
Classifying Linux Memory Consumption Patterns Based on
Self-Organizing Maps

Mauricio T. N. G. Lin2, Edjard de S. Mota1, Ilias Biris2

1Departamento de Ciência da Computação
Universidade Federal do Amazonas (UFAM)

Manaus – AM – Brazil

2Instituto Nokia de Tecnologia (INdT)
Manaus – AM – Brazil

{mauricio.lin,ilias.biris}@indt.org.br, edjard@dcc.ufam.edu.br

Abstract. The problem of memory exhaustion with restricted memory still
sparks long discussions inside the Linux kernel developers community. The cur-
rent implementation to treat the memory exhaustion in Linux is named as Out
of Memory Killer and its algorithm to select processes for termination requires
more investigation in terms of memory consumption behaviour. This paper de-
scribes a methodology to classify memory consumption patterns of Linux ap-
plications based on a neural network model known as Self-Organizing Maps.
A tool was developed to provide the practical opportunity to apply this mecha-
nism for the classification of memory consumption patterns related to real Linux
applications use cases.

1. Introduction

The Linux operating system is increasingly supporting features of embedded computing
[Singh 2004]. Although new improvements are developed for embedded systems, the
problem of memory exhaustion in Linux and the current approach to solve it, aptly named
asOut of Memory (OOM) Killer, has sparked long discussions at Linux kernel community.
OOM is even more critical on embedded systems which have little main memory and no
swap space, such as palmtops and cell phones [Lin et al. 2005].

The process selection algorithm of OOM Killer, which selects which processes
are going to be terminated when OOM conditions occur, could be further investigated in
terms of classes of memory consumption patterns. The lack of scientific works related
to memory exhaustion in Linux motivated us to develop a methodology to identify and
classify the behaviour of memory consumption in Linux. In this paper we summarize such
methodology on desktop computers and the experimental results described in [Lin 2006].

The analysis of our method reveals an open road of experiments on embedded
systems. The proposed methodology is based onSelf-Organizing Maps (SOM). SOM can
provide a way to classify memory consumption patterns thus helping the verification of
which applications are responsible for memory allocations that may eventually bring a
Linux-based system to OOM condition. The use of SOM provides important results since
it can represent large quantities of memory consumption collected data on a topographic
map. Using a topographic map permits us to trace the progress of memory consumption

2003



for an application, thus leading to an identification of its memoryconsumption behaviour
related to an use case scenario.

The rest of this work is structured as follow. In Section 2 we briefly introduce the
concepts of SOM. In Section 3 we give a short description of our method. In Section 4
we summarize the experimental results. Finally, in Section 5 we address our conclusions.

2. Self-Organizing Maps - SOM

SOM is an unsupervised artificial neural network that consists in a lattice of artificial
neurons whose weights are adjusted to match input vectors provided in a training set
[Borgelt 2000, Honkela 1997].

SOM neurons are placed on a lattice usually 2-dimensional. Neurons become se-
lectively tuned to various input patterns or stimulations during the learning or training
process. During tuning the neurons are placed in an ordered manner on the lattice cre-
ating a meaningful coordinate system for different input features. When the training is
complete, a topographic map of input patterns is formed [Borgelt 2000, Haykin 1999].
The initial synaptic weights of artificial neurons are set arbitrarily. Once all neurons have
their weights initialized properly, three important operations occur during the formation
of SOM [Haykin 1999]. These are described below:

• Competition: For each input pattern, the artificial neurons compute their corre-
sponding values based on a discriminant function. The return value of this func-
tion provides the means for the competition between neurons. The neuron with
highest discriminant function value is the winner.

• Cooperation: The winning neuron establishes a spatial location of topological
neighborhood of active neurons, providing in this manner the cooperation among
neighbouring neurons.

• Synaptic adaptation:Excited neurons have their individual values of discrimi-
mant function increased in relation to the input patterns. This is accomplished by
adjusting their corresponding synaptic weights.

The SOM technique described here is able to classify memory consumption pat-
terns based on application use cases, since the set of collected data of memory consump-
tion can be used as SOM input data.

3. A Methodology to Classify Memory Consumption Patterns

In terms of amount of memory size allocated and released we cannot have an absolute
definition. What is small or large memory are all qualitative measures which depend on
the hardware being used and the kinds of applications targeted to run on it. However,
independent from the hardware constraints we can have an abstract model of allocated
and released memory. This can be classified via the following memory allocation/release
patterns: small chunks of memory cells, big chunks of memory cells, alternated chunks
of small and big cells, alternated sequences of small chunks followed by a big chunk of
cells, alternated sequences of big chunks followed by a small chunk of cells and random
senquence of small and big chunks of cells.

Moreover the frequency of memory usage is also included to classify memory
consumption patterns, since its indicates how fast the memory chunks are allocated and

2004



released. Hence the relevant variables for classifying memory consumption patterns can
be defined as follows:

• Size of physical memory usage;
• Memory usage variation (MUV)indicates the frequency of memory consumption.

MUV is given byMUV =
mem2−mem1

t2−t1
, where mem1 andmem2 are the size of

physical memory usage at instantt1 andt2, respectively.
• Rate of memory usage variation (RMUV)indicates the frequency of MUV. RMUV

is given byRMUV =
muv2−muv1

t2−t1
, where muv1 andmuv2 are the memory usage

variation at instantt1 andt2, respectively.

Classes of memory consumption patterns are based on size of physical memory
usage, MUV and RMUV properties. Each property can be assigned asLow (L), Medium
(M) andHigh (H) state and represents respectively, the set of small, medium and large
numbers in an interval of known values. The size of physical memory usage can, qualita-
tively speaking, be in any of the states{Low, Medium, High}. Analogously, MUV and
RMUV follow the same qualitative classification and they are divided equally in 6 parts,
since their values also include negative numbers.

The data employed to model the memory consumption patterns are represented by
the triple〈memory, muv, rmuv〉. Classes that consume high memory have the first element
of triple 〈memory, muv, rmuv〉at state H and is consideredcritical as illustrated in Table
1.

Critical Classes
〈Hmem,±Lmuv,±Lrmuv〉 〈Hmem,±Lmuv,±Mrmuv〉 〈Hmem,±Lmuv,±Hrmuv〉

〈Hmem,±Mmuv,±Lrmuv〉 〈Hmem,±Mmuv,±Mrmuv〉 〈Hmem,±Mmuv ,±Hrmuv〉

〈Hmem,±Hmuv,±Lrmuv〉 〈Hmem,±Hmuv,±Mrmuv〉 〈Hmem,±Hmuv,±Hrmuv〉

Table 1. Triples belong to critical classes of memory consumption.

Classes regarded as potential candidates to reach the high memory comsumption
correspond to memory usage at state M, MUV and/or RMUV at state H. If MUV and
RMUV are high and the physical memory usage is about to leave from state M and get in
the state H, then there is big chance to reach a high state of memory consumption. Classes
that hold this behaviour are named aspotentially critical.

SOM organizes topologically the classes of memory consumption in different re-
gions. Each region corresponds a pattern of memory consumption. Our SOM applied for
classification of memory consumption patterns is comprised of critical, potentially critical
and stable regions. Stable regions are triples not defined in critical or potentially critical
classes. The practical considerations related to this theoretical approach of applying SOM
technique for classifying memory consumption patterns are described in Section 4.

4. Experimentation of SOM to Classify Memory Consumption Patterns

Use cases scenario are designed to provide a way to collect data for SOM training and ver-
ify the memory consumption pattern for each scenario after the SOM training. Memory
consumption patterns are not related just to the type of application, but also the manner it
is used in different scenarios. The selected applications for our use cases are: Gpdf PDF

2005



viewer, Galeon web browser, Totem video player, Gedit text editorand Gthumb image
viewer.

A graphical interface based on GTK was developed to view the topographic map
of SOM before and after the training. Colors are used to exhibit the synaptic adaptation of
all neurons in the lattice before and after the SOM training. The colors representation is
conceivable because the vector (memory, muv, rmuv) can be mapped to the 3 basic color
components (red, green, blue), known as RGB. Each component of the vector (memory,
muv, rmuv) is firstly mapped in the interval [0, 1]. Such mapping is mandatory, since the
components of neurons weight vector are values in [0, 1] during the SOM training. After
the training process, the weight vector is finally transformed in the color vector, composed
by RGB elements, and presented to the user visualization.

A graphical tool named as SOM was developed to identify the memory behaviour
of application use cases, and we carried out experiments of 13 different use cases. In order
to demonstrate how our methodology is able to classify memory consumption patterns,
for lack of space, just 2 of them are exemplified in this work as follows. Figures 1 and
2 illustrate how the SOM tool displays gradually the memory consumption progress of
Galeon and Gedit use cases, respectively. Galeon use case consists in loading several web
pages sequentially. Gedit use case consists in creating a new text file, typing thousands
characters and saving the changes to the disk.

The trained SOM for classifying memory consumption patterns is depicted in
Figs. 1(a) and 2(a). The critical region is represented by the pink region and in-
cludes the instance〈Hmem,±Lmuv,±Lrmuv〉, while the stable region are composed by
the blue, green, black and magenta regions. Such regions correspond respectively to the
instances〈Lmem,±Lmuv,±Lrmuv〉, 〈Lmem, +Lmuv, +Hrmuv〉, 〈Lmem,−Hmuv,−Hrmuv〉
and 〈Mmem,±Lmuv,±Lrmuv〉. The white regions in other figures correspond the area
visited by the application use cases that represent their memory consumption profile.

(a) (b) (c) (d) (e)

Figure 1. Memory consumption progress of Galeon use case.

(a) (b) (c) (d) (e)

Figure 2. Memory consumption progress of Gedit use case.

2006



As you can notice in Figures 1(b), 1(c), 1(d) and 1(e), the Galeon use case presents
an stable memory consumption, since the visited areas cover just the blue region along its
execution time. Gedit use case behaves differently, since the visited areas occupy firstly
the blue region, as depicted in Figures 2(b) and 2(c), and gradually the magenta and part
of pink regions are occupied later, as depicted in Figures 2(d) and 2(e). So Gedit use case
presents an unstable memory consumption as the critical region is also occupied. Hence
SOM tool can provide an alternative mechanism to empirically identify and classify the
memory consumption patterns of an application use case.

5. Conclusions
This paper presented an approach to classify the memory consumptions patterns by em-
ploying a self-organizing neural network. Our SOM tool can be used to analyze the
memory consumption behaviour of application use cases and show the scenarios an ap-
plication that consumes memory excessively. The quality of classification provided by
SOM tool depends if the set of data used during the training can cover real use cases. In
our experiments the training took around 7 hours for 13 use cases that correspond about
16.000 samples of input data.

We delineate our experiments in running on a Intel Xeon 2.06Ghz machine with 1
GB of RAM memory and 2 GB of swap space, so further investigations on embedded de-
vices are important for extending this work. Our approach does not guarantee a workable
OOM Killer process selection algorithm based on SOM, because no experiments were
involved in the OOM Killer context. Additional measurements to compare the current se-
lection algorithm of OOM Killer with our methodology are relevant in order to determine
which approach is more viable when OOM happens. Thus the integration of our SOM
mechanism with embedded Linux OOM Killer is also important, since our motivation for
implementing a memory consumption classifier originates from the framework proposed
in [Lin et al. 2005].

References
Borgelt, C. (2000). Self-organizing map training visualization. http://fuzzy.cs.uni-

magdeburg.de/˜borgelt/doc/somd/. School of Computer Science - Otto-von-Guericke-
University of Magdeburg.

Haykin, S. (1999).Neural Networks: A Comprehensive Foundation. Prentice Hall, 2nd
edition.

Honkela, T. (1997).Self-Organizing Maps in Natural Language Processing. PhD thesis,
Helsinki University of Technology - Neural Networks Research Centre, P.O. Box 2200
FIN-02015 HUT, FINLAND. http://www.mlab.uiah.fi/˜timo/som/thesis-som.html.

Lin, M. (2006). Metodologia para classificação de padrões de consumo de memória
no linux baseada em mapas auto-organizáveis. Dissertação de Mestrado, Pro-
grama de Pós-Graduação em Informática, Universidade Federal do Amazonas.
http://www.dcc.ufam.edu.br/˜edjard/pesquisa/MSc/Lin/texto/thesis.pdf.

Lin, M., Medeiros, V., Novellino, R., Biris, I., and Mota, E. (2005). Memory management
approach for swapless embedded systems.Linux Journal, pages 36–43.

Singh, D. I. M. (2004). Embedded linux: The 2.6 kernel is ideal for specialized devices
of all sizes. http://www.linux-mag.com/2004-08/embedded01.html.

2007




