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Resumo. Este artigo apresenta um algoritmo robusto capaz de estimar os
parâmetros extrı́nsecos assumidos por uma câmera na captura dos quadros de
um vı́deo. É assumido que os parametros intrı́nsecos foram previamente estima-
dos, e que estes não variam ao longo do tempo. No final do artigo é apresentado
um exemplo de resultado aplicado à realidade aumentada.

1. Introdução
Realidade Aumentada corresponde ao processo de adicionar objetos virtuais criados por
computador sobre um vı́deo capturado por uma câmera. Tal processo pode ser realizado
em tempo real ou não. Neste artigo estamos considerando que não é exigido que o pro-
cesso seja executado em tempo real, sendo aplicável, por exemplo, para criação de efeitos
especiais em cinema.

Um dos problemas que precisa ser resolvido para o desenvolvimento de um sis-
tema de realidade aumentada é o problema de calibração, que consiste na determinação
dos parâmetros da câmera utilizados na captura dos quadro do vı́deo que se deseja
combinar com imagens sintéticas. Tais parâmetros se dividem em duas categorias: os
parâmetros intrı́nsecos, que descrevem caracterı́sticas da câmera como distância focal,
ponto principal e resolução; e os parâmetros extrı́nsecos, que descrevem a posição e
a orientação da câmera. Aqui estamos tratando de um algoritmo que determina os
parâmetros extrı́nsecos de uma câmera associados aos quadros de um vı́deo, assumindo-se
que os parâmetros intrı́nsecos foram previamente estimados.

Muitos sistemas de realidade aumentada baseiam sua calibração no estabeleci-
mento de correspondências entre pontos 3D marcados na cena, cujas coordenadas são co-
nhecidas, sobre suas respectivas projeções 2D nos quadros do vı́deo. Isto é o que ocorre,
por exemplo, em aplicações desenvolvidas utilizando-se ARToolKit. Este não é o caso
tratado aqui. No nosso caso, estamos considerando que não é permitido realizar nenhum
tipo de marcação sobre a cena, o que torna o problema de calibração mais difı́cil.

O problema de calibração é resolvido pelo acompanhamento de pontos 2D dos
quadros do vı́deo, que são projeções de um mesmo ponto 3D da cena. Considera-se que
as coordenadas 3D dos pontos que geraram tais projeções são desconhecidas. A única
hipótese assumida é que não existe movimento relativo entre as superfı́cies da cena, ou
seja, toda cena se move como um corpo rı́gido no vı́deo.

A seleção e acompanhamento de pontos 2D do vı́deo, que correspondem ao
mesmo ponto 3D da cena, é feita de forma automática, pelo algoritmo Kanade-Lucas-
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Tomasi (KLT) [Tomasi and Kanade 1991]. Este algoritmo não apresenta garantias de
correção ou precisão, por isso, são adicionadas estratégias para aumentar sua robustez.

Muitas das idéias utilizadas em nosso algoritmo de calibração foram inspiradas
em [Gibson et al. 2002]. Existem entretando grandes diferenças na estratégia empregada
para aumentar a robustez do algoritmo, destacando-se o processo apresentado por nós,
que chamamos de Ciclos de Refinamento, e que é o foco principal do artigo.

2. Definições
Com o objetivo de caracterizar formalmente o algoritmo de calibração, adotaremos as
seguintes definições:
Câmera: Uma câmera é uma função P : R3 → R2 tal que, se X ∈ R3 é a coordenada

de um ponto da cena, então P (X) é sua projeção em uma imagem.
Vı́deo: Um vı́deo é uma famı́lia finita de imagens (I)n = (I1, ..., In), onde cada imagem

Ik corresponde a um quadro captado por uma câmera.
Famı́lia de pontos homólogos: Dado um vı́deo (I)n = (I1, ..., In), dizemos que a

famı́lia (x)n = (x1, ..., xn), onde xi ∈ R2, é uma famı́lia de pontos homólogos
associada ao vı́deo (I)n se existe um ponto X ∈ R3, da cena, tal que a projeção
de X em Ij é xj , para todo j ∈ {1, ..., n}.

Matriz de pontos homólogos: Uma matriz M , m × n, formada por elementos de R2,
é uma matriz de pontos homólogos associada a um vı́deo (I)n se cada uma de
suas linhas define uma famı́lia de pontos homólogos associada a (I)n. Com
essa definição temos também que a j-ésima coluna de M corresponde aos pon-
tos homólogos do quadro Ij .

Configuração: Uma configuração é um par ((P )n , Ω), onde (P )n = (P1, . . . , Pn) é uma
famı́lia de câmeras e Ω = {X1, . . . , Xm}, com Xi ∈ R3, é um conjunto de pontos
da cena.

Explicação para famı́lias de pontos homólogos: Estabelecida uma tolerância ε ∈ R+,
definimos que uma explicação projetiva para uma famı́lia de pontos homólogos
(x)n = (x1, ..., xn) é uma configuração ((P )n , Ω) tal que ∀i ∈ {1, ..., n},
∃Xj ∈ Ω que satisfaz ‖Pi (Xj) − xi‖ < ε. Para que esta definição faça sen-
tido é necessário que a tolerância ε não seja muito grande, correspondendo no
máximo ao comprimento de alguns poucos pixels na imagem.

Explicação para matrizes de pontos homólogos: Uma explicação projetiva para uma
matriz de pontos homólogos M é uma configuração que explica todas as famı́lias
de pontos homólogos das linhas de M .

Erro de reprojeção: Se X ∈ R3 é uma estimativa para um ponto da cena que se projeta
sobre uma imagem em x ∈ R2, e P é uma estimativa para a câmera utilizada.
Definimos ‖P (X)− x‖ como sendo o erro de reprojeção de X em relação a P .

Erro de reprojeção para explicações projetivas: O erro de reprojeção associado a uma
explicação projetiva ((P )n , Ω) para uma matriz de pontos homólogos M é

n∑
i=1

m∑
j=1

‖Pi (Xj)−Mij‖2,

onde Mij é o ponto da i-ésima linha e j-ésima coluna de M .
Explicação projetiva ótima: Uma explicação projetiva para uma matriz de pontos

homólogos M é ótima, se não existe outra explicação projetiva para M com erro
de reprojeção inferior.
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3. Formalização do problema
Este artigo descreve um algoritmo que encontra uma explicação projetiva ótima para uma
matriz de pontos homólogos M , cujos elementos podem apresentar erros grosseiros. Tal
consideração faz sentido, pois os elementos de M são determinados automaticamente
aplicando-se o algoritmo KLT sobre o vı́deo (I)n, que se deseja calibrar. Os elementos
de M errados precisam ser detectados de forma automática, sendo desconsiderados no
computo do erro de reprojeção das explicações projetivas para M . Tem-se então que, se
((P )n , {X1, ..., Xm}) é a resposta do algoritmo, então (P )n é a solução para o problema
de calibração do vı́deo (I)n

1.

4. Calibração em três passos
Pode-se encontrar uma explicação projetiva Ψ = ((P )n , {X1, ..., Xm}) para uma matriz
de pontos homólogos M pela execução dos seguintes três passos [Gibson et al. 2002]:

Passo 1: Utiliza-se as colunas de M correspondentes aos pontos homólogos de um par
de quadros Ii e Ij para estimar Pi e Pj .

Passo 2: Utiliza-se o par Pi e Pj e a matriz M para estimar o conjunto {X1, ..., Xm}.

Passo 3: Utiliza-se o conjunto {X1, ..., Xm} e a matriz M para estimar a famı́lia (P )n.

Se os parâmetros intrı́nsecos da câmera são conhecidos, então, cada passo pode
ser resolvido aplicando-se técnicas de álgebra linear [Hartley and Zisserman 2003].

O problema de poderem existir erros grosseiros em M pode ser resolvido
combinando-se os três passos com o algoritmo Random Sample Consensus (RANSAC)
[Fischler and Bolles 1981]. Este algoritmo permite que sejam definidos limiares para li-
mitar o erro de reprojeção cometido na estimatição de pontos e câmeras, de forma que,
linhas de M que possuam erros grosseiros sejam desconsideradas na determinação de Ψ.

5. Ciclos de refinamento
Um dos problemas de se aplicar o algoritmo RANSAC na calibração em três passos é
a possibilidade de alguma famı́lia de pontos homólogos ser descartada indevidamente,
devido ao fato da reconstrução tridimensional realizada pelo passo 2 não apresentar boa
precisão, por ser calculada a partir de projeções obtidas por um único par de câmeras. Re-
solvemos este problema desenvolvendo um algoritmo criado a partir de uma modificação
do algoritmo de calibração feito com Levenbeg-Marquardt [Hartley and Zisserman 2003].
Conseguimos, dessa forma, selecionar de maneira mais criteriosa as famı́lias de pontos
homólogos que precisam ser efetivamente desconsideradas.

Inicialmente é determinada uma explicação projetiva ((P )n , Ω1) obtida pela
calibração em três passos. Esta solução é então refinada pela execução de um algoritmo
formado por ciclos de quatro passos:

1. Executam-se algumas iterações do algoritmo Levenbeg-Marquardt, utilizando
como estimativa inicial a explicação projetiva ((P )n , Ω1), determinando-se uma
outra explicação projetiva ((P ′)n , Ω2) de menor erro de reprojeção associado.

1Em geral, não é possı́vel associar uma matriz de pontos homólogos a um vı́deo muito longo. Neste
caso, o que se faz, é fragmentar o vı́deo em diversos vı́deos menores que são calibrados isoladamente.
Posteriormente, faz-se a junção das famı́lias de câmeras associada aos fragmentos, obtendo-se a calibração
do vı́deo original.
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Figura 1. (A) Pontos selecionados pelo KLT no inı́cio do fragmento; (B) Pontos
acompanhados pelo KLT por todo o fragmento; (C) Pontos que não foram elinina-
dos pelo RANSAC durante a calibração em três passos; (D) Pontos reconstruı́dos
pelo primeiro ciclo de refinamento; (E) Pontos reconstruı́dos pelo segundo ciclo
de refinamento.

2. Utilizam-se pares de câmeras de (P ′)n para determinar uma nova reconstrução
Ω3 para todos os pontos homólogos de M . Esse processo pode ser realizado
escolhendo-se pares de câmeras diferentes para reconstruir cada ponto de Ω3, de
forma, que cada par utilizado seja aquele que minimiza o erro de reprojeção asso-
ciado a cada ponto.

3. Descartam-se os pontos de Ω3 cujos erros de reprojeção em relação à alguma das
câmeras de (P ′)n são maiores que um limiar ξ ∈ R+. Obtém-se assim um novo
conjunto de pontos Ω4.

4. Estima-se uma nova famı́lia de câmeras (P ′′)n a partir do conjunto de pontos Ω4

e das respectivas linhas da matriz de pontos homólogos M . Com isso, obtemos
uma explicação projetiva ((P ′′)n , Ω4), que pode ser utilizada para alimentar um
novo ciclo de refinamento.

A cada ciclo pode-se utilizar um limiar ξ menor, tendo em vista que, como a
solução fica cada vez mais correta, podemos ser cada vez mais rigorosos.

Destacamos que Ω3 é determinado utilizando-se todas as linhas de M . Como
conseqüência, tem-se que #Ω3 > #Ω1. É esse fato que possibilita, que pontos descarta-
dos indevidamente durante a calibração em três passos, possam ser readmitidos durante a
execução dos ciclos de refinamento. Ou seja, torna possı́vel que se tenha #Ω4 > #Ω1.

Após terem sido executados um determinado número de ciclos de refinamento
pode-se aplicar o algoritmo Levenberg-Marquardt até sua convergência, obtendo uma
explicação projetiva, cujo erro de reprojeção associado às famı́lias de pontos homólogos
selecionadas é um mı́nimo local.

6. Resultados
A Figura 1 apresenta dois gráficos que indicam a quantidade de pontos utilizada nas diver-
sas etapas da calibração de dois fragmentos de vı́deos diferentes, com duração aproximada
de dois segundos. Cada gráfico exibe três curvas, que correspondem aos resultados asso-
ciados a seleções de 50, 100 e 150 pontos, pelo KLT, no primeiro quadro do fragmento.

O limiar de aceitação para o erro de reprojeção estabelecido para o RANSAC du-
rante a execução do algoritmo de calibração em três passos foi de 5 pixels. Após o término
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Figura 2. Quadros de um vı́deo em que foi aplicado o algoritmo apresentado
neste artigo. Os pontos marcados nas imagens foram escolhidos e acompa-
nhados automaticamente pelo algoritmo KLT, sendo utilizados pelo processo de
calibração, que estimou as câmeras empregadas na visualização do cubo.

deste algoritmo foram executados dois ciclos de refinamento, o primeiro utilizando um li-
miar ξ = 3 pixels, e um segundo utilizando um limiar ξ = 2 pixels.

Os gráficos deixam claro que, a combinação de RANSAC com ciclos de refina-
mento permite um melhor aproveitamento dos pontos acompanhados pelo KLT do que o
uso exclusivo de RANSAC. Basta observar que, a quantidade de pontos satisfazendo o
limiar de 3 pixels, adotado em (D), foi sempre maior do que a dos pontos que satisfizeram
o limiar de 5 pixels, adotado em (C), e, em muitos casos, a quantidade satisfezendo o
limiar de 2 pixels, em (E), também superou (C). Além disso, se no lugar deste processo
combinado fosse aplicado isoladamente um RANSAC com tolerância de 2, ou 3 pixels, a
quantidade de pontos descartada indevidamente seria ainda maior que a ocorrida em (C).

7. Conclusão
Apresentamos um novo algoritmo que adiciona robustez ao acompanhamento automático
de pontos em um vı́deo, no contexto de calibração de câmeras. Em vez de se utilizar
um RANSAC muito restritivo durante a calibração em três passos, utilizou-se um RAN-
SAC mais tolerante seguido por ciclos de refinamento que se tornam gradativamente mais
restritivos. Dessa forma, o descarte indevido de pontos bem acompanhados foi reduzido.

Foi desenvolvido um protótipo em que o algoritmo foi empregado em realidade
aumentada, como ilustrado na Figura 2. Na versão atual não hove preocupação com
performance, sendo este um assunto deixado para um trabalho futuro.

A versão completa deste trabalho encontra-se em www.visgraf.impa.br/ar/ar.pdf.
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