
Proper gap-labellings:
on the edge and vertex variants∗

Celso A. Weffort-Santos1,
Christiane N. Campos1 (Supervisor), Rafael C. S. Schouery1 (Co-supervisor)

1Institute of Computing – University of Campinas (UNICAMP)
Av. Albert Einstein, 1251 — 13083-852 — Campinas — SP — Brazil

{celso.santos, campos, rafael}@ic.unicamp.br

Abstract. Given a simple graph G, an ordered pair (π, cπ) is said to be a gap-
[k]-edge-labelling (resp. gap-[k]-vertex-labelling) of G if π is an edge-labelling
(vertex-labelling) on the set {1, . . . , k}, and cπ is a proper vertex-colouring such
that every vertex of degree at least two has its colour induced by the largest
difference among the labels of its incident edges (neighbours). The decision
problems associated with these labellings are NP-complete for k ≥ 3, and even
when k = 2 for some classes of graphs. This thesis presents a study of the
computational complexity of these problems, structural properties for certain
families of graphs and several labelling algorithms and techniques. First, we
present an NP-completeness result for the family of subcubic bipartite graphs.
Second, we present polynomial-time algorithms for families of graphs. Third, we
introduce a new parameter associated with gap-[k]-vertex-labellings of graphs.

1. Introduction
Graph Theory is a field of research within Mathematics which studies graphs using a vari-
ety of approaches, including structural and algorithmic. A great number of hard problems,
such as timetable or logistic scheduling, pattern matching and register allocation, can be
modeled using graphs, particularly as graph colouring problems. The objective in these
problems is to assign colours to the elements of the graph subject to some restrictions,
e.g. adjacent vertices should receive distinct colours.

Over the past fifty years, generalizations of graph colourings, known as labellings,
have been widely studied, due to their rich mathematical aspects. In a labelling of a graph,
we assign numeric values (labels) to vertices and/or edges in order to satisfy restrictions
imposed by some mathematical function over the set of labelled elements. Many different
types of labellings have been studied since the 1960’s, to when most authors trace the
origin of these types of problems.

Since there are so many different types of graph labellings, it is not surprising
that particular problems have gone unnoticed in the literature, and yet pose interesting
challenges to the scientific community. While some labellings model real world problems
directly, such as vertex-labellings which can be used to represent the cost of opening
new facilities, or edge-labellings which map the distance between adjacent cities, others
describe important mathematical structures and graph-theoretical concepts.
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This thesis studied one such case. We considered a class of proper labelling prob-
lems whose goal is to assign labels to a set of elements of a graph in order to induce
a vertex-colouring; the colour of a vertex is determined by the largest gap among la-
bels assigned to its adjacent or incident elements. The many different aspects of these
gap-labellings led us to investigate the problem from various points of view in Theoret-
ical Computer Science. Our results were obtained in the form of labelling techniques,
structural results for families of graphs, and both NP-completeness and polynomial-time
algorithmic results.

1.1. Notation

Before we present the results discussed in this thesis, it is necessary to define the notation
adopted in the text. Let G be a simple, undirected and finite graph with vertex set V (G)
and edge set E(G). The elements of G are its vertices and its edges. The neighbourhood
of a vertex v ∈ V (G) is denoted by N(v) and the set of edges incident with a vertex v,
by E(v). The degree of v is denoted by d(v) and, finally, the minimum and maximum
degree of G are denoted by δ(G) and ∆(G), respectively.

A proper (vertex-)colouring of G is an assignment c : V (G) → C, where C
denotes a set of colours, such that c(u) 6= c(v) for every edge uv ∈ E(G). The least
number of colours for which G admits such a colouring is called the chromatic number
of G and is denoted by χ(G). A proper labelling of G is a pair (π, cπ) where π : S →
{1, . . . , k} is an assignment of numerical labels to a set S of elements of G, and cπ is
a proper colouring of G, induced by π through some mathematical function over the set
of labelled elements. If S = E(G), then (π, cπ) is a proper edge-labelling; similarly,
if S = V (G), it is called a proper vertex-labelling. In this work, we considered proper
labellings induced by the gaps of labels, which are defined in the following section.

2. Proper gap-labellings

A gap-[k]-edge-labelling of a graph G is a proper edge-labelling of G over the set [k] =
{1, . . . , k} such that cπ : V (G) → {0, 1, . . . , k} is a proper colouring of G in which,
for every vertex v ∈ V (G), its colour cπ(v) is: maxe∈E(v){π(e)} − mine∈E(v){π(e)} if
d(v) ≥ 2; π(e)e∈E(v) if d(v) = 1; and 1, otherwise. That is, every vertex of degree at least
two has its colour induced by the largest gap among the labels of its incident edges. The
least k for which G admits a gap-[k]-edge-labelling is called the edge-gap number of G
and is denoted by χg

E
(G). Figure 1 illustrates a gap-[3]-edge-labelling of a tree.

The vertex variant of proper gap-labellings is defined similarly. A gap-[k]-vertex-
labelling of a graph G is a pair (π, cπ) in which π is a vertex-labelling of G and cπ is a
proper vertex-colouring ofG, such that: the colour of a vertex v, with d(v) ≥ 2, is induced
by the largest gap among the labels inN(v); degree-one vertices receive as induced colour
the label assigned to its neighbour; and isolated vertices receive colour 1. Similarly to the
edge version, the vertex-gap number of a graph G, denoted by χg

V
(G), is the least k for
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Figure 1. A gap-[3]-edge-labelling of a tree.



which G admits a gap-[k]-vertex-labelling. An interesting remark is that every graph with
no connected component isomorphic to K2 admits a gap-[k]-edge-labelling, for some
k ∈ N, whereas there are infinite families of graphs for which no gap-[k]-vertex-labelling
exists, regardless of the number of labels.

Gap-[k]-edge-labellings were introduced by [Tahraoui et al. 2012] as a closing
comment in their article about gap-k-colourings. It was, however, only formally defined
by [Dehghan et al. 2013] in the following year. In this same article, the authors also in-
troduced the vertex variant of this labelling and showed that both versions of proper gap-
labellings are NP-complete when k ≥ 3. For the particular case of k = 2, they discuss
that there is an apparent dichotomy regarding bipartite graphs, e.g. it is NP-complete to
decide whether a planar bipartite graph admits a gap-[2]-edge-labelling, but if the graph
is planar, bipartite and with minimum degree (at least) two, the problem can be solved
in polynomial-time. The authors also question the computational complexity of decid-
ing whether a cubic bipartite graph admits a gap-[2]-vertex-labelling, and if there exists
a polynomial-time algorithm that decides whether there exists some k ∈ N for which
a given graph admits a gap-[k]-vertex-labelling. This article, and the problems it poses,
were the starting point of the work in this thesis. Our main objectives were to investigate
the computational complexity aspects of proper gap-labellings of graphs and structural
properties of these labellings.

In the following subsections we list the main results presented in this thesis. We
begin by proving tight bounds for the edge-gap and vertex-gap numbers for some families
of graphs, as well as establishing the first bounds for the vertex-gap number of arbitrary
graphs. Next, we focused on proper gap-vertex-labellings and approached one of the
problems posed in [Dehghan et al. 2013]. We studied the gap-[2]-vertex-labelling of cubic
bipartite hamiltonian graphs, as well as the complexity of this labelling when restricted to
subcubic bipartite graphs. Finally, we introduced a new parameter for graphs G that do
not admit any gap-[k]-vertex-labellings, for any k ∈ N, called the gap-strength of G, and
established bounds for this parameter for complete graphs.

2.1. The edge-gap and vertex-gap number of graphs

Our first goal was to better understand the intricacies and difficulties of establishing
gap-labellings, in both variants of the problem. In particular, we wanted to investigate for
which classes of graphs the problem remained NP-hard or, conversely, could be solved
in polynomial-time. In this regard, we observed that the literature lacked results even for
traditional families of graphs, e.g., there was no bound on the edge-gap and vertex-gap
numbers of cycles. Therefore, we began by studying and determining these parameters
for cycles and, subsequently, for increasingly more structured classes of graphs. The
families we considered and the results obtained are presented in Table 1. Tightness for
the edge-gap number relies on a result by [Brandt et al. 2016], which states that any
given graph G has χg

E
(G) ∈ {χ(G), χ(G) + 1}. As for the vertex-gap number, we proved

both a lower (Theorem 3.7) and an upper bound (Theorem 4.13) for this parameter in the
thesis, which yield the following result.

Corollary 5.2 (cf. [Weffort-Santos 2018]). Let G be a gap-vertex-labelable graph. Then,
χ(G) ≤ χg

V
(G) ≤ 2n, unless G ∼= K1,n, n ≥ 2, in which case χg

V
(G) = 1 = χ(G)− 1.



Class Edge-gap number Vertex-gap number Theorems

Cycles χg
E

(Cn) = χg
V

(Cn)


4, if n = 3;

2, if n ≡ 0 (mod 4);

3, otherwise.
2.2 and 3.10

Crowns χg
E

(Rn) = χg
V

(Rn) = χ(Rn). 2.3 and 3.12

Wheels χg
E

(Wn) =

{
4, if n = 4;

χ(Wn), otherwise.
χg

V
(Wn) =

{
3, if n ≥ 8 and even;

4, if n ≥ 5 and odd.
2.4 and 3.13

Unicyclic graphs χg
E

(G) = 3, if p is odd. χg
V

(G) =

{
2, if p is even and G 6∼= Cn, n ≡ 2 (mod 4);

3, otherwise.
2.5 and 3.15

First Blanuša Snarks, Flower Snarks,
Goldberg Snarks and Twisted Goldberg Snarks χg

E
(G) = χg

V
(G) = 3

2.7, 2.9, 2.10, 3.24,
3.26, 3.27 and 3.28

Second Blanuša Snarks open χg
V

(B2
i ) = 3 2.8

Table 1. Results for the edge-gap and vertex-gap numbers for classes of graphs.
Theorem numbers reference the results in the thesis.

Up to the writing process, we were unable to determine the edge-gap number
for the family of bipartite unicyclic graphs. In fact, during our work, we observed that
there is an infinite family of such graphs that do not admit gap-[2]-edge-labellings. After
the thesis’ publication, we continued to investigate this family of graphs and devised a
polynomial-time algorithm which decides whether an even-length unicyclic graph admits
a gap-[2]-edge-labelling. This result was later incorporated to one of the submitted papers.

2.2. Gap-[2]-vertex-labellings of cubic and subcubic bipartite graphs
As previously mentioned, our main objective was to study computational complexity as-
pects of gap-labellings. Concerning the vertex variant, [Dehghan et al. 2013] posed the
problem of determining the computational complexity of deciding whether a cubic bipar-
tite graph admits a gap-[2]-vertex-labelling. We pursued two approaches to the problem.

The first approach was an attempt at characterizing which of these graphs admit
a gap-[2]-vertex-labelling. We began by considering a restriction of this family, namely
cubic bipartite that contain a Hamiltonian Cycle H and whose chords are of fixed reach,
i.e. every edge e 6∈ E(H) links vertices that are at the same distance in H . We referred
to these graphs as CBH-graphs with homogeneous chords. For this family, we designed
eight labelling techniques and algorithms which led us to establish the following theorem.

Theorem 5.2 (cf. [Weffort-Santos 2018]). Let G be a CBH-graph. Then, χg
V

(G) = 2 if:
(i) n ≡ 0 (mod 4); or

(ii) n ≡ 2 (mod 4) and there exists a chord e ∈ E(G) s.t. r(e) ≡ 3 (mod 4); or
(iii) n ≡ 2 (mod 4) and n = β(r + 1) + α(r − 1), for α, β odd; or
(iv) n ≡ 2 (mod 4) and r(e) ≡ 3 (mod 6) for every chord e ∈ E(G). �

We also devised an Integer Linear Programming (ILP) formulation that finds a
gap-[2]-vertex-labelling of a CBH-graph with homogeneous chords, if one exists. Our
computational experiments and the coverage of this class provided by Theorem 5.2 led
us to pose the following conjecture.



Conjecture 3.22 (cf. [Weffort-Santos 2018]). Let G be a CBH-graph not isomorphic to
the Heawood Graph. Then, χg

V
(G) = 2.

The second avenue of attack was an investigation on the NP-hardness aspects
of gap-[2]-vertex-labellings of cubic bipartite graphs. It is known that the problem is
polynomial-time solvable for bipartite graphs that are 2-regular (i.e. cycles) or r-regular,
with r ≥ 4. However, the boundaries of tractability are quite unclear when considering
cubic (i.e. 3-regular) bipartite graphs. Therefore, in order to advance in this front, we
decided to broaden our set of instances by considering subcubic bipartite graphs, which
are graphs G with ∆(G) ≤ 3. Upon such consideration, we devised a polynomial-time
reduction from the MONOCHROMATIC TRIANGLE problem, which is known to be
NP-complete, to our problem of deciding whether a subcubic bipartite graph admits a
gap-[2]-vertex-labelling (G2VL), thus establishing the following theorem.

Theorem 3.1 (cf. [Weffort-Santos 2018]). G2VL is NP-complete, even when restricted
to subcubic bipartite graphs.

Furthermore, by performing a small modification to the reduction algorithm, the
same NP-hardness result holds even when the graph is subcubic with δ(G) ≥ 2. This
result contributes significantly to narrowing down the boundaries of tractability for the
G2VL problem.

2.3. The gap-strength of complete graphs

Our final considerations are on another perspective on gap-[k]-vertex-labellings. As previ-
ously mentioned, there are graphs for which no gap-[k]-vertex-labellings exist, regardless
of the value of k. We proved that this is the case for the family of complete graphs Kn,
n ≥ 4, and for a subfamily of split graphs. In fact, these results came upon addressing the
problem of determining the computational complexity of deciding whether a graph G is
gap-vertex-labelable, also posed by [Dehghan et al. 2013].

Since no upper bound was previously known for the vertex-gap number of graphs
prior to our work, our first result was to determine that every gap-vertex-labelable graph
admits a labelling using only distinct powers of two. This, in turn, implies that there
exists a O(n!)-time algorithm which decides this problem — one need only verify every
possible assignment of different powers of two to the vertices of the graph.

However, another question arose upon our considerations of Dehghan et al.’s
problem: what is the least number of edges one must remove from a complete graph
such that the resulting graph is gap-vertex-labelable? This problem led us to define
and study a new parameter strgap(G), which we coined the gap-strength of a (non-
gap-vertex-labelable) graph G. We investigated this value for complete graphs from a
structural point of view, establishing that strgap(Kn) ∈ O(n

√
n). We also approached the

parameter from an algorithmic perspective, designing a dynamic programming algorithm
which computes a lower bound on the gap-strength of Kn. The experimental results
show that n

√
n also appears to be a lower bound for strgap(Kn). This led us to pose the

following conjecture.

Conjecture 5.3 (cf. [Weffort-Santos 2018]). Let Kn be the complete graph of order n.
Then, strgap(Kn) ∈ Θ(n

√
n).



3. Concluding remarks
This thesis presents a comprehensive study of proper gap-labellings of graphs. It estab-
lishes the edge-gap and vertex-gap numbers for several families of graphs, NP-hardness
proofs, different labelling techniques, ILP formulations and dynamic programming algo-
rithms, as well as the introduction, investigation and bounds on a new parameter. The
results in this thesis were submitted to conferences in the areas of Graph Theory, Combi-
natorics and Theoretical Computer Science. The list of currently published works follows:

• [Weffort-Santos et al. 2017] Extended abstract II ETC’2017: presents the tight
bounds for the edge-gap and vertex-gap numbers of cycles, crowns and wheels.
• [Weffort-Santos et al. 2018] Abstract VIII LAWCG’2018: contains our results on

the vertex-gap number of unicyclic graphs, as well as for the edge-gap number
of odd-length unicyclic graphs; the polynomial-time algorithm mentioned in Sec-
tion 2.1 was obtained after the time of publication.
• [Weffort-Santos et al. 2019b] Extended abstract Special Issue of Matemática

Contemporânea for the LAWCG’2018 conference (to appear).
• [Weffort-Santos et al. 2019a] Extended abstract X LAGOS’2019 (to appear):

presents the proof of Theorem 2.2 and discussions on the problem.

In addition, there are three full papers in preparation, which will be submitted to
specialized journals until the end of the semester. The first contains our results on the
edge-gap and vertex-gap numbers of snarks. The second contains our results for CBH-
graphs and on the NP-hardness on subcubic bipartite graphs; this paper will be submitted
to the special issue of Discrete Applied Mathematics for the LAGOS’2019 conference.
The last paper comprises our results on the gap-strength of complete graphs.
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