
Structuring General and Complete Quantum Computations in
Haskell: The Arrows Approach

Juliana Kaizer Vizzotto1, Orientador: Ant ônio Carlos da Rocha Costa12,
Co-orientador: Amr Sabry 3

1PPGC – Instituto de Informática - Universidade Federal do Rio Grande do Sul
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

2PPGI – Escola de Informática - Universidade Católica de Pelotas
Pelotas, RS

3Computer Science Department, Indiana University, Bloomington, USA

jkv@inf.ufrgs.br, rocha@atlas.ucpel.tche.br, sabry@cs.indiana.edu

Abstract. In this thesis we argue that a realistic model for quantum computa-
tions should be general with respect to measurements, and complete with respect
to the information flow between the quantum and classical worlds. We thus
structure general and complete quantum programming in Haskell using well
known constructions from classical semantics and programming languages, like
monads and arrows. The result connects “generic” and “complete” quantum
features to well-founded semantics constructions and programming languages.

1. Introduction

Quantumcomputation [Nielsen and Chuang 2000] can be understood astransformation
of information encoded in the state of aquantumphysical system. Its basic idea is to en-
code data using quantum bits (qubits). Differently from the classical bit, the qubit can be
in asuperpositionof basic states leading to “quantum parallelism”, which is an important
characteristic of quantum computation since it can greatly increase the speed processing
of algorithms. However, quantum data types are computationally very powerful not only
due to superposition. There are other odd properties likemeasurementandentangled.

In this thesis we argue that a realistic model for quantum computations should be
generalwith respect to measurements, andcompletewith respect to the information flow
between the quantum and classical worlds. We thus structure general and complete quan-
tum programming in the functional programming language Haskell [Jones et al. 1999]
using well known constructions from classical semantics and programming languages,
like monads[Moggi 1989] andarrows [Hughes 2000]. In more detail, this thesis fo-
cuses on the following contributions: i)understanding of quantum effects via monads
and arrows. Quantum parallelism, entanglement, and measurement certainly go beyond
“pure” functional programming. We have shown that quantum parallelism can be mod-
elled using a slightly generalisation of monads calledindexed monads, or Kleisli struc-
tures. We have also shown that quantum measurement can be explained using a more
radical generalisation of monads, the so-calledarrows, more specifically,indexed arrows,
which we define in this thesis. This result connects “generic” and “complete” quan-
tum features to well-founded semantics constructions and programming languages; ii)

1990

a computational interpretation of quantum mechanics. In athought experiment, Ein-
sten, Podolsky, and Rosen demonstrate some counter-intuitive consequences of quantum
mechanics [Bell 1987]. The basic idea is that two entangled particles appear to always
communicate some information even when they are separated by arbitrarily large dis-
tances. There has been endless debate on this topic, but it is interesting that, as proposed
by Amr Sabry [Sabry 2003], this strangeness can be essentially modelled by assignments
to global variables. We build on that, and model entanglement using the general notions
of computational effects embodied in monads and arrows.

The article is structured as follows. Section 2 describes a monadic approach for
“pure” (without measurement) quantum programming in Haskell. In Section 3, after mod-
elling density matrices and superoperators in Haskell, we structure this model for “gen-
eral” quantum computations (including measurements) using a generalisation of monads
called indexed arrows. In Section 4 we deal with “complete” quantum computations (in-
cluding communication between quantum and classical data). Section 5 concludes. The
thesis described in this article is available athttp://www.inf.ufrgs.br/∼jkv/thesis.pdf.

2. Modeling Quantum Effects I: State Vectors as Indexed Monads

The traditional model of quantum computing is based on vector spaces, withnormalized
vectorsto model computational states andunitary transformationsto model physically
realizable quantum computations. The idea is that information processing is physically
realized via aclosed quantum system.

In a closed quantum system, the evolution isreversible(also calledstrict or pure),
that is, it is only given by means of unitary gates; measurements, which model theinter-
action with external world, are not considered. Therefore, in this context, the quantum
computational process is considered like a black box, where information can be input and
then read at the end of the process.

There are some intrinsic differences between classical and quantum programming
due to the nature of quantum states and operations acting on these states. One can empha-
size two main characteristics of quantum programming: i) quantum parallelism, which
is caused by the quantum superposition phenomenon and expressed byvectorstates; ii)
global (possible entangled) quantum state, which is why not all composed vectors, that
model a quantum state, can be decomposed into their subparts. Each operation is global,
yet in quantum circuits this global action is hidden. Abstractly, the application of a spe-
cific operation to a specificsubspaceof the vector space is achieved by the application
of an operation to the whole space which carries the identity to the remaining subspaces.
The semantics of any quantum programming language needs to take care of that.

In this section we present a monadic approach for quantum programming in
Haskell and show how to structure quantum state vectors using monads, so that the appli-
cation of unitary transformations to state vectors is modelled by thebind operation.

2.1. Indexed Monads

A monad is used for formulating definitions and structuringnotions of computations(pos-
sibly non-functional) in programming languages. In this context, aprogram, which fea-
tures notions of computations, can be viewed as afunction from values to computations.

1991

For instance a program with exceptions can be viewed as a functionthat takes a value and
returns acomputationthat may succeed or may fail.

In Haskell, a monad is represented using a type constructor for computationsm

and two functions:

return :: forall a.a → m a

>>= ::forall a b.m a → (a → m b)→ m b

The operation>>= (pronounced “bind”) specifies how to sequence computations and
return specifies how to lift values to computations. The requirements offorall in the
definitions above state that the constructor is induced by an endofunctorT in some value
categoryC. Then,m is a type constructor acting onall objectsfrom the value category.

However, sometimes we want toselectsome objects (sets) fromC to apply the
constructorT . This notion is slightly more general than monads, and it is captured by the
definition ofKleisli structure[Altenkirch and Reus 1999]. Basically, forindexed monads
(as we prefer to call Kleisli structures), the functionT does not need be an endofunctor on
C. We can select some objects fromC to apply the constructor. This is exactly the notion
we need to model quantum state vectors1 as monads. The constructor for a quantum
vector can only act over the types which constitute a basis.

Now, the definitions ofreturn and>>= in Haskell should be rephrased as:

return :: forall a.F a ⇒ a → m a

>>= ::forall a b.F a,F b ⇒ m a → (a → m b)→ m b

That is, for alla for whichF a holds we can apply the constructorm, and for alla andb

for which F a andF b hold we can apply>>=. To construe a proper orindexedmonad,
thereturn and≫= functions must work according to the monad laws [Moggi 1989].

2.2. Vectors
Given a seta representing observable (classical) values, i.e. abasisset, a pure quantum
state is a vectora → C which associates each basis element with a complex probability
amplitude. In Haskell, a finite seta can be represented as an instance of the classBasis,
shown below, in which the constructorbasis :: [a] explicitly lists the basis elements. The
basis elements must be distinguishable from each other, which explains the constraint
Eq a on the type of elements:

class Eq a ⇒ Basis a where basis :: [a]
type K = Complex Double

type Vec a = a → K

The typeK (notation from the base field) is the type of probability amplitudes.

The monadic functions for vectors are defined as:

return :: Basis a ⇒ a → Vec a

return a b = if a ≡ b then 1.0 else 0.0

(>>=) :: (Basis a,Basis b)⇒ Vec a → (a → Vec b)→ Vec b

va >>= f = λb → sum [(va a) ∗ (f a b) | a ← basis]

1That is, a function which associates each basis element with a complex probability amplitude.

1992

return just lifts values to vectors, andbind , given aunitary operator(i.e.,unitary opera-
tor) represented as a functiona → Vec b, and given aVec a, returns aVec b (that is, it
specifies how aVec a can be turned in aVec b).

Proposition 1 The indexed monadVec satisfies the required equations for monads.

Examples of vectors over the set of booleans may be defined as follows:

instance Basis Bool where

basis = [False,True]

qFalse, qTrue, qFT , qFmT :: Vec Bool

qFalse = return False

qTrue = return True

qFT = (1 /
√

2) $∗ (qFalse ‘mplus‘ qTrue)

The first two are unit vectors corresponding to basis elements; the last two represent
states which are in equal superpositions ofFalse andTrue. In the Dirac notation, these
vectors would be respectively written as| False〉, | True〉, 1√

2
(| False〉+ | True〉), and

1√
2
(|False〉− |True〉). The operations$∗, and‘mplus ′, are the usual scalar product, and

sum of vectors, respectively.

Unitary operations can also be defined directly, for example:

type Uni a b = a → Vec b

hadamard :: Uni Bool Bool

hadamard False = qFT

hadamard True = qFmT

3. Modeling Quantum Effects II: Superoperators as Indexed Arrows
While the state vector model of quantum computing is still widely considered as a conve-
nient formalism to describe quantum algorithms, using measurements to deal with de-
coherence or noise, to make quantum computing aninteractiveprocess, and even to
steer quantum computations has been considered a novel alternative, for instance see-
[Aharonov et al. 1998, Raussendorf et al. 2003, Danos et al. 2005].

In this section we review the general model of quantum computations, includ-
ing measurements, based on density matrices and superoperators. After expressing it in
Haskell, we establish that the superoperators used to express all quantum computations
and measurements are an instance of the concept ofindexed arrows, a generalisation of
monads. The material presented on this section was published in [Vizzotto et al. 2006a].

3.1. Indexed Arrows
To handle situations where monads are inapplicable, Hughes [Hughes 2000] introduced
a new abstraction generalising monads, calledarrows. Indeed, in addition to defining a
notion of procedure which may perform computational effects, arrows may have a static
component, or may accept more than one input.

Just as we think of a monadic typem a as representing acomputationdelivering
ana, so we think of an arrow typea b c as representing a computation with input of type
b delivering ac. Arrows make the dependence on input explicit.

1993

arr :: forall b c.(b → c)→ a b c

(>>>) :: forall b c d .a b c → a c d → a b d

first :: forall b c d .a b c → a (b, d) (c, d)

In other words, to be an arrow, a typea must support the three operationsarr, ≫, andfirst
with the given types. The functionarr allows us to lift “pure” functions to computations.
The function≫ composes two computations. The functionfirst allows us to apply an
arrow in the context of other data.

Observe the requirements offorall in the definitions. They mean that we can build
computations on top ofall value functions. However, as with monads, we want toselect
some specific value functions. This is the case for quantum functions: we want to lift
simple functions acting on thebasiselements to functions acting on vectors over those
basis. Hence we defineindexed arrows:

arr :: (I b, I c)⇒ (b → c)→ a b c

(>>>) :: (I b, I c, I d)⇒ a b c → a c d → a b d

first :: (I b, I c, I d)⇒ a b c → a (b, d) (c, d)

The operations for arrows orindexed arrows must satisfy the arrow
laws [Hughes 2000], such that these operations are well-defined even with arbitrary per-
mutations and change of associativity.

3.2. Superoperators as Indexed Arrows

Intuitively, density matrices can be understood as a statistical perspective of the state
vector. In the density matrix formalism, a quantum state that used to be modelled by a
vectorv is now transformed in a matrix in such a way that theamplitudes of the state
vector turn into a kind of probability distributions over state vectors.

type Dens b = Vec (b, b)

Mappings between density matrices are calledsuperoperators:

type Super b c = (b, b)→ Dens c

We represent a superoperator mirroring a big matrix, so mapping values to density matri-
ces (that is,Super b c ≡ (b, b)→ (c, c)→ K).

Just as the probability effect associated with vectors is modelled by aindexed
monadbecause of theBasis constraint, the typeSuper is modelled by anindexed arrow
because the types include the additional constraint requiring the elements to form a set of
basis values (the definition forarr , >>>, andfirst for Super are in [Vizzotto et al. 2006a]).

Using thisgeneralmodel of quantum computations structured as arrows we can
elegantly express quantum computations involving measurements. However, that work is
strictly based on quantum data, we can not express algorithms with combined interactions
of quantum and classical operations directly. Yet as noted in [Gay and Nagarajan 2005,
Unruh 2005] acompletemodel for expressing quantum algorithms should accommodate
both measurements and combined interactions of quantum and classical data.

1994

4. Modeling Quantum Effects III: Mixed Programs with Density Operators
and Classical Outputs as Indexed Arrows

The model presented in last section is purely quantum. However, various quantum
algorithms are explained in terms of theinterchangingof quantum and classical in-
formation 2. For instance, quantum teleportation is a traditional example of an algo-
rithm which is based on two quantum process communicating viaclassical data. There
is interest to consider amixed model for quantum computations involvingmeasure-
mentsand theinformation flowbetween quantum and classical processes (for instance,
see [Raussendorf et al. 2003, Gay and Nagarajan 2005, Unruh 2005]).

On the other hand, the finding of a representation that is suitable for representing
both the results of unitary transformations and measurement operations should also be put
into perspective.

That is, we would like that the same representational framework be able to take
care of both: (1) the task of representing thequantum stateresulting from a unitary op-
eration applied to a given quantum state, and (2) the task of representing the pair of
information coming out from a measurement, namely: (2a) that corresponding to the
measurement valueproduced by the measurement (one of the eigen-values of the mea-
surement operator), and (2b) thequantum statethat results from the projection imposed
on the original quantum state by the measurement (one of the eigen-vectors of the mea-
surement operator).

The main problem introduced by the need of that uniformity is that measurement
results (both value and state results) are of a probabilistic kind, needingsets of possible
results for their representation. The usual alternative solution to such problem is the
density matrix formalism.

Hence, in this section we present a model formixedor combinedquantum com-
putations based on a measurement approach over density matrices. We call mixed or
combined quantum computation any computation transforming a combined state, with
classical and quantum data. Essentially, the idea is to have a density operator representing
the (global) quantum part, and a probability distribution of classical values representing
the classical part of the state. A quantum program acting on this combined state is in-
terpreted by a specialtracing superoperator, which in the general case traces out part of
the state, returning a classical output, and leaving the system in a new state (possibly in a
space with reduced dimension). The material presented on this section has been published
in [Vizzotto et al. 2006b].

4.1. Programs with Density Matrices

Because the tracing superoperator in generalforgetspart of the state, we define a relation
between bases which we callDec (from decomposition):

class (Basis a,Basis b,Basis o)⇒ Dec a b o where

dec :: [a]→ [(b, o)]

specifying that a basisa can be written as(b, o). Then, a quantum program froma to
b, parameterised byi , the type of the input classical probability distribution, ando, the

2By interchanging we mean, for instance, a measurement in the middle of the computation.

1995

part to be measured, is represented by a superoperator froma to b, delivering a classical
probability distribution overo.

type DProb c = [(c,Prob)]
type QProgram i o a b = (DProb i , (a, a))→ (DProb o,Dens b)

Note that the programs should satisfy the restrictionDec a b o, and thatDProb i is used
in classical operations or quantum operations controlled by classical data.

As any type can be decomposed by theunit (), and can be decomposed by itself,
and also can be decomposed into one of its parts.

Any unitary operator can be lifted to a quantum program which traces out().

uni2qprog :: (Basis a,Basis b,Basis i ,Dec a b ())⇒
Lin a b → QProgram i () a b

The functionuni2qprog constructs a quantum program, acting on a combined state, from
a unitary operator. The idea is to apply the default construction to build a superoperator
from a unitary transformation. Note that the classical input is ignored and the classical
output is empty: there is no interaction with the classical world when considering unitary
transformations. For instance:

hadamardP :: QProgram i () Bool Bool

hadamardP = uni2qprog hadamard

lifts the unitary operatorhadamard to a quantum program acting on a combined state.

Given, a quantum state over a basis set(a, b), the quantum programtrR forgets
theright component, returning a new state overb. The subspace is measured before being
discharged outputting a classical probability distribution over the basis which forms that
subspace. In this case, the input classical data is just ignored.

trR :: (Basis a,Basis b,Dec (a, b) a b)⇒ QProgram i b (a, b) a

trA :: (Basis a,Basis i ,Dec a () a)⇒ QProgram i a a ()

Similarly, the programtrA forgets (measures) all quantum state returning only a classical
probability distribution as the result. To construe the classical probability distribution we
consider that any value from the type being measuredcanappear in the output quantum
state. Hence each value from the basis is attached to the probability1.

We define the three functions,arr , >>>, andfirst , overQProgram i o leaving to
the following proposition:

Proposition 2 The indexed arrowQProgram i o satisfies the required equations for
arrows.

5. Conclusion

We have presented a general and complete model for combined (quantum and classical)
computations structured as arrows. The work is a stepping stone to develop a language in
which the classical, probabilistic, and quantum layers are separate.

1996

References

Aharonov, D., Kitaev, A., and Nisan, N. (1998). Quantum circuits with mixed states. In
Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages
20–30. New York: ACM Press.

Altenkirch, T. and Reus, B. (1999). Monadic presentations of lambda terms using gener-
alized inductive types. InProc. Computer Science Logic.

Bell, J. S. (1987). On the Einstein-Podolsky-Rosen paradox. In[?] , pages 14–21. Cam-
bridge University Press.

Danos, V., Hondt, E. D. ., Kashefi, E., and Panangaden, P. (2005). Distributed
measurement-based quantum computation. In Selinger, P., editor,Proceedings of the
3rd International Workshop on Quantum Programming Languages, Electronic Notes
in Theoretical Computer Science, Chicago, USA. [S.l.] Elsevier Science.

Gay, S. J. and Nagarajan, R. (2005). Communicating quantum processes. InProceedings
of the 32nd ACM Symposium on Principles of Programming Languages.

Hughes, J. (2000). Generalising monads to arrows.Science of Computer Programming,
37:67–111.

Jones, S. P., Hughes, J., Augustsson, L., Barton, D., Boutel, B., Burton, W., Fasel,
J., Hammond, K., Hinze, R., Hudak, P., Johnsson, T., Jones, M., Launchbury, J.,
Meijer, E., Peterson, J., Reid, A., Runciman, C., and Wadler, P. (1999).Haskell
98: A Non-strict, Purely Functional Language. http://www.haskell.org/
onlinereport/.

Moggi, E. (1989). Computational lambda-calculus and monads. InProceedings of the
Fourth Annual Symposium on Logic in computer science, pages 14–23. IEEE Press.

Nielsen, M. A. and Chuang, I. L. (2000).Quantum Computation and Quantum Informa-
tion. Cambridge University Press.

Raussendorf, R., Browne, D., and Briegel, H. (2003). Measurement-based quantum com-
putation with cluster states.Phys. Rev., A 68 (2003).

Sabry, A. (2003). Modeling quantum computing in Haskell. InProceedings of the ACM
SIGPLAN workshop on Haskell, pages 39–49. ACM Press.

Unruh, D. (2005). Quantum programs with classical output streams.Electronic Notes in
Theoretical Computer Science. 3rd International Workshop on Quantum Programming
Languages, to be published.

Vizzotto, J. K., Altenkirch, T., and Sabry, A. (2006a). Structuring quantum effects: Super-
operators as arrows.Journal of Mathematical Structures in Computer Science: special
issue in quantum programming languages, 16:453–468.

Vizzotto, J. K., Costa, A. C. R., and Sabry, A. (2006b). Quantum arrows in haskell. In
Proc. 4th International Workshop on Quantum Programming Languages, Oxford. to
appear in Electronic Notes in Theoretical Computer Science (ENTCS).

1997

