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Abstract. Design problems affect most software projects and make their main-
tenance expensive and impeditive. Thus, the identification of potential design
problems in the source code – which is very often the only available and up-
to-date artifact in a project – becomes essential in long-living software systems.
This identification task is challenging as the reification of design problems in the
source code tend to be scattered through several code elements. However, state-
of-the-art techniques do not provide enough information to effectively help de-
velopers in this task. In this work, we address this challenge by proposing a new
technique to support developers in revealing design problems. This technique
synthesizes information about potential design problems, which are material-
ized in the implementation under the form of syntactic and semantic anomaly
agglomerations. Our evaluation shows that the proposed synthesis technique
helps to reveal more than 1200 design problems across 7 industry-strength sys-
tems, with a median precision of 71% and a median recall of 78%. The relevance
of our work has been widely recognized by the software engineering community
through 2 awards and 7 publications in international and national venues.

1. Introduction
Design problems are caused by the violation of key design principles or rules
[Oizumi et al. 2016]. Software systems suffer from design problems, introduced either
during original development or during evolution. Fat Interface and Unwanted Depen-
dency [Garcia et al. 2009] are examples of design problems. Software systems – like
Linux [Schach et al. 2002] and Mozilla Firefox [Godfrey and Lee 2000] – have had to be
fundamentally reengineered or have been discontinued when design problems were al-
lowed to persist in the code and to be compounded by other design problems introduced
later [Oizumi et al. 2016]. Therefore, even presenting different degrees of severity, design
problems should be identified and removed in early versions of a program.

Design problems are introduced and allowed to remain in a system because their
localization in the source code is difficult. As design documentation is often informal or
nonexistent, code anomalies – popularly known as code smells [Fowler 1999] – are the
mechanisms used to locate possible design problems in the source code. However, each
code anomaly represents only a partial indicator of a design problem [Oizumi et al. 2015].
Examples of typical code anomalies are Long Method and God Class. Even though each
code anomaly can provide some hint to developers, it alone might not suffice to indicate
the presence of a design problem. In fact, isolated anomalies are often irrelevant to soft-
ware design [Oizumi et al. 2014a]. Each design problem is rarely localized in a single
anomalous code element; instead, it is scattered into different anomalous code elements
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Figura 2. Função de Distribuição Acumulada da Centralidade de Cobertura na
rede MOSAR

5. Conclusões
Na dissertação, foi introduzido o conceito de Centralidade de Tempo em GVTs. A centra-
lidade de tempo avalia a importância relativa de um instante de tempo dentro do contexto
de um GVT. Além disso, foram apresentadas duas métricas de centralidade de tempo, ba-
seadas em processos de difusão, e ambas foram avaliadas usando um conjunto de dados
real, que representa uma rede dinâmica de contato interpessoal. Os resultados mostram
que iniciar uma difusão em um instante de tempo mais central, de acordo com nossas
métricas, pode resultar em um processo de difusão mais rápido e abrangente.

Como trabalho futuro, é cogitado o desenvolvimento de modelos de previsão ba-
seados na centralidade de tempo para sistemas complexos que podem ser representados
por GVTs. Para isso, é necessário elaborar estratégias que possibilitem a identificação de
instantes de tempo mais centrais, baseadas em evidências no passado recente ou no pre-
sente da evolução do GVT. Dessa forma, é possı́vel indicar prováveis instantes de tempo
centrais à medida em que eles surgirem.
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of the implementation [Oizumi et al. 2016, Oizumi et al. 2015, Oizumi et al. 2014a].
Therefore, developers often have to analyze multiple code anomalies in order to locate
and understand a single design problem.

Unfortunately, there is very limited knowledge about how design problems man-
ifest in the source code. This occur because the relation between design problems and
their counterpart code anomalies is often complex. There is little to no understanding of
which relationships between code anomalies are frequent indicators of design problems
in complex software systems. There is a recent growing interest in conceptually charac-
terizing interactions between code anomalies. However, the relation of code anomalies
and design problems is rarely investigated. Empirical studies only address how individ-
ual occurrences of code anomalies emerge during software evolution or affect quality
attributes. They do not analyze how individual anomalies and their relationships in the
code might help developers to spot design problems. As a result, conventional techniques
for anomaly detection are unable to effectively reveal design problems in the source code
[Oizumi et al. 2015].

In this context, this work addresses the aforementioned gap in the literature,
proposing and evaluating a technique for the Synthesis of Code Anomalies (SCA, for
short) [Oizumi et al. 2014b]. In order to reveal design problems, SCA searches for
coherent groups of inter-related code anomalies – the so called anomaly agglomera-
tions. With the aim of assessing the effectiveness of SCA, we conducted two evalua-
tions: (1) a multi-case study involving 7 systems with different sizes [Oizumi et al. 2016,
Oizumi et al. 2015], and (2) a controlled experiment and interviews with several profes-
sional developers [Oizumi 2015]. Both evaluations confirmed that SCA is at least twice
better than conventional techniques to reveal critical design problems in a software sys-
tem. Moreover, we found that our algorithm for synthesizing semantic agglomerations
helped to locate design problems with a precision higher than 80%.

2. Synthesis of Code Anomalies: An Overview of the Proposed Technique
Existing techniques (e.g. [Lanza and Marinescu 2006]) for detecting design problems
in the source code are based on the assumption that single measures or smells help
to locate design problems. Instead, SCA reveals design problems through the sys-
tematic search and summarization of information about code-anomaly agglomerations
[Oizumi et al. 2014b]. We present below a summarized description of the main steps of
SCA. Refer to Chapter 3 of [Oizumi 2015] for a detailed description.

Detection of Individual Code Anomalies. Using conventional algorithms
[Lanza and Marinescu 2006], SCA analyzes the source code of the program aiming at
detecting instances of code anomalies [Fowler 1999][Lanza and Marinescu 2006]. SCA
covers the types of code anomalies documented in [Fowler 1999].

Search for Agglomerations. After the detection of code anomalies is completed,
SCA explores information about code anomalies and relationships between code elements
[Oizumi et al. 2015] to search for anomaly agglomerations. The search performed by
SCA explores syntactic and semantic relationships to identify anomaly agglomerations in
a program [Oizumi et al. 2014b]. Method calls and design concerns involving anomalous
elements in the program are examples of syntactic and semantic relationships, respec-
tively. A concrete example of agglomeration is provided in Section 3.
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In this work, we proposed an evaluated 6 categories of agglomeration based on
semantic and syntactic relationships: (1) concern-based, (2) cross-boundary, (3) intra-
boundary, (4) hierarchical, (5) intra-method and (6) intra-class. The first category encom-
passes agglomerations formed through design concerns. Agglomerations composed by
relationships that crosses the boundaries between design components fall in the second
category. The third category contains agglomerations that occur in the internal struc-
ture of design components. Agglomerations based on hierarchical relationships (inher-
itance and interface implementation) fall in the fourth category. Finally, the fifth and
sixth categories consider agglomerations occurring in common methods and common
classes, respectively. Each category of agglomeration provides information that other cat-
egories may not provide. In other words, each of them presents a distinct perspective to
analyze anomaly agglomerations [Oizumi et al. 2014a, Oizumi et al. 2016]. The identi-
fication of each category of relationship is realized through a search strategy. To better
understand SCA search strategies, consider the concern-based category. The search strat-
egy for this category consists of grouping into an agglomeration anomalous elements of
different components, which are related to the same design concern (e.g. Concurrency).

Summarization of Relevant Information. To provide valuable information
about the agglomerations found, SCA synthesizes relevant information about each ag-
glomeration. This includes a textual description of the anomalies in each agglomeration,
a list of code elements surrounding each agglomeration, and historical information about
each agglomeration. The aforementioned information is intended to support developers
in the process of analyzing, understanding and removing design problems revealed by
agglomerations.

3. Evaluation of SCA
Our initial studies indicated that several isolated anomalies are often not related to de-
sign problems [Oizumi et al. 2014a, Oizumi et al. 2014b]. This finding motivated us to
perform the evaluation of SCA based on two research questions:

RQ1. Is SCA an accurate technique to support the location of design problems?
RQ2. What is the most useful category of relationships to locate design problems?

The objective of RQ1 is to investigate whether SCA is better than a conventional
technique to identify design problems. The conventional technique consist of state-of-the-
art algorithms for code anomaly detection [Lanza and Marinescu 2006]. To answer this
question, we performed two evaluations regarding the proportion of false positives and
false negatives of each technique. RQ2 is aimed at investigating which of the proposed
categories of relationships is the best to reveal design problems. These questions were
answered based on the use of quantitative and qualitative methods. Procedures and results
of our studies are described below.

Methodology. In order to answer research questions RQ1 and RQ2, we conducted
two assessments: a multi-case study in the context of seven industry-strength systems,
and a controlled experiment and interviews with eight professional developers. In the first
assessment, we investigated which technique presented the highest precision and recall
in the identification of design problems. As agglomerations involves more code elements
than single anomalies, we also analyzed the proportion of elements in agglomerations that
are related to design problems [Oizumi et al. 2015]. Finally, we compared the accuracy
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of anomaly agglomeration categories to understand which is the best one to reveal design
problems. To perform our analysis, original developers helped us to identify instances of
8 design problems in the 7 target systems. Details about each design problem are provided
in Section 2.2 of [Oizumi 2015].

In the second assessment, we compared the use of SCA and of the conventional
technique by professional developers through a controlled experiment. In this experiment,
professionals were asked to identify design problems in two different systems using both
techniques. This experiment helped us to analyze, based on the developers’ perception,
the benefits of SCA in actual tasks on the identification of design problems. A thorough
description of both evaluations is presented in Chapters 4 and 5 of [Oizumi 2015].

SCA Outperformed the Conventional Technique. Regarding RQ1, SCA was
at least twice better than the conventional technique to indicate the presence of design
problems, presenting a median precision of 71% and a median recall of 78%. In four
systems, SCA was five times more accurate than the conventional technique. Using SCA,
developers could discard near by 4000 isolated code anomalies, which would be irrelevant
to reveal design problems. Finally, we observed that developers make several mistakes as
they are exposed to various false positives when using a conventional technique.

Example of Critical Design Problem Detected with SCA. Our findings in
both studies also confirmed that SCA was accurate to reveal the most critical design
problems in the analyzed systems. Consider the hierarchy of classes presented in Fig-
ure 1. This figure shows a snapshot of the Versioner class hierarchy in th OODT system
[Mattmann et al. 2006]. The Versioner hierarchy is responsible for managing and stor-
ing versions of different Product types using alternative storage strategies. All classes in
the Versioner hierarchy have to implement the createDataStoreReferences method. This
method has two parameters: a Product instance and a Metadata instance. As there are
no sub-classes for each type of Product, each createDataStoreReferences implementation
has to decide if it is handling the correct Product type (e.g., the MetadataBasedFileVer-
sioner must only process “flat” products). Consequently, the Product type handled by
each Versioner implementation cannot be discovered from the createDataStoreReferences
interface. Instead, this can only be discovered by analyzing details of each createDataS-
toreReferences implementation. Hence, the developer can conclude the Versioner imple-
mentations are affected by the Fat Interface design problem. This design problem occurs
in interfaces that expose multiple functionalities through a general interface. This problem
can only be identified through a careful analysis of the OODT source code.

Only through the use of SCA, developers were able to identify this critical design
problem. All implementations of Versioner (SingleFileBasicVersioner, BasicVersioner,
DateTimeVersioner and MetadataBasedFileVersioner) are affected by instances of the
Feature Envy anomaly – a method that calls more methods of a single external class
than of its own class. All these anomaly instances occur in classes that implement the
same interface – which is the Versioner interface. This means the anomalous classes are
inter-related through hierarchical relationships. SCA explores such relationships to de-
tect this category of anomaly agglomeration. This agglomeration provides fundamental
information to reveal the Fat Interface: anomalous counter-part elements of the design
problem in the source code, and the relationships between the anomalous elements. We
observed in the experiment that, analyzing this agglomeration, a developer did not waste
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Figure 1. Example of agglomeration in the OODT system.

time in analyzing irrelevant non-agglomerated anomalies.

Other features of SCA were also responsible for achieving high accuracy. SCA
provides information about the relationships between the agglomeration and its surround-
ing code elements. In the example of Figure 1, the code elements Metadata, Product,
VersioningUtils, XmlRpcFileManager, XmlRpcFileManagerClient and GenericFileMan-
agerObjectFactory are not anomalous. However, they are surrounding the agglomeration,
as they are related to anomalous classes in the agglomeration. This information is impor-
tant for a developer to recognize the extent and relevance of the design problem. More-
over, if a developer eventually removes the design problem, some surrounding elements
would surely be affected.

Accuracy of Agglomeration Categories. Regarding RQ2, intra-component,
cross-component and hierarchical categories cannot be considered very strong indicators
of design problems. Their statistical significance was not high. Nevertheless, considering
all the analyzed systems, approximately 50% instances of these categories of agglom-
erations were related to design problems, with a median recall of 55%. This accuracy
is much higher than the accuracy of individual code anomalies. Design problems were
often much more precisely indicated by semantic anomaly agglomerations. In general,
the accuracy was approximately 80% when considering all the design problems and sys-
tems analyzed in our study. This result was also confirmed by our controlled experiment
with professionals. Moreover, design problems identified with the help of such semantic
anomaly agglomerations were considered the most complex and hard to spot. Considering
our sample of systems, semantic agglomerations presented a median recall of 13%. Our
analysis revealed that this low recall occurred due to inaccurate information provided by
original architects, which can be improved by using automatically detected design con-
cerns. When provided with more precise information about design concerns, semantic
agglomerations revealed 39.58% more design problems [Oizumi et al. 2016].

4. Concluding Remarks
We designed and proposed SCA, a technique for the synthesis of code anomalies and
support the location of design problems in the source code. The proposed technique
was evaluated in the context of two empirical studies. Both studies provided evidence
that SCA, in fact, significantly outperforms existing state-of-the-art techniques. We also
created Organic [Oizumi and Garcia 2015], an open-source project for the practical use
and evaluation of SCA. Relevance. The relevance of our idea and concrete solution
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have been recognized by the software engineering community. We published our results
in three international conferences [Oizumi et al. 2016] (Qualis A1), [Vidal et al. 2015],
and [Vidal et al. 2016]; a symposium [Oizumi et al. 2014a]; an international journal
[Oizumi et al. 2015]; and a workshop [Oizumi et al. 2014b, Albuquerque et al. 2014].
Awards. Our work was awarded twice at the Congresso Brasileiro de Software (CB-
Soft 2014): best paper of WMod [Oizumi et al. 2014b] and third best paper of
SBES [Oizumi et al. 2014a], which is the most traditional Brazilian symposium on Soft-
ware Engineering. As a result, we were invited to submit an extended version of
our work to the Journal of Software Engineering Research and Development (JSERD)
[Oizumi et al. 2015]. Acknowledgements. This research was sponsored by PUC-Rio,
FAPERJ and CAPES. We thank Nenad Medvidovic, Arndt von Staa and Leonardo da
Silva Sousa for their technical contributions.
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