� return L M
It is not difficult to prove that the algorithm above solves ��� (on

indifference graphs. Since the canonical order can be computed in linear
time [Looges and Olariu 1993], it follows that the algorithm is linear.

3. Edge-disjoint triangle packing (ETP)
We restrict now our attention to graphs with maximum degree 5 and describe an approxi-
mation algorithm, called ��� � , for the problem ��� (on such graphs.

Algorithm ��� �
Input: A graph � with maximum degree � .
Output: A set of edge-disjoint triangles in � .
$ L M w n
� while � contains a Hajos graph � � � "$� � � � � � � 	@((see the figure)
� do

� L M w L M) � � � � � � � � 	6� , �xw � � � / �
� return L M) � � 1 � + 3 � 	 � � � ��� " � ��" �

� ��
��

�

+0/+.-
+��

Lemma 3.1 The algorithm
�
	 � ��� ��� " � ��" is a � 	 -approximation algorithm for the prob-

lem ��� (- � on graphs � that do not contain a Hajós graph.

Theorem 3.2 The algorithm ��� � is a � 	 -approximation algorithm. Furthermore, its ratio
� 	 is tight and it can be implemented to run in ��� �

	
" time, where � is the order of the input

graph.

4. Packing edges and triangles
In this section we focus on the

��� � ���
	��
-packing problem. For simplicity, we abbreviate

it as � � � 	 -packing problem. We recall that when the objective is to maximize the number
of covered vertices, the corresponding problem is polynomially solvable (see Section 1).
In view of this fact, it is rather surprising that the following result holds.

Theorem 4.1 The � � � 	 -packing problem is APX-hard even on graphs with maximum
degree � .

The proof of this result is very elaborate. We show an � -reduction from theB �
 � 	 ��� � problem, which is known to be APX-complete. We based our proof on the
idea used in [Caprara and Rizzi 2002] to show the � (�
 -completeness of the ��� (prob-
lem. We also have a simpler proof showing that the � � � 	 -packing problem is APX-hard
on graphs with maximum degree 5.

1979

4.1. Approximation algorithms for ������� -packing

We consider in this section an algorithm denoted by L ��� 	 that works as follows: first
it finds in the input graph � a maximal collection � of vertex-disjoint triangles, then
removes this collection of triangles from � and finds in the remaining graph a maximum
matching m ; then returns �) m .

Theorem 4.2 Let �
	���
 be a � -approximation algorithm for the ��� (problem which
produces for any input graph � a maximal vertex-disjoint set of triangles in � . Then the
algorithm L ��� 	 is a � $ � �	 � " -approximation algorithm for the � � � 	 -packing problem.

Proof. [sketch] Let � be a graph and L the solution returned by the algorithm L ��� 	
applied to � . Let � be an optimal solution for the � � � 	 -packing problem on �
with the largest possible number of triangles in common with L . Let � � (resp. j �),�
1l
 � , be the number of triangles of L (resp. �) that intersect exactly l vertices
of ��� (resp. ���). Observe that ��� and j�� must be zero. We now define i � (resp. i��) as
the number of edges in m�� that intersect at least one (resp. none of) triangle of L . Let
� < 1 � � ��� +���� � � + . Note that a matching of �9< can be obtained by taking one edge
of each triangle of � that has exactly one vertex in common with a triangle of L , and
taking the edges of m�� that have no vertex in common with any triangle of L . Hence,
as m!� is a maximum matching of �9< , we have J m!� J
" j � � i�� . From this inequality,
the facts that i �
 �,� � �N� � and �E� 	 � �,� � �N� � � ��j 	 � �Bj � � j � we obtain the desired ratio.

Corollary 4.3 There is a �
	� � !#" -approximation algorithm for the � � � 	 -packing prob-

lem.

Proof. Apply Theorem 4.2 taking �#	���
 1 ���
	 � ��� ��� " � ��" .
Corollary 4.4 There is a $#% � -approximation algorithm for the � � � 	 -packing problem on
graphs with maximum degree � .

Proof. It follows from Theorem 4.2 and Theorem 2.1.

5. Concluding remarks
A more precise analysis of the algorithm L ��� 	 , using some ideas similar to the one we used
in Theorem 4.2, shows that this algorithm is in fact a ����� -approximation (a result obtained
by R. Yuster). Recently, we have generalized the ideas used in this proof and obtained ap-
proximation results for the

������� %�%�% ���-,�� -packing problem (see [Chataigner et al. 2007]).
Basically, we have shown that for this problem, a simple greedy algorithm has approxi-
mation ratio � ; and a more sophisticated algorithm that uses the heuristic of Hurkens and
Schrijver yields ratios smaller than � for . � � and . � � . The results mentioned in
Sections 2–4 appear in [Manić and Wakabayashi 2005]. They are part of the thesis of the
first author (supervised by the second author). The full text of the thesis can be found at
http://www.ime.usp.br/ $ gocam/tese gordana www.ps.

1980

References

Baker, B. S. (1994). Approximation algorithms for NP-complete problems on planar
graphs. J. Assoc. Comput. Mach., 41(1):153–180.

Caprara, A. and Rizzi, R. (2002). Packing triangles in bounded degree graphs. Inform.
Process. Lett., 84(4):175–180.

Chataigner, F., Manić, G., Wakabayashi, Y., and Yuster, R. (2007). Approximation algo-
rithms and hardness results for the clique packing problem. Extended abstract accepted
to EuroComb 2007, to appear in Electronic Notes in Discrete Mathematics (full paper
submitted to a journal).

Chlebı́k, M. and Chlebı́ková, J. (2004). On approximability of the independent set prob-
lem for low degree graphs. In Lecture Notes in Computer Science 3104, pages 47–56.
Springer.

Guruswami, V., Pandu Rangan, C., Chang, M. S., Chang, G. J., and Wong, C. K. (2001).
The

�-,
-packing problem. Computing, 66(1):79–89.

Hell, P. and Kirkpatrick, D. (1983). On the complexity of general graph factor problems.
SIAM J. Comput., 12(3):601–609.

Hell, P. and Kirkpatrick, D. (1984). Packings by cliques and by finite families of graphs.
Discrete Math., 49:45–59.

Holyer, I. (1981). The NP-completeness of some edge-partition problems. SIAM J. Com-
put., 10(4):713–717.

Hurkens, C. A. J. and Schrijver, A. (1989). On the size of systems of sets every � of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM J. Discrete Math., 2(1):68–72.

Karp, R. M. (1975). On the computational complexity of combinatorial problems. Net-
works, 5(1):45–68.

Looges, P. J. and Olariu, S. (1993). Optimal greedy algorithms for indifference graphs.
Comput. Math. Appl., 25(7):15–25.

Manić, G. and Wakabayashi, Y. (2005). Packing triangles in low degree graphs and in-
difference graphs. In Discrete Math. and Theoretical Computer Science, volume AE –
EuroComb 2005 special volume, pages 251–256 (full paper submitted to a journal).

1981

