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Abstract. This paper describes the work presented in the master disserta-
tion “Orientações Pfaffianas e o Furtivo Grafo de Heawood”, available
at “http://www.ic.unicamp.br/˜miranda/dissertacao.pdf”, whose defense took
place in August 7th, 2006, at the Institute of Computing, Unicamp. The use
of Pfaffians in matching theory is due to Tutte [Tutte 1998]. While it was not
possible to find a formula for the number of perfect matchings of a graph, Tutte
used Pfaffians to prove his famous characterization of graphs that have a perfect
matching. In 1975, C. Little presented a characterization of bipartite Pfaffian
graphs. But it was only in 1998 that McCuaig and, independently, Robertson,
Seymour and Thomas proved a theorem that implies a polynomial time algo-
rithm to determine whether a bipartite graph is Pfaffian. Our dissertation pre-
sented a new proof of that theorem.

Resumo. Este artigo descreve o trabalho feito na dissertação de mestrado
“Orientações Pfaffianas e o Furtivo Grafo de Heawood”, disponı́vel no
endereço “http://www.ic.unicamp.br/˜miranda/dissertacao.pdf”, defendida no
dia 7 de agosto de 2006, no Instituto de Computação da Unicamp. A idéia de
usar Pfaffianos em teoria dos emparelhamentos é devida a Tutte [Tutte 1998].
Apesar de não ter encontrado uma fórmula para o número de emparelhamen-
tos perfeitos de um grafo como desejava, Tutte usou Pfaffianos para provar sua
famosa caracterização de grafos que têm emparelhamento perfeito. Em 1975,
Little apresentou uma caracterização de grafos bipartidos Pfaffianos. Mas foi
somente em 1998 que McCuaig e, independentemente, Robertson, Seymour e
Thomas provaram um teorema que implica em um algoritmo de tempo poli-
nomial que determina se um grafo bipartido é Pfaffiano. Nossa dissertação
apresentou uma nova demonstração para esse teorema.

1. Orientações Pfaffianas
Seja G um grafo e D uma orientação de G. Seja Q um circuito de G com um número par
de vértices. Seja p a paridade do número de arestas de Q que concordam com D em uma
dada direção de percurso de Q. Diz-se que a orientação em D de Q é ı́mpar se p é ı́mpar.
Um subgrafo H de um grafo G é conforme em G se G − V (H) tem emparelhamento
perfeito. A orientação D de G é Pfaffiana se todo circuito conforme de G com um número
par de vértices tem orientação ı́mpar em D. O grafo G é Pfaffiano se tem uma orientação
Pfaffiana.
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2. Aplicações
O algoritmo para determinar se um grafo bipartido é Pfaffiano tem aplicações
em quı́mica quântica, para a previsão da estabilidade de compostos comple-
xos [Lovász and Plummer 1986, pág. 349-355], e em economia, para a previsão do sinal
da derivada de variáveis econômicas, baseado somente em relações qualitativas entre as
variáveis [McCuaig 2004]. Este último problema ficou em aberto de 1947 a 1998. Este
algoritmo também resolve outros problemas de teoria dos grafos, como por exemplo de-
terminar se um grafo orientado tem um circuito orientado com um número par de vértices,
ou dar um método para contar o número de emparelhamentos perfeitos de um grafo bipar-
tido Pfaffiano em tempo polinomial [McCuaig 2004, págs. 25 e 35]. Além disso, dado um
grafo bipartido Pfaffiano tal que um subconjunto de suas arestas tem cor vermelha este
algoritmo determina se existe um emparelhamento perfeito com precisamente k arestas
vermelhas [Galluccio and Loebl 1999].

3. Resultados Anteriores
Motivado por problemas externos à teoria dos grafos, o quı́mico
Kasteleyn [Kasteleyn 1963] demonstrou, em 1963, que todo grafo planar tem uma
orientação Pfaffiana. O grafo K3,3 é o menor grafo não Pfaffiano. Little [Little 1975]
demonstrou, em 1975, que um grafo bipartido é Pfaffiano se e somente se não contém
subgrafo conforme que é uma bissubdivisão de K3,3. Uma subdivisão de um grafo
é obtida substituindo-se arestas do grafo por caminhos. Uma bissubdivisão é uma
subdivisão onde todos os caminhos que substituem arestas têm um número par de
vértices internos1. No entanto, a caracterização de Little não implica em um algoritmo de
tempo polinomial para reconhecimento de grafos bipartidos Pfaffianos. De 1975 até 1998
não se conhecia tal algoritmo, até que McCuaig [McCuaig 2004], e, independentemente,
Robertson, Seymour e Thomas [Robertson et al. 1999], descobriram um algoritmo de
tempo polinomial para decidir se um grafo bipartido tem ou não uma orientação Pfaffiana.

As demonstrações de McCuaig e de Robertson, Seymour e Thomas utilizam
métodos muito distintos. No entanto, ambas são extremamente complexas, e poucas
pessoas as compreendem. Na dissertação “Orientações Pfaffianas e o Furtivo Grafo
de Heawood”, apresentamos uma demonstração diferente das demonstrações anteriores,
mais bem estruturada, e de uma forma mais compreensı́vel. Nas seções seguintes, apre-
sentamos superficialmente como o algoritmo funciona e como é provada sua corretude.

4. O Algoritmo
Um grafo coberto por emparelhamentos é um grafo conexo e não trivial no qual toda
aresta pertence a algum emparelhamento perfeito. O estudo de grafos Pfaffianos pode ser
restrito aos grafos cobertos por emparelhamentos, de forma natural.

Um corte justo em um grafo G coberto por emparelhamentos é um corte que
contém precisamente uma aresta em cada emparelhamento perfeito do grafo. Seja
C := ∂(X) um corte não trivial em G. O grafo H obtido a partir de G pela contração
de todos os vértices em X a um único vértice x é chamado de C-contração, e represen-
tado por H := G{X → x}. As duas C-contrações de G são G{X → x} e G{X → x}.

1Na literatura, uma bissubdivisão é chamada por alguns autores de subdivisão ı́mpar e por outros de
subdivisão par. Por este motivo, a exemplo de McCuaig, decidimos utilizar bissubdivisão.
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Caso G seja coberto por emparelhamentos e C um corte justo, ambas as C-contrações de
G são cobertas por emparelhamentos. Esta operação pode ser repetida caso os grafos obti-
dos ainda tenham cortes justos não triviais. Este processo denomina-se decomposição em
cortes justos. Little e Rendl [Little and Rendl 1991] provaram, em 1991, que um grafo G

coberto por emparelhamentos que tem um corte justo C é Pfaffiano se e somente se ambas
as C-contrações de G são Pfaffianas. Sendo assim, pode-se reduzir o problema de se deci-
dir se um grafo G coberto por emparelhamentos é Pfaffiano ao problema de se decidir se
os grafos resultantes de sua decomposição em cortes justos são Pfaffianos. Desta forma,
podemos reduzir o problema de se decidir se um grafo é Pfaffiano aos grafos cobertos por
emparelhamentos livres de cortes justos não triviais. Além disso, existem algoritmos de
tempo polinomial para fazer tais decomposições.

Os grafos cobertos por emparelhamentos livres de cortes justos não triviais são
separados em duas classes: tijolos e presilhas. As presilhas são bipartidas, e os tijolos
não são bipartidos. A decomposição em cortes justos de um grafo bipartido coberto por
emparelhamentos produz somente presilhas. Sendo assim, o problema Pfaffiano se re-
duz no caso bipartido a presilhas. Mais especificamente, o algoritmo de McCuaig, e de
Robertson, Seymour e Thomas decide, em tempo polinomial, se uma presilha é Pfaffiana.

Seja G um grafo coberto por emparelhamentos com bipartição {U, W}. Uma
quádrupla Z de quatro vértices de G reduz G se:

• Z contém dois vértices em U e dois vértices em W ;
• G − Z consiste de três ou mais componentes conexas, J1, J2, . . . , Jr (r ≥ 3).

A redução criada por Z consiste nos r grafos G1, G2, . . . , Gr onde Gi := G?[Z ∪ V (Ji) ]
e G? é o grafo bipartido minimal obtido a partir de G por adição de arestas garantindo
que G?[Z] é um quadrilátero (Figura 1). Demonstra-se que G é uma presilha Pfaffiana se
e somente se cada Gi é uma presilha Pfaffiana. Esta redução pode ser repetida até que
o conjunto de presilhas obtido tenha somente presilhas irredutı́veis. Assim, o algoritmo
reduz o problema Pfaffiano bipartido a presilhas irredutı́veis. Por exemplo, o algoritmo
reduz o problema de se decidir se a presilha mostrada na Figura 1 é Pfaffiana ao problema
de se decidir se as cinco presilhas menores mostradas (cubos) são Pfaffianas.
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Figura 1. Redução a presilhas irredutı́veis.

Todo grafo planar é Pfaffiano, como provado por Kasteleyn [Kasteleyn 1963].
Pode-se testar se um grafo é planar em tempo linear [Hopcroft and Tarjan 1974]. Sendo
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assim, o único caso restante a tratar é quando temos uma presilha irredutı́vel não planar.
Para este caso, o Teorema Principal, enunciado a seguir, nos mostra que basta verificar-
mos se a presilha é o grafo de Heawood a menos de arestas múltiplas (Vide Figura 2). A
dissertação “Orientações Pfaffianas e o Furtivo Grafo de Heawood” apresenta uma prova
alternativa para o Teorema Principal.

Teorema 4.1 (Teorema Principal) A única presilha simples Pfaffiana irredutı́vel e não
planar é o grafo de Heawood. (Vide Figura 2)
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Figura 2. A presilha H de G − e e o grafo G, o grafo de Heawood.

5. Demonstração do Teorema Principal
A seguir, descreveremos superficialmente como é feita a prova do Teorema Principal.
Para demonstrarmos o Teorema Principal, utilizamos três importantes lemas.

Lema 5.1 (Lema do Grafo de Heawood Não Contido) Se G é presilha Pfaffiana, e e

aresta de G, então nenhuma presilha da decomposição em cortes justos de G − e é o
grafo de Heawood, mesmo desconsiderando-se aresta múltiplas.

Lema 5.2 (Lema da Herança da Irredutibilidade) Se G é presilha Pfaffiana irre-
dutı́vel, então, para toda aresta e, toda presilha da decomposição em cortes justos de
G − e é irredutı́vel.

Lema 5.3 (Lema da Não Planaridade das Contrações) Seja G uma presilha simples
Pfaffiana irredutı́vel e não planar. Para toda aresta e de G, e corte justo ∂(X) − e

de G − e, com |X| ≤ 5, temos que (G − e){X → x} não é planar.

Uma bicontração é uma operação aplicada sobre um grafo contendo um vértice
com dois vizinhos, onde este vértice e seus vizinhos são contraı́dos a um único vértice.
O ı́ndice de uma aresta é o número de seus extremos com grau precisamente três. Uma
aresta e de uma presilha G é magra se uma presilha pode ser obtida de G − e por k

bicontrações, onde k é o ı́ndice de e. Uma aresta magra e é dita verdadeiramente magra
se a presilha obtida de G − e através das k bicontrações for simples. Um teorema de
McCuaig [McCuaig 2001] caracteriza as presilhas sem aresta verdadeiramente magra.

Teorema 5.4 ([McCuaig 2001]) As únicas presilhas simples sem aresta verdadeira-
mente magra são os prismas bipartidos L4n, para n ≥ 2, as escadas de Möbius M4n+2,
para n ≥ 1, e as rodas duplas B4n+2, para n ≥ 2.

A prova do Teorema Principal segue a seguinte linha. Seja G uma presilha sim-
ples Pfaffiana irredutı́vel e não planar. Adote como hipótese de indução que o Teorema
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Principal vale para todo grafo menor do que G. Seja e uma aresta de G. Seja H uma
presilha de G − e. Pelo Lema da Herança da Irredutibilidade, H não é redutı́vel. O grafo
H é Pfaffiano. Então, pela hipótese de indução adotada, H é ou planar ou o grafo de
Heawood. Pelo Lema do Grafo de Heawood Não Contido, H não é o grafo de Heawood.
Então, H é planar, para toda aresta e de G.

De acordo com o Teorema 5.4, as únicas presilhas simples não planares sem ares-
tas verdadeiramente magras são as escadas de Möbius. No entanto, nenhuma escada de
Möbius é Pfaffiana. Sendo assim, G tem uma aresta verdadeiramente magra e. Vimos
anteriormente que as presilhas de G − e são planares. Então, pelo Lema da Não Planari-
dade das Contrações, temos que o ı́ndice de e é precisamente dois. Em seguida, pode-se
demonstrar que a presilha H obtida por bicontrações a partir de G− e não tem aresta ver-
dadeiramente magra. Então, H é um prisma, uma escada de Möbius ou uma roda dupla.
No entanto, H tem dois vértices de grau quatro (os vértices de contração). Sendo assim,
H é a roda dupla B10 com 10 vértices (Figura 2). Finalmente, usando o Lema da Não
Planaridade das Contrações conseguimos deduzir as adjacências dos vértices contraı́dos
e mostramos que G é o grafo de Heawood, como mostrado na Figura 2.

Em tempo: após a aceitação do artigo pelo CTD, os autores obtiveram um al-
goritmo polinomial para o reconhecimento de grafos quase-bipartidos Pfaffianos. Esta
classe, exceto pelos grafos planares, é a única de grafos Pfaffianos não bipartidos co-
nhecida e foi caracterizada por Fischer e Little [Little and Fischer 2001]. O algoritmo é
inédito e foi obtido essencialmente usando-se a mesma abordagem da dissertação.
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