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Abstract. Grid applications are susceptible to manipulation attacks, since
nodes can act in a malicious way, corrupting the jobs results. In order to
avoid that grid users obtain uncorrected results, this paper presents a diagnosis
model for verifying integrity of the jobs processing in computational grids. The
model establishes a hierarchy among the nodes, in accordance to the historical
behavior of the nodes in the environment. A new security layer is implemented
in a grid simulator in order to validate this strategy. The results testify the
effectiveness of the model using scenarios with different quotas of malicious
nodes, providing a rate of 100% detection and 99,7% accuracy of processed
jobs.

Resumo.As aplicaç̃oes em grades estão suscetı́veis a ataques de manipulação,
uma vez que os nós podem agir de forma maliciosa, corrompendo os resultados
dos jobs processados. Para evitar que usuários obtenham resultados incorretos,
este trabalho prop̃oe um modelo de diagnóstico para verificaç̃ao de integridade
na execuç̃ao dos jobs em grades computacionais. O modelo estabelece uma
hierarquia de acordo com o histórico comportamental dos nós no ambiente.
Para validar a estrat́egia, foi implementada uma nova camada de segurança em
um simulador de grades. Os resultados obtidos atestam a eficácia do modelo
em ceńarios com diferentes taxas de nós maliciosos, oferecendo uḿındice de
detecç̃ao de 100% e acurácia de 99,7% dos jobs processados.

1. Introdução
A segurança da informação em grades computacionais envolve requisitos que vão aĺem
dos estabelecidos para as redes convencionais. Tratando-se especificamente dein-
tegridade, a maioria das soluções existentes resolve essa questão apenas no escopo
de transmiss̃ao, garantindo a ñao-violaç̃ao dos dados durante a comunicação entre as
máquinas [1]. Todavia,́e preciso garantir também a integridade dos dados durante o
processamento, de modo que os resultados das tarefas (jobs) processadas em uma grade
não sofram qualquer alteração. Caso contrário, a manipulaç̃ao de resultados compromete
a aplicaç̃ao como um todo, incidindo num alto custo em termos de desempenho. Por outro
lado, algoritmos de diagnóstico em ńıvel de sistema s̃ao comumente utilizados como uma
estrat́egia de toler̂ancia a falhas e podem ser aplicados em diferentes tipos de redes, a fim
de se conhecer quais unidades estão falhas e quais estão em pleno funcionamento [2].
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Esta abordagem tanto pode ser realizada de forma autônoma, como tamb́em considera a
natureza heterogênea e din̂amica do ambiente, caracterı́sticas intŕısecas̀as grades.

Para evitar que usuários obtenham resultados incorretos em virtude de elementos
maliciosos, este artigo apresenta um modelo de diagnóstico para toler̂ancia a falhas de
segurança em grades computacionais, abordando a verificação de integridade dos jobs.
Desta forma,é posśıvel excluir as unidades de processamento (nós) de ḿa conduta,
oferecendo, portanto, um ambiente de computação de alto desempenho formado apenas
por ńos confíaveis. Este artigo está organizado da seguinte maneira: a seção 2 apresen-
ta uma taxonomia dos nós que apresentam mau comportamento e uma visão geral sobre
diagńostico em ńıvel de sistema; a seção 3 descreve o modelo de diagnóstico para toler̂an-
cia a ataques de manipulação em grades; os cenários de simulaç̃ao e os resultados obtidos
são discutidos na seção 4; e a seç̃ao 5 traz as considerações finais e os trabalhos futuros.

2. Nós com Mau Comportamento e Diagńostico em Ńıvel de Sistema
As falhas ocasionadas por mau comportamento são classificadas na literatura como bi-
zantinas. No entanto, as falhas de mau comportamento podem ser categorizadas em
três classes, uma vez que envolvem componentes (nós) que passam a agir de maneira
inativa,egóıstaou maliciosa[3]. Os ńos inativos ñao cooperam com a rede, deixando de
encaminhar pacotes ou omitindo informações sobre seus recursos. Os nós egóıstas negli-
genciam ajuda aos demais nós, favorecendo apenas seus próprios interesses. Quanto aos
nós maliciosos, estes possuem, por exemplo, interesse em subverter os recursos da grade,
oferecer um resultado inválido, ou mesmo difundir v́ırus entre as ḿaquinas do ambiente.

A classe de ńos maliciosos pode ainda ser subdividida em três tipos:tolos,comuns
e inteligentes. Ńos tolos sempre retornam resultados arbitrários; ńos comuns retornam
resultados arbitŕarios com uma certa probabilidade; nós inteligentes agem normalmente
durante um perı́odo, at́e que passam deliberadamente a retornar resultados arbitrários com
uma certa probabilidade. Dentre as classificações de mau comportamento discutidas,
as falhas de natureza maliciosa que geram resultados corrompidos, em especial os nós
maliciosos tolos e comuns, constituem o escopo deste trabalho.

Algoritmos de diagńostico em ńıvel de sistema definem uma série de testes, cujo
conjunto de respostas (sı́ndrome) permite identificar as unidades que estão falhas. Dentre
os principais modelos de diagnóstico, destacam-se o PMC [4], ADSD [5] e MM [6]. O
uso de diagńostico em grades como estratégia contra ataques maliciosos mostra-se uma
soluç̃ao eficiente, visto que independe das plataformas de hardware e software utilizadas,
não requer o uso de esquemas “pesados” de criptografia e permite ser aplicado tanto em
grades fechadas (organizações virtuais formadas entre corporações) quanto em grades
abertas (constituı́das por hosts comuns conectadosà Internet e dispostos a doarem seus
recursos num esquema de computação volunt́aria) [7].

3. Um Modelo para Diagńostico em Grades
O modelo de diagńostico descrito neste trabalhoé utilizado como estratégia para detectar
e evitar a presença de nós maliciosos interessados em corromper os resultados das tarefas,
garantindo assim a integridade dos processos distribuı́dos em uma grade. O modelo as-
sume que o diagńosticoé realizado por todos os nós que possuem umńıvel ḿınimo de
confiabilidade, o quaĺe dado pelo seu histórico comportamental. Assim, são definidas
três entidades: ńos executores(que fornecem recursos), nós testadores(que fornecem
recursos e testam os nós executores) e nós Ultra-Confiáveis(que fornecem recursos e
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gerenciam um grupo (cluster) de nós executores e testadores, decidindo, dentre outras
atividades, queḿe ou ñao malicioso).

A reputaç̃ao, inferida atrav́es de tarefas de testes (test-jobs), determina o status de
cada ńo. Nós com alta reputação s̃ao considerados melhores fornecedores de recursos e
por isso tendem a possuir maior status. Nós maliciosos que são detectados trapaceando
possuem menor reputação e, portanto, tendem a serem excluı́dos. A Figura 1 ilustra a
estrat́egia de diagńostico, onde dois ńos do sistema, A e B atuando como testadores,
enviam dois test-jobs diferentes para um nó C, atuando como executor (a). O nó C execu-
ta a tarefa e devolve os resultados para os respectivos testadores (b). Em seguida, os nós
A e B enviam suas percepções sobre o ńo C para o ńo D, atuando como o UC responsável
pelo grupo (c). Com base nessas percepções, o ńo D emite um diagńostico sobre o ńo C.

Figura 1. Estrat égia de diagn óstico para detecç ão de n ós maliciosos

Se dois ńos testadores A e B concordam sobre o estado (malicioso ou idôneo)
do ńo executor C testado, então o ńo D Ultra-Confíavel toma aquelas percepções como
válidas e, dependendo dos resultados, condena ou não o ńo C. Mas se os ńos testadores A
e B divergem sobre o estado do nó C, ent̃ao o ńo D analisa o hist́orico comportamental dos
testadores, a fim de verificar um padrão de repetiç̃ao (por exemplo, se um dos nós reprovou
todos os testes por ele aplicado, se um dos nós reprovou apenas os testes aplicados sobre
aquele ńo executor). Baseado nessa análise, o ńo UC infere se algum dos nós (testadores
ou executor) agiu de forma maliciosa, eliminando-o. Devidoà limitaç̃ao de espaço, os
algoritmos do modelo ñao s̃ao aqui apresentados, podendo ser encontrados em [7].

4. Ceńarios de Simulaç̃ao e Resultados
Para validaç̃ao do modelo utilizou-se o simulador de grades GridSim [8]. Foi assumido
um ambiente composto de 200 nós, com quotas variadas de nós maliciosos (1/6, 1/3 e
2/3 do total). Estes foram modelados com 25% de chances de retornarem um resultado
corrompido. Aĺem disso, foram consideradas diferentes quantidades de rodadas de testes
(3, 5, 8, 10, 15 e 20) realizadas em diferentes perı́odos (a cada 6, 12 e 24h). Após cada
rodada, novos ńos entram no ambiente.

Dois ceńarios foram avaliados: no primeiro, os nós executores são gerenciados por
um único UC, de modo que os aspectos de reputação ñao s̃ao considerados; no segundo
ceńario, o modelóe implementado por completo, incluindo a confiabilidade, as métricas
temporais, a elevação de status e a reconfiguração de clusters. Por questão de espaço, são
apresentados apenas os gráficos relativos ao segundo cenário, com 2/3 dos ńos agindo ma-
liciosamente. As ḿetricas observadas foram: a quantidade de nós maliciosos detectados,
o custo de processamento introduzido (razão entre o ńumero de test-jobs e o total de jobs)
e a acuŕacia (raz̃ao entre o ńumero de jobs processados corretamente e o total de jobs).
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A Figura 2 mostra a quantidade de nós maliciosos detectados em função do ńume-
ro de rodadas de testes em diferentes perı́odos. Como esperado, quanto maior a quanti-
dade de rodadas, maior o número de maliciosos detectados. Nota-se também que a partir
de um certo momento, não importa a quantidade de testes, o número de ńos maliciosos
detectados tende a ser o mesmo. Por exemplo, com a realização de testes a cada 6h, o
número de ńos maliciosos detectadosé praticamente o mesmo a partir de 5 rodadas.

Figura 2. N ós inseridos na blacklist
com 2/3 de maliciosos

Figura 3. N ós maliciosos remanes-
centes

O pior caso ocorre quando há uma maior quantidade de nós maliciosos e uma
quantidade de testes reduzida. Com apenas 3 rodadas por dia são detectados aproxima-
damente 170 ńos maliciosos. Porém isso ñao significa que restaram 100 nós com mau
comportamento livres para comprometer as aplicações, pois comóe considerada a en-
trada de novos ńos aṕos cada rodada, o número de maliciosos no ambiente pode variar.
Para avaliar o grau de eficiência do esquemáe preciso observar também a quantidade de
maliciosos remanescentes. A Figura 3 mostra como o sistemaé “higienizado” durante 7
dias de operaç̃ao, utilizando o algoritmo de diagnóstico proposto em um ambiente com
2/3 da grade inicialmente “contaminada”, e testes realizados a cada 12h.

De acordo com os gráficos, para qualquer quantidade de nós maliciosos o sistema
mostra-se robusto a partir de 5 rodadas de testes ocorrendo a cada 6h, ou 8 rodadas a
cada 12h. Entretanto, para conhecer o número ideal de rodadas e de periodicidade,é ne-
cesśario observar o custo e a acurácia obtida com estes valores, visto que tais métricas
podem impactar nos resultados. O custo introduzidoé apresentado na Figura 4, a qual
revela que 8 rodadas a cada 12h apresenta-se como melhor alternativa, tendo em vista
o trade-off alcançado. Enquanto com 5 rodadas obtém-se um overhead de 17%, com 8
esse overhead cai para 12,3%. Já a Figura 5 apresenta o grau de acurácia obtida com o
diagńostico. A acuŕacia sofre com um ńumero maior de ńos maliciosos no sistema, espe-
cialmente se os testes são aplicados com menor freqüência. Enquanto, por exemplo, com
1/6 de maliciosos na grade obtém-se uma acurácia de 99,7% com 5 rodadas a cada 6h,
esse valor decresce vertiginosamente para 86,7% com a mesma quantidade de rodadas,
acontecendo a cada 24h em uma grade com 2/3 dos nós comprometidos.

Em ambos os cenários, 8 rodadas de teste mostraram-se como uma quantidade
ideal para a estratégia de diagńostico. Enquanto no melhor caso do primeiro cenário
pode-se obter um grau de detecção acima de 90%, com uma acurácia de 98% e custo de
15%, no segundo cenário foi observado uma detecção de 100% dos ńos maliciosos, com
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uma acuŕacia de 99,7% e um custo de 12,3%, o que demonstra a eficiência do modelo ao
detectar e isolar diferentes quantidades de nós maliciosos de uma grade.

Figura 4. Custo introduzido Figura 5. Acur ácia

5. Conclus̃oes
A utilização de diagńostico em ńıvel de sistema como estratégia contra ataques de mani-
pulaç̃ao de resultados mostra-se uma solução eficaz, visto que independe da plataforma e
é interopeŕavel com soluç̃oes de segurança locais, o que viabiliza seu emprego na maioria
das middlewares de grades. Além disso, o modelo apresentado organiza os nós em clus-
ters ĺogicos, estabelecendo uma hierarquia entre os mesmos, de acordo com o papel de
cada ńo. Essa abordagem permite que o diagnóstico seja feito de forma distribuı́da com a
participaç̃ao dos ńos que possuem um nı́vel ḿınimo de confiabilidade.

Os resultados experimentais confirmaram a robustez e escalabilidade dessa
estrat́egia, uma vez que todos os nós maliciosos podem ser devidamente eliminados do
ambiente, obtendo um altoı́ndice de acuŕacia dos jobs processados com um baixo custo
em termos de jobs de teste adicionais. Como trabalho futuro, será implementada uma
ferramenta baseada neste modelo de diagnóstico para que a mesma seja incorporada a
uma plataforma de grade real, tal como o OurGrid ou Globus.
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