Structuring General and Complete Quantum Computations in
Haskell: The Arrows Approach

Juliana Kaizer Vizzotto!, Orientador: Ant dnio Carlos da Rocha Cost&?,
Co-orientador: Amr Sabry?

IPPGC - Instituto de Informatica - Universidade Federal do Rio Grande do Sul
Caixa Postal 15.064 — 91.501-970 — Porto Alegre — RS — Brazil

2PPGI — Escola de Informatica - Universidade Catolica de Pelotas
Pelotas, RS

3Computer Science Department, Indiana University, Bloomington, USA

jkv@nf.ufrgs. br, rocha@tl as. ucpel .tche. br, sabry@s.indi ana. edu

Abstract. In this thesis we argue that a realistic model for quantum computa-
tions should be general with respect to measurements, and complete with respect
to the information flow between the quantum and classical worlds. We thus
structure general and complete quantum programming in Haskell using well
known constructions from classical semantics and programming languages, like
monads and arrows. The result connects “generic” and “complete” quantum
features to well-founded semantics constructions and programming languages.

1. Introduction

Quantumcomputation [Nielsen and Chuang 2000] can be understodcasformation

of information encoded in the state ofjgantumphysical system. Its basic idea is to en-
code data using quantum bits (qubits). Differently from the classical bit, the qubit can be
in asuperpositiorof basic states leading to “quantum parallelism”, which is an important
characteristic of quantum computation since it can greatly increase the speed processing
of algorithms. However, quantum data types are computationally very powerful not only
due to superposition. There are other odd propertiestikasuremerandentangled

In this thesis we argue that a realistic model for quantum computations should be
generalwith respect to measurements, ammnpletewith respect to the information flow
between the quantum and classical worlds. We thus structure general and complete quan-
tum programming in the functional programming language Haskell [Jones et al. 1999]
using well known constructions from classical semantics and programming languages,
like monads[Moggi 1989] andarrows [Hughes 2000]. In more detail, this thesis fo-
cuses on the following contributions: inderstanding of quantum effects via monads
and arrows Quantum parallelism, entanglement, and measurement certainly go beyond
“pure” functional programming. We have shown that quantum parallelism can be mod-
elled using a slightly generalisation of monads calletexed monadsor Kleisli struc-
tures We have also shown that quantum measurement can be explained using a more
radical generalisation of monads, the so-cadedws more specificallyindexed arrows
which we define in this thesis. This result connects “generic” and “complete” quan-
tum features to well-founded semantics constructions and programming languages; ii)

1990

a computational interpretation of quantum mechanics. Ithaught experiment, Ein-

sten, Podolsky, and Rosen demonstrate some counter-intuitive consequences of quantum
mechanics [Bell 1987]. The basic idea is that two entangled particles appear to always
communicate some information even when they are separated by arbitrarily large dis-
tances. There has been endless debate on this topic, but it is interesting that, as proposed
by Amr Sabry [Sabry 2003], this strangeness can be essentially modelled by assignments
to global variables. We build on that, and model entanglement using the general notions
of computational effects embodied in monads and arrows.

The article is structured as follows. Section 2 describes a monadic approach for
“pure” (without measurement) quantum programming in Haskell. In Section 3, after mod-
elling density matrices and superoperators in Haskell, we structure this model for “gen-
eral” quantum computations (including measurements) using a generalisation of monads
called indexed arrows. In Section 4 we deal with “complete” quantum computations (in-
cluding communication between quantum and classical data). Section 5 concludes. The
thesis described in this article is available@tp: / / www. i nf . uf rgs. br/ ~j kv/ t hesi s. pdf .

2. Modeling Quantum Effects I: State Vectors as Indexed Monads

The traditional model of quantum computing is based on vector spaces)ovitialized
vectorsto model computational states anditary transformationdo model physically
realizable quantum computations. The idea is that information processing is physically
realized via alosed quantum system.

In a closed quantum system, the evolutiorergersible(also calledstrict or pure),
that is, it is only given by means of unitary gates; measurements, which modetehe
actionwith external world, are not considered. Therefore, in this context, the quantum
computational process is considered like a black box, where information can be input and
then read at the end of the process.

There are some intrinsic differences between classical and quantum programming
due to the nature of quantum states and operations acting on these states. One can empha-
size two main characteristics of quantum programming: i) quantum parallelism, which
is caused by the quantum superposition phenomenon and expresgectdmstates; ii)
global (possible entangled) quantum state, which is why not all composed vectors, that
model a quantum state, can be decomposed into their subparts. Each operation is global,
yet in quantum circuits this global action is hidden. Abstractly, the application of a spe-
cific operation to a specifisubspacef the vector space is achieved by the application
of an operation to the whole space which carries the identity to the remaining subspaces.
The semantics of any quantum programming language needs to take care of that.

In this section we present a monadic approach for quantum programming in
Haskell and show how to structure quantum state vectors using monads, so that the appli-
cation of unitary transformations to state vectors is modelled bpitietoperation.

2.1. Indexed Monads

A monad is used for formulating definitions and structumegons of computationpos-
sibly non-functional) in programming languages. In this contexagram which fea-
tures notions of computations, can be viewed asnation from values to computations.

1991

For instance a program with exceptions can be viewed as a furthtekes a value and
returns acomputatiorthat may succeed or may fail.

In Haskell, a monad is represented using a type constructor for computations
and two functions:

return :: forall a.a — m a
>=::forall a b.om a — (a — m b) — m b

The operations= (pronounced “bind”) specifies how to sequence computations and
return specifies how to lift values to computations. The requirement®f/ in the
definitions above state that the constructor is induced by an endofunasome value
categoryC. Then,m is a type constructor acting @il objectsfrom the value category.

However, sometimes we want selectsome objects (sets) from to apply the
constructofl’. This notion is slightly more general than monads, and it is captured by the
definition ofKleisli structure[Altenkirch and Reus 1999]. Basically, fordexed monads
(as we prefer to call Kleisli structures), the functibrdoes not need be an endofunctor on
C. We can select some objects frahio apply the constructor. This is exactly the notion
we need to model quantum state vectb@s monads. The constructor for a quantum
vector can only act over the types which constitute a basis.

Now, the definitions ofeturn and>= in Haskell should be rephrased as:

return :: forall a.F a = a — m a
>=forall a b.F a,F b= ma— (a > mb)—mb

That is, for alla for which F' a holds we can apply the constructer, and for alla andb
for which ' « andF' b hold we can apply==. To construe a proper @amdexedmonad,
the return and>>= functions must work according to the monad laws [Moggi 1989].

2.2. Vectors

Given a setu representing observable (classical) values, ileasisset, a pure quantum

state is a vectoi — C which associates each basis element with a complex probability
amplitude. In Haskell, a finite setcan be represented as an instance of the dass;,

shown below, in which the constructbisis :: [a] explicitly lists the basis elements. The
basis elements must be distinguishable from each other, which explains the constraint
Eq a on the type of elements:

class Eq a = Basis a where basis :: [a]
type K = Complex Double
type Veca =a — K

The typeK (notation from the base field) is the type of probability amplitudes.

The monadic functions for vectors are defined as:

return :: Basis a = a — Vec a

return a b = if a = b then 1.0 else 0.0

(>=) :: (Basis a, Basis b) = Vec a — (a — Vec b) — Vec b
va>=f=Xb— sum [(va a)* (f ab) | a«— basis]

ITha is, a function which associates each basis element with a complex probability amplitude.

1992

return just lifts values to vectors, andnd, given aunitary operator(i.e., unitary opera-
tor) represented as a functian— Vec b, and given alec a, returns aVec b (that is, it
specifies how d’ec a can be turned in &ec b).

Proposition 1 The indexed monatlec satisfies the required equations for monads.

Examples of vectors over the set of booleans may be defined as follows:

instance Basis Bool where
basis = [False, True]

qFalse, qTrue, qF'T, gFF'mT :: Vec Bool
qFalse = return False
qTrue = return True

qF'T = (1 /V?2) $x (qFalse ‘mplus* qTrue)

The first two are unit vectors corresponding to basis elements; the last two represent
states which are in equal superpositiong‘afse and True. In the Dirac notation, these
vectors would be respectively written agalse, | True), %ﬂ False)+ | True)), and

%(\ False)— |True)). The operation§x, and‘mplus’, are the usual scalar product, and
sum of vectors, respectively.

Unitary operations can also be defined directly, for example:

type Uni a b =a — Vec b
hadamard :: Uni Bool Bool

hadamard False = qF'T
hadamard True = qgFmT

3. Modeling Quantum Effects Il: Superoperators as Indexed Arrows

While the state vector model of quantum computing is still widely considered as a conve-
nient formalism to describe quantum algorithms, using measurements to deal with de-
coherence or noise, to make quantum computingnéeractive process, and even to

steer quantum computations has been considered a novel alternative, for instance see-
[Aharonov et al. 1998, Raussendorf et al. 2003, Danos et al. 2005].

In this section we review the general model of quantum computations, includ-
ing measurements, based on density matrices and superoperators. After expressing it in
Haskell, we establish that the superoperators used to express all quantum computations
and measurements are an instance of the conceptlexed arrowsa generalisation of
monads. The material presented on this section was published in [Vizzotto et al. 2006a].

3.1. Indexed Arrows

To handle situations where monads are inapplicable, Hughes [Hughes 2000] introduced
a new abstraction generalising monads, cadledws. Indeed, in addition to defining a
notion of procedure which may perform computational effects, arrows may have a static
component, or may accept more than one input.

Just as we think of a monadic type « as representing @omputatiordelivering
ana, so we think of an arrow type b ¢ as representing a computation with input of type
b delivering ac. Arrows make the dependence on input explicit.

1993

arr :: forall b c.(b—c¢) —abc
(>):forallbcdabc—acd—abd
first :: forall b ¢ d.a b ¢ — a (b,d) (¢, d)

In other words, to be an arrow, a typenust support the three operatians:, >>, andfirst
with the given types. The functicerr allows us to lift “pure” functions to computations.
The function>> composes two computations. The functi@rst allows us to apply an
arrow in the context of other data.

Observe the requirements fofrall in the definitions. They mean that we can build
computations on top dll value functions. However, as with monads, we wargetect
some specific value functions. This is the case for quantum functions: we want to lift
simple functions acting on thieasiselements to functions acting on vectors over those
basis. Hence we definedexed arrows

arr: (I b, I ¢)=(b—c)—abc
(>):(Ublc,Ild)=abc—acd—abd
first (I 0,1 c¢,1d)=abc—al(bd) (c,d)

The operations for arrows olindexed arrows must satisfy the arrow
laws [Hughes 2000], such that these operations are well-defined even with arbitrary per-
mutations and change of associativity.

3.2. Superoperators as Indexed Arrows

Intuitively, density matrices can be understood as a statistical perspective of the state
vector. In the density matrix formalism, a quantum state that used to be modelled by a
vectorv is now transformed in a matrix in such a way that #raplitudes of the state
vector turn into a kind of probability distributions over state vectors

type Dens b = Vec (b, b)

Mappings between density matrices are caflederoperators

type Super b ¢ = (b, b) — Dens c

We represent a superoperator mirroring a big matrix, so mapping values to density matri-
ces (thatisSuper b ¢ = (b,b) — (¢, c) — K).

Just as the probability effect associated with vectors is modelled ibgexed
monadbecause of thé&asis constraint, the typ&uper is modelled by anndexed arrow
because the types include the additional constraint requiring the elements to form a set of
basis values (the definition farr, >, andfirst for Super are in [Vizzotto et al. 2006a]).

Using thisgeneralmodel of quantum computations structured as arrows we can
elegantly express quantum computations involving measurements. However, that work is
strictly based on quantum data, we can not express algorithms with combined interactions
of quantum and classical operations directly. Yet as noted in [Gay and Nagarajan 2005,
Unruh 2005] acompletemodel for expressing quantum algorithms should accommodate
both measurements and combined interactions of quantum and classical data.

1994

4. Modeling Quantum Effects Ill: Mixed Programs with Density Operators
and Classical Outputs as Indexed Arrows

The model presented in last section is purely quantum. However, various quantum
algorithms are explained in terms of tlhmterchangingof quantum and classical in-
formation?. For instance, quantum teleportation is a traditional example of an algo-
rithm which is based on two quantum process communicatinglaessical data There

is interest to consider anixed model for quantum computations involvingeasure-
mentsand theinformation flowbetween quantum and classical processes (for instance,
see [Raussendorf et al. 2003, Gay and Nagarajan 2005, Unruh 2005]).

On the other hand, the finding of a representation that is suitable for representing
both the results of unitary transformations and measurement operations should also be put
into perspective.

That is, we would like that the same representational framework be able to take
care of both: (1) the task of representing theantum stateesulting from a unitary op-
eration applied to a given quantum state, and (2) the task of representing the pair of
information coming out from a measurement, namely: (2a) that corresponding to the
measurement valueroduced by the measurement (one of the eigen-values of the mea-
surement operator), and (2b) theantum statehat results from the projection imposed
on the original quantum state by the measurement (one of the eigen-vectors of the mea-
surement operator).

The main problem introduced by the need of that uniformity is that measurement
results (both value and state results) are of a probabilistic kind, nesdiagf possible
resultsfor their representation. The usual alternative solution to such problem is the
density matrix formalism.

Hence, in this section we present a modelrfokedor combinedquantum com-
putations based on a measurement approach over density matrices. We call mixed or
combined quantum computation any computation transforming a combined state, with
classical and quantum data. Essentially, the idea is to have a density operator representing
the (global) quantum part, and a probability distribution of classical values representing
the classical part of the state. A quantum program acting on this combined state is in-
terpreted by a speciéilacing superoperatgrwhich in the general case traces out part of
the state, returning a classical output, and leaving the system in a new state (possibly in a
space with reduced dimension). The material presented on this section has been published
in [Vizzotto et al. 2006D].

4.1. Programs with Density Matrices

Because the tracing superoperator in genfergletspart of the state, we define a relation
between bases which we célkc (from decompositioh

class (Basis a, Basis b, Basis 0) = Dec a b o where
dec:: [a] — [(D, 0)]

specifying that a basis can be written agb, o). Then, a quantum program fromto
b, parameterised by, the type of the input classical probability distribution, andhe

2By interchanging we mean, for instance, a measurement in the middle of the computation.

1995

part to be measured, is represented by a superoperatornftorh, ddivering a classical
probability distribution ovep.

type DProb ¢ = [(c, Prob)]
type QProgram i o a b = (DProb i, (a,a)) — (DProb o, Dens b)

Note that the programs should satisfy the restriciiza o b o, and thatDProb i is used
in classical operations or quantum operations controlled by classical data.

As any type can be decomposed by timt (), and can be decomposed by itself,
and also can be decomposed into one of its parts.

Any unitary operator can be lifted to a quantum program which trace§) out

uni2qprog :: (Basis a, Basis b, Basis i, Dec a b ()) =
Lin a b — QProgram i () a b

The functionuni2qprog constructs a quantum program, acting on a combined state, from
a unitary operator. The idea is to apply the default construction to build a superoperator
from a unitary transformation. Note that the classical input is ignored and the classical
output is empty: there is no interaction with the classical world when considering unitary
transformations. For instance:

hadamardP :: QProgram i () Bool Bool
hadamardP = uni2qprog hadamard

lifts the unitary operatohadamard to a quantum program acting on a combined state.

Given, a quantum state over a basis(geth), the quantum progranrR forgets
theright component, returning a new state ovei he subspace is measured before being
discharged outputting a classical probability distribution over the basis which forms that
subspace. In this case, the input classical data is just ignored.

trR :: (Basis a, Basis b, Dec (a,b) a b) = QProgram i b (a,b) a

trA :: (Basis a, Basis i, Dec a () a) = QProgram i a a ()
Similarly, the programnirA forgets (measures) all quantum state returning only a classical
probability distribution as the result. To construe the classical probability distribution we

consider that any value from the type being measgegthppear in the output quantum
state. Hence each value from the basis is attached to the probability

We define the three functiongyr, >, andfirst, over QProgram i o leaving to
the following proposition:

Proposition 2 The indexed arrow)Program i o satisfies the required equations for
arrows.
5. Conclusion

We have presented a general and complete model for combined (quantum and classical)
computations structured as arrows. The work is a stepping stone to develop a language in
which the classical, probabilistic, and quantum layers are separate.

1996

References

Aharonov, D., Kitaev, A., and Nisan, N. (1998). Quantum circuits with mixed states. In
Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages
20-30. New York: ACM Press.

Altenkirch, T. and Reus, B. (1999). Monadic presentations of lambda terms using gener-
alized inductive types. IRroc. Computer Science Logic

Bell, J. S. (1987). On the Einstein-Podolsky-Rosen paradok?]lpages 14—-21. Cam-
bridge University Press.

Danos, V., Hondt, E. D. ., Kashefi, E., and Panangaden, P. (2005). Distributed
measurement-based quantum computation. In Selinger, P., élivaeedings of the
3rd International Workshop on Quantum Programming Languages, Electronic Notes
in Theoretical Computer Science, Chicago, USA. [S.|.] Elsevier Science.

Gay, S. J. and Nagarajan, R. (2005). Communicating quantum procesgescéedings
of the 32nd ACM Symposium on Principles of Programming Languages

Hughes, J. (2000). Generalising monads to arrddaence of Computer Programming,
37:67-111.

Jones, S. P., Hughes, J., Augustsson, L., Barton, D., Boutel, B., Burton, W., Fasel,
J., Hammond, K., Hinze, R., Hudak, P., Johnsson, T., Jones, M., Launchbury, J.,
Meijer, E., Peterson, J., Reid, A., Runciman, C., and Wadler, P. (199®&skell
98: A Non-strict, Purely Functional Languagehtt p: // www. haskel | . or g/
onl i nereport/.

Moggi, E. (1989). Computational lambda-calculus and monad$?rdceedings of the
Fourth Annual Symposium on Logic in computer sciepeges 14-23. IEEE Press.

Nielsen, M. A. and Chuang, I. L. (2000Quantum Computation and Quantum Informa-
tion. Cambridge University Press.

Raussendorf, R., Browne, D., and Briegel, H. (2003). Measurement-based quantum com-
putation with cluster state®hys. Rey.A 68 (2003).

Sabry, A. (2003). Modeling quantum computing in HaskellPhoceedings of the ACM
SIGPLAN workshop on Haskeflages 39—-49. ACM Press.

Unruh, D. (2005). Quantum programs with classical output stre&iestronic Notes in
Theoretical Computer Sciencgrd International Workshop on Quantum Programming
Languages, to be published.

Vizzotto, J. K., Altenkirch, T., and Sabry, A. (2006a). Structuring quantum effects: Super-
operators as arrowsournal of Mathematical Structures in Computer Science: special
issue in quantum programming languag&§:453—-468.

Vizzotto, J. K., Costa, A. C. R., and Sabry, A. (2006b). Quantum arrows in haskell. In
Proc. 4th International Workshop on Quantum Programming Languages, Oxford. to
appear in Electronic Notes in Theoretical Computer Science (ENTCS).

1997

