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Abstract. We present a novel recolouring procedure for graph edge-colouring.

We show that all graphs whose vertices have local degree sum not too large can

be optimally edge-coloured in polynomial time. We also show that the set of the

graphs satisfying this condition includes almost every graph (under the uniform

distribution). We present further results on edge-colouring join graphs, chordal

graphs, circular-arc graphs, and complementary prisms, whose proofs yield

polynomial-time algorithms. Our results contribute towards settling the Over-

full Conjecture, the main open conjecture on edge-colouring simple graphs. Fi-

nally, we also present some results on total colouring.

Resumo. Apresentamos um procedimento novo de recoloração para coloração

de arestas de grafos. Mostramos que todos os grafos cujos vértices têm soma

local de graus não alta demais podem ter suas arestas coloridas em tempo po-

linomial. Também mostramos que quase todo grafo (na distribuição uniforme)

satisfaz essa condição. Ainda exibimos resultados em grafos-junção, grafos cor-

dais, grafos arco-circulares, e prismas complementares, cujas provas levam a

algoritmos polinomiais. Nossos resultados contribuem na direção de resolver a

Conjectura Overfull, a principal conjectura em coloração de arestas de grafos

simples. Por fim, apresentamos resultados em coloração total.
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1. Introduction and motivation

Computing an optimal edge-colouring of a graph is an NP-hard [Holyer 1981] com-

binatorial problem with applications in network protocols [Erlebach and Jansen 2001,

Gandham et al. 2005] and task scheduling in industry [Williamson et al. 1997]. There

has been much work aimed at identifying sets of instances for which the problem becomes

polynomial (e.g. [Chetwynd and Hilton 1989, Bodlaender 1990, Ortiz Z. et al. 1998]) and

sets of instances for which NP-hardness remains (e.g. [Cai and Ellis 1991, Koreas 1997,

Machado et al. 2010]). We refer the reader to the thesis, Sect. 1.6, p. 26, for an extensive

table on the complexity of edge-colouring restricted to several graph classes.
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By Vizing’s Theorem [Vizing 1964], the chromatic index of any simple graph G
(i.e. the least k for which G is k-edge-colourable) is either its maximum degree ∆ or ∆+1.

The graph G is said to be Class 1 in the former case, or Class 2 in the latter. The core

(i.e. the subgraph induced by the vertices of maximum degree) of almost every1 graph is

unitary [Erdős and Wilson 1977], hence acyclic, and graphs with acyclic core are Class 1

and admit a polynomial-time exact edge-colouring algorithm [Fournier 1977], implying

that the set of instances for which edge-colouring is hard includes almost no graph.

Intriguingly, edge-colouring is NP-hard even for graph classes such as perfect

graphs [Cai and Ellis 1991]. For many other classes, even well-structured ones such as

cographs or chordal graphs, the complexity of the problem remains open, with apparently

few progress on long-standing conjectures despite much work (see Chap. 2 of the thesis).

All graphs considered in this text are simple. The set of neighbours of a vertex u
in a graph G is denoted NG(u). A major of G is a vertex of maximum degree in G, and

the local degree sum of a vertex is the sum of the degrees of its neighbours. The core of

G is denoted Λ[G]. Other graph-theoretical concepts follow their usual definitions.

An n-vertex graph with maximum degree ∆ is said to be overfull if it has more

than ∆⌊n/2⌋ edges. A graph G is said to be subgraph-overfull (shortly, SO) if it has an

overfull subgraph H with ∆(H) = ∆(G). Clearly, every SO graph G is Class 2, but ex-

amples of non-SO Class 2 graphs are known (e.g. the Petersen graph). The Overfull Con-

jecture states that being SO is equivalent to being Class 2 for n-vertex graphs with ∆ >
n/3 [Chetwynd and Hilton 1984, Chetwynd and Hilton 1986, Hilton and Johnson 1987].

Deciding if a graph is SO can be done in polynomial time [Padberg and Rao 1982].

2. Main results and impact

In this section we present some of the results achieved and briefly discuss their impact.

Theorem 1 (Theorem 1.10 in the thesis). Let X be the class of the graphs with maximum

degree ∆ whose majors have local degree sum bounded above by ∆2 − ∆. All graphs

in X are Class 1.

We also show that almost every graph is in X , even given that the graph has cycles

in the core, that is, even when restricted to the instances which have not been ruled out by

the aforementioned results of [Erdős and Wilson 1977] and [Fournier 1977].

The proof of Theorem 1 lies on a novel recolouring procedure with which an

optimal edge-colouring can be constructed in polynomial time edge by edge for any graph

in X (see Sect. 3 of this text and Chap. 3 of the thesis). Further, the development of this

recolouring procedure contributes towards settling the Overfull Conjecture. As discussed

in Sect. 6.1 of the thesis, [Niessen 1994] suggests that a step towards a proof for the

Overfull Conjecture is to prove the following.

Conjecture 2. If u is a vertex of a graph G adjacent to at most one major of G with local

degree sum at least ∆2 −∆+ 2, and if χ′(G− u) ≤ ∆, then G is Class 1.

Using our recolouring procedure we have proved a slightly weaker form of this

conjecture, just replacing the lower bound ∆2 −∆+ 2 by ∆2 −∆+ 1 (see the proof for

1When we say that almost every graph satisfies a property P , we mean that the probability of a uni-

formly sampled (Gn,1/2) n-vertex graph to satisfy P goes to 1 as n goes to ∞.



Theorem 3.17 in the thesis). This and the fact that almost every graph is in X enhance

the importance of our recolouring procedure.

Below we state our main result on complementary prisms.

Theorem 3 (Theorem 1.13 in the thesis). A complementary prism can be Class 2 only if

it is a regular graph distinct from the K2.

We have also proved that no complementary prism can be SO (Theorem 4.30 in

the thesis). This implies that a Class 2 (regular) complementary prism would serve as

an example of our generalisation of the definition of the snarks for d-regular graphs for

d ≥ 3 odd (see Sect. 4.4 of the thesis). Recall that snarks constitute an important graph

class much related to the history of the Four Colour Theorem (see Chap. 2 of the thesis).

The result below is a special case of a conjecture on edge-colouring chordal

graphs, open for more than two decades, which states that all chordal graphs of odd max-

imum degree are Class 1 [Figueiredo et al. 1995].

Theorem 4 (Theorem 4.36 in the thesis). Except for the K3, all chordal graphs with

maximum degree ∆ ≤ 3 are Class 1.

Theorem 5 (i) and (ii) below contribute towards settling the Overfull Conjecture

for join graphs and cographs (see Chap. 2 and 4 of the thesis), since in these theorems we

prove that some graphs which we know that are not SO are in fact Class 1.

Theorem 5. Let G := G1 ∗ G2 be a join graph with n1 ≤ n2 and ∆1 ≥ ∆2 (we define

ni := |V (Gi)| and ∆i := ∆(Gi) for i ∈ {1, 2}). The following are sufficient conditions

for G to be Class 1:

(i) (Theorem 4.9 in the thesis) Λ[G1] is acyclic and, being T1, . . . , Tk the connected

components of Λ[G1],

|{u ∈ V (Λ[G1]) : dΛ[G1](u) > 1}|+ |{Ti : |V (Ti)| = 2}| ≤ n2 − |V (Λ[G2])| ;

(ii) (Theorem 4.18 in the thesis) n2 − n1 ≥ 2.

We remark that the proofs for all the aforementioned results are constructive and

yield polynomial-time edge-colouring algorithms. Chap. 5 of the thesis also presents

some results on total colouring.

3. The recolouring procedure

We present a sketch of our recolouring procedure (see Chap. 3 of the thesis for the details).

Throughout this section, let ϕ : E(G) \ {uv} → C be a ∆(G)-edge-colouring of G− uv
for some edge uv ∈ E(G), which is the edge about to be coloured by the procedure.

If the vertex u and all its neighbours miss at least one colour of C each (we say

that a vertex x miss a colour α if no edge incident to x is coloured α), then we can use

Vizing’s recolouring procedure in order to obtain a colour of C to assign to uv without

creating colour conflicts [Vizing 1964]. However, since |C | = ∆(G), the neighbours

of u in G − uv considered by the procedure may not actually miss at least one colour

of C , but can still be handled as long as they virtually miss at least one colour of C , as

defined below. Our procedure extends Vizing’s in the sense that if every considered vertex

actually misses a colour, then our procedure behaves exactly as Vizing’s.



Definition 6. A sequence v0, . . . , vk of distinct neighbours of u in G is a recolouring fan

for uv if v0 = v and, for all i ∈ {0, . . . , k − 1}: either vi actually misses the colour

αi := ϕ(uvi+1); or vi misses the colour αi := ϕ(uvi+1) virtually, that is, i > 0 and

ϕ(viwi) = αi for some wi ∈ NG(vi) \ {vi−1} which actually misses αi−1.

We show that if there is a recolouring fan v0, . . . , vk for uv such that vk misses

(actually or virtually) a colour which is

(Condition 1) either missing at u,

(Condition 2) or missing (actually or virtually) at vj for some j < k,

then the edges of G − uv can be recoloured in order to obtain a colour to be assigned to

uv without creating colour conflicts. Although the proof under Condition 1 goes quite

straightforwardly, as Fig. 1 illustrates, several challenging complications rise in order to

guarantee the proof under Condition 2, which we have successfully managed (see Lem-

mas 3.1–3.7, p. 51–59, in the thesis). Fig. 2 illustrates one of these complications.
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Figure 1. A recolouring fan v0, . . . , vk for uv such that vk actually misses a colour

β which is missing at u. The dotted lines indicate the colours actually missing at

the vertices, and the dashed line the edge to be coloured.
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Figure 2. A recolouring fan v0, . . . , vk for uv such that vk misses αj for some j < k,

but the vertex vj+1 misses αj+1 virtually and vk = wj+1.

We show that if all neighbours of u in G have local degree sum bounded above

by ∆2 − ∆, then we can always recolour the edges of G − uv in order to construct a

recolouring fan for uv satisfying Condition 1 or Condition 2 (Lemma 3.8, p. 59–60, in the

thesis). This yields the constructive proof of Theorem 1 (in the thesis, Theorem 1.10).



The proof that almost every graph is in X follows from the fact that almost every

graph G has a single vertex u of degree at least 1
2

(

(n− 1)+ (1− ε)n lnn
)

1

2 for any ε > 0
[Erdős and Wilson 1977], but no vertex of degree exactly dG(u) − 1, as we show (see

Theorem 3.9 in the thesis, p. 61–62, for details).

4. Conclusion

We have presented a novel recolouring procedure for edge-colouring, with which we have

achieved the result stated in Theorem 1 and a slightly weaker form of Conjecture 2, con-

tributing towards settling the Overfull Conjecture. We have also shown that almost every

graph is covered by Theorem 1 and thus can be edge-coloured in polynomial time.

We have also achieved results on edge-colouring graph classes such as comple-

mentary prisms, chordal graphs, and join graphs, contributing towards settling the Over-

full Conjecture for those classes (see Chap. 4 of the thesis for more results achieved).

Finally, we suspect the following stronger form of Theorem 5(i) (Theorem 4.9 in

the thesis), for which we also develop a recolouring procedure (see Sect. 4.3 of the thesis).

Conjecture 7 (Conjecture 1.11 in the thesis). Let G := G1 ∗ G2 be a join graph with

n1 ≤ n2 and ∆1 ≥ ∆2. If Λ[G1] is acyclic, then G is Class 1.

References

Bodlaender, H. L. (1990). Polynomial algorithms for graph isomorphism and chromatic

index on partial k-trees. J. Algorithms, 11:631–641.

Cai, L. and Ellis, J. A. (1991). NP-completeness of edge-colouring some restricted graphs.

Discrete Appl. Math., 30:15–27.

Chetwynd, A. G. and Hilton, A. J. W. (1984). The chromatic index of graphs of even

order with many edges. J. Graph Theory, 8:463–470.

Chetwynd, A. G. and Hilton, A. J. W. (1986). Star multigraphs with three vertices of

maximum degree. Math. Proc. Cambridge Philos. Soc., 100:303–317.

Chetwynd, A. G. and Hilton, A. J. W. (1989). 1-factorizing regular graphs of high degree:

an improved bound. Discrete Math., 75:103–112.
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graphs with no cycle with a unique chord. Theor. Comput. Sci., 411:1221–1234.

Niessen, T. (1994). How to find overfull subgraphs in graphs with large maximum degree.

Discrete Appl. Math., 51:117–125.

Ortiz Z., C., Maculan, N., and Szwarcfiter, J. L. (1998). Characterizing and edge-

colouring split-indifference graphs. Discrete Appl. Math., 82:209–217.

Padberg, M. W. and Rao, M. R. (1982). Odd minimum cut-sets and b-matching. Math.

Oper. Res., 7:67–80.

Vizing, V. G. (1964). On an estimate of the chromatic class of a p-graph (in Russian).

Diskret. Analiz., 3:25–30.

Williamson, D. P., Hall, L. A., Hoogeveen, J. A., Hurkens, C. A. J., Lenstra, J. K.,

Sevast’janov, S. V., and Shmoys, D. B. (1997). Short shop schedules. Oper. Res.,

45(2):288–294.

Appendix: List of publications

1. Zorzi, A. and Zatesko, L. M. (2018). On the chromatic index of join graphs and

triangle-free graphs with large maximum degree. Discrete Appl. Math. (JCR

0.932), 245:183–189.

2. Zatesko, L. M., Carmo, R., and Guedes, A. L. P. (2018). Upper bounds for the

total chromatic number of join graphs and cobipartite graphs. In Proc. ICORES

’18, p. 247–253, Funchal, Portugal.

3. Bernardi, J. P. W., Silva, M. V. G., Guedes, A. L. P., and Zatesko, L. M. (2019).

The chromatic index of proper circular arc graphs of odd maximum degree which

are chordal. Accepted for presentation at LAGOS ’19, Belo Horizonte.

4. Zatesko, L. M., Carmo, R., and Guedes, A. L. P. (2017). Edge-colouring of

triangle-free graphs with no proper majors. In Proc. CSBC ’17/IIETC, p. 71–74.

5. Bernardi, J. P. W., Almeida, S. M., and Zatesko, L. M. (2018). On total and edge-

colouring of proper circular-arc graphs. In Proc. CSBC ’18/IIIETC, p. 73–76.

6. Bernardi, J. P. W., Almeida, S. M., and Zatesko, L. M. (2018). A decomposition

for edge-colouring. In Proc. LAWCG ’18, page 35, Rio de Janeiro.

7. Zatesko, L. M., Carmo, R., and Guedes, A. L. P. (2018). A recolouring procedure

for total colouring. In Proc. LAWCG ’18, page 31, Rio de Janeiro.

8. Zatesko, L. M., Carmo, R., and Guedes, A. L. P. (2017). On a conjecture on

edge-colouring join graphs. In Proc. WPCCG ’17, p. 69–72, Ponta Grossa.

• Zatesko, L. M., Zorzi, A., Carmo, R., and Guedes, A. L. P. (2018). Edge-colouring

graphs with bounded local degree sums. Submitted to Discrete Appl. Math.

• Zatesko, L. M., Bernardi, J. P. W., Almeida, S. M., Carmo, R., and Guedes, A. L. P.

(2019). A connectivity-based decomposition for graph edge-colouring. Submitted

to Matemática Contemporânea.


