
Automated Behavioral Testing of Refactoring Engines

Gustavo Soares1, Rohit Gheyi1

1Department of Computing and Systems– Federal University of Campina Grande (UFCG)
Campina Grande – PB – Brazil

{gsoares,rohit}@dsc.ufcg.edu.br

Abstract. Refactoring is a transformation that preserves the external behavior
of a program and improves its internal quality. To help developers in this task,
current IDEs, such as Eclipse and NetBeans, automate a number of refactorings.
However, implementing refactorings is a complex task, and so, even mainstream
IDEs contain critical bugs. We propose an automated approach for testing of
Java refactoring engines. Its key components are: JDOLLY, a Java program
generator, and SAFEREFACTOR, a program for checking behavioral changes.
The technique uses JDOLLY to generate programs as test inputs. For each gen-
erated program, it applies the refactoring by using the engine under test, and
uses oracles based on SAFEREFACTOR to evaluate the correctness of the trans-
formation. In the end, it classifies the failures into distinct bugs. We have evalu-
ated this technique by testing up to 10 refactorings from Eclipse, NetBeans and
the JastAdd Refactoring Tools. Our technique tested 153,444 transformations,
and identified more than 100 bugs, which were reported to engines’ developers.
They accepted most of them, and already fixed 35 bugs.

1. Information about the thesis

This paper resumes the Ph.D. thesis Uma Abordagem Automatizada para Testar Ferra-
mentas de Refatoramento of Gustavo Soares from the department of Computing and Sys-
tems of the Federal University of Campina Grande. Gustavo Soares had the supervision
of Prof. Rohit Gheyi. The work was approved with distinction by the bank examiner
composed by his advisor and Prof. Tiago Massoni and Prof. Patricia Machado from the
department of Computing and Systems of the Federal University of Campina Grande,
Prof. Paulo Borba from the Informatics Center of the Federal University of Pernambuco,
and Prof. Alessandro Garcia from the Informatics Department of PUC-Rio.

2. Problem and motivation

Refactoring is a transformation that preserves the external behavior of a program and
improves its internal quality [Opdyke 1992]. Each refactoring may contain a number of
preconditions needed to guarantee behavioral preservation. For instance, to pull up a
method m to a superclass, we must check whether m conflicts with the signature of other
methods in that superclass. In practice, testing refactoring preconditions involves manu-
ally creating an input program to be refactored and specifying a refactoring precondition
failure as expected output.

However, developers choose input programs for checking just the preconditions
they are aware of. Since specifying preconditions is a non-trivial task, developers may be

unaware of preconditions needed to guarantee behavioral preservation. When the imple-
mented preconditions are insufficient to guarantee behavioral preservation, we call it as
overly weak preconditions. Additionally, some implemented preconditions may be overly
strong, that is, it leads the engine to refuse to apply a behavior preserving transformation.

Refactoring engine developers have invested in testing. For instance, Eclipse’s
test suite has more than 3.000 unit tests for checking refactoring correctness. However,
their test suites still fail to detect a number of bugs [Soares et al. 2013a]. For instance,
take class A and its subclass B as illustrated in Listing 1. The B.test() method yields
1. If we use Eclipse 4.3 to perform the Pull Up Method refactoring on method m(), the
tool will move method m from B to A, and update super to this (see Listing 2). A
behavioral change was introduced: test yields 2 instead of 1. Since m is invoked on an
instance of B, the call to k using this is dispatched on to the implementation of k in B.

Listing 1. Pulling up B.k() by using Eclipse 4.3 changes program behavior.

p u b l i c c l a s s A {
i n t k () { re turn 1 ;}

}
p u b l i c c l a s s B ex tends A {

i n t k () { re turn 2 ;}
i n t m() { re turn super . k () ; }
p u b l i c i n t t e s t () { re turn m() ; }

}

Producing tests for checking refactoring preconditions by hand is not simple
due to the complexity of the test inputs and the analysis of the refactoring output,
which may result on a poor test suite, potentially leaving many hidden bugs, such
as the previous one. Another approach to handle this problem is to formally spec-
ify refactorings. For instance, Schäfer and Moor [Schäfer and de Moor 2010] spec-
ified refactorings for Java, and proposed a tool called JastAdd Refactoring Tools
(JRRT) [Schäfer and de Moor 2010]. However, proving refactoring correctness for the
entire language is still a challenge [Schäfer et al.]. The same problem shown in List-
ings 1 and 2 occurs when we apply this previous transformation by using JRRTv11.

Listing 2. After pulling up method m, the test method yields 2 instead if 1.

p u b l i c c l a s s A {
i n t k () { re turn 1 ;}
i n t m() { re turn t h i s . k () ; }

}
p u b l i c c l a s s B ex tends A {

i n t k () { re turn 2 ;}
p u b l i c i n t t e s t () { re turn m() ; }

}

3. Approach
We propose an approach for testing of Java refactoring engines. Its main novelties are
its technique for generating input programs and its test oracles for checking behavioral

1The JRRT version from May 18th, 2010

preservation based on dynamic analysis. It performs four major steps. First, a program
generator automatically yields programs as test inputs for a refactoring. Second, the refac-
toring under test is automatically applied to each generated program. The transformation
is evaluated by test oracles in terms of overly weak and overly strong preconditions. In
the end, we may have detected a number of failures, which are categorized in Step 4.

3.1. Test input generation

To perform the test input generation, we propose a Java program generator
(JDOLLY [Soares et al. 2013a]). It contains a subset of the Java metamodel specified
in Alloy [Jackson 2012], a formal specification language. It employs the Alloy Analyzer,
a tool for the analysis of Alloy models, to generate solutions for this metamodel. Each
solution is translated into a Java program. In JDOLLY, the user can specify the maximum
number (scope) of packages, classes, fields, and methods for the generated programs. The
tool exhaustively generates programs for a given scope. In this way, it may generate in-
put programs capable of revealing bugs that developers were unaware of. Furthermore,
JDOLLY can be parameterized with specific constraints. For example, when testing a
refactoring that pulls up a method to a superclass, the input programs must contain at
least a subclass declaring a method that is subject to be pulled up. We can specify these
constraints in Alloy.

3.2. Test oracle

We propose SAFEREFACTOR [Soares et al. 2010], a tool for checking behavioral
changes, as oracle for weak preconditions. First, the tool checks for compilation errors
in the resulting program, and reports those errors; if no errors are found, it analyzes the
results and generates a number of tests suited for detecting behavioral changes. SAFER-
EFACTOR identifies the methods with matching signature before and after the transfor-
mation. Next, it applies Randoop [Pacheco et al. 2007], a random unit test generator for
Java, to produce a test suite for those methods. Finally, it runs the tests before and after
the transformation, and evaluates the results. If results are divergent, the tool reports a
behavioral change.

We propose an oracle to detect overly strong preconditions based on differential
testing [Soares et al. 2011c]. When the refactoring implementation under test rejects a
transformation, we apply the same transformation by using one or more other refactoring
implementations. If one implementation applies it, and SAFEREFACTOR does not find
behavioral changes, we establish that the implementation under test contains an overly
strong condition since it rejected a behavior-preserving transformation.

3.3. Test clustering

Our technique may produce a large number of failures, and some of them may be related
to the same fault. Jagannath et al. [Jagannath et al. 2009] propose an approach to split
failures based on oracle messages (Oracle-based Test Clustering - OTC). We adopt this
approach to classify failures that introduce compilation errors in the output program. The
failures are grouped by the template of the compiler error message, so that each group con-
tains a distinct fault. We also use OTC to categorize the overly strong precondition failures
based on the template of the warning message thrown by a refactoring engine. However,
we cannot use this approach for classifying failures related to behavioral changes since

Table 1. Overall experimental results.

Refactoring Program Time(h) Comp. error. Behav. cha. Overly strong
Rename Class 15322 6.7 4368 160 446

Rename Method 11263 6.9 2290 1713 5221
Rename Field 19424 29.3 894 1834 200

Push Down Method 20544 11.9 13579 3312 99
Push Down Field 11936 6 7231 119 0
Pull Up Method 8937 7.3 3867 1363 649

Pull Up Field 10927 8.6 1726 785 1328
Encapsulate Field 2000 2.5 472 1220 1712

Move Method 22905 10.3 1321 12289 502
Add Parameter 30186 34.69 7487 4802 79

Total 153444 124.19 43235 27597 10236

there is no information from our oracle (SAFEREFACTOR) that could be used to split the
failures. Instead, we propose an approach to classify them based on filters that check for
structural patterns in each pair of input and output programs. For example, there are fil-
ters for transformations that enable or disable overloading/overriding of a method in the
output program, relatively to the input program.

4. Results
We performed an experiment to evaluate our approach with respect to effectiveness in
identifying overly weak and overly strong preconditions in refactoring engines. We se-
lected up to 10 refactoring implementations from Eclipse JDT 3.7, NetBeans 7.0.1, and
JRRT [Soares et al. 2013a]. We evaluated two versions of JRRT. First, we tested the refac-
torings implemented by JRRTv1, and reported the bugs we found. Later, a new version
was released with improvements and bug fixing (which we call JRRTv2); this new version
was also subject to our analysis.

Table 1 summaries the experiment results. The evaluated refactorings focus on a
representative set of program structures. Columns Program and Time show the number of
programs generated by JDOLLY for each refactoring, and the average time for testing the
refactoring implementations from each engine, respectively. Columns Comp. error., Be-
hav. cha., and Overly strong show the total number of transformations applied by Eclipse,
NetBeans, JRRTv1, and JRRTv2 that produced compilation errors, behavioral changes,
and that were not applied due to overly strong preconditions, respectively. Considering
all refactorings, JDOLLY generated 153,444 programs, and our technique detected 43,235
transformations that introduce compilation errors, 27,597 ones that introduce behavioral
changes, and 10,236 that were not applied due to overly strong preconditions.

Even though Eclipse, JRRT and NetBeans have their own test suites, our technique
classified 144 (likely) unique bugs. Table 2 summarizes the bugs identified and reported to
Eclipse JDT, NetBeans and JRRT. Our technique identified 34 overly weak preconditions
in Eclipse. Although all of them were accepted by the Eclipse developers, 16 of them
were labeled as duplicated. So far, they have fixed just two of them. In NetBeans, our
technique identified 51 overly weak preconditions. NetBeans team has already accepted

Table 2. Summary of reported bugs.

Engine Submitted Accepted Duplicated Not accepted Not answered Fixed
Eclipse 51 40 17 1 0 2
JRRTv1 31 27 0 4 0 23
JRRTv2 11 6 0 5 0 6

NetBeans 51 24 0 2 25 7

30 of them and fixed 7 bugs. Meanwhile, we reported 24 overly weak preconditions
to JRRTv1, from which 20 were accepted and fixed (4 of the bugs were not considered
bugs due to a closed-world assumption of JRRT developers). We reported more 11 bugs
to JRRTv2, from which 6 were accepted and fixed. JRRT team also incorporated our
test cases into their test suite. Our technique did not find overly strong preconditions in
NetBeans, but identified 17 ones in Eclipse and 7 ones in JRRTv1. JRRT developers fixed
3 out of the 7 overly strong preconditions.

5. Related work
To help developers on testing refactoring engines, Daniel et al. [Daniel et al. 2007] pro-
posed an approach to automate this process. They used a program generator (ASTGen)
to generate programs as test inputs. ASTGen allows users to directly implement how the
program will be generated. Later, Gligoric et al. [Gligoric et al. 2010] proposed UDITA,
a Java-like language that extends ASTGen allowing users to specify what is to be gen-
erated (instead of how to generate), and uses the Java Path Finder model checker as a
basis for searching for all possible combinations. Although JDOLLY and UDITA use the
same ideal for generating programs, they use different technologies for searching for so-
lutions, and specify constraints in different styles. Alloy logic presents a higher level of
abstraction than Java-like code. For example, a constraint containing the transitive closure
operator in Alloy can only be achieved programmatically after considerable additional ef-
fort in Java. Also, Daniel et al. [Daniel et al. 2007] implemented test oracles to evaluate
engine outputs. They have identified a number of bugs that introduce compilation errors
on the user’s code and one bug that introduces a behavioral change. While the oracles
of previous approaches can only syntactically compare the programs to detect behavioral
changes, SAFEREFACTOR generates tests that do compare program behavior. We found
63 bugs related to behavioral changes.

6. Publications and Awards
The technique for testing of refactoring engines with respect to overly weak conditions
was published in the IEEE Transactions of Software Engineering [Soares et al. 2013a]
(Qualis A1 - JCR=2,292). The technique for testing of refactoring engines with
respect to overly strong condition was published in the IEEE International Con-
ference on Software Maintenance [Soares et al. 2011c] (Qualis A2). SAFEREFAC-
TOR was published in the IEEE Software Magazine [Soares et al. 2010] (Qualis A1
- JCR=1,23). Later, further evaluations of SAFEREFACTOR on analyzing refactoring
actives on software repositories were published in the Brazilian Symposium on Soft-
ware Engineering [Soares et al. 2011a] (Qualis B3) and Journal of Systems and Soft-
ware [Soares et al. 2013b] (Qualis A2 - JCR=1,245). An extension of SAFEREFACTOR

for supporting aspect-oriented programming was published in the Brazilian Symposium
on Programming Languages [Soares et al. 2011b] (Qualis B3).

The quality of the work was recognized by some awards. Gustavo Soares’s Ph.D.
work was ranked the best graduate research work in the ACM Student Research Com-
petition at SPLASH 2012. Gustavo Soares also won the John Vlissides Award in the
Doctoral Symposium at SPLASH, 2012. The award is presented annually to a doc-
toral student participating in the doctoral symposium showing significant promise in
applied software research. The paper “Analyzing Refactorings on Software Reposito-
ries” [Soares et al. 2011a] won the best paper award at the 25th Brazilian Symposium on
Software Engineering (SBES 2011). The poster “Making program refactoring safer” was
ranked 2nd Best Poster at ECOOP 2011.

References
Daniel, B., Dig, D., Garcia, K., and Marinov, D. (2007). Automated testing of refactoring

engines. In ESEC/FSE ’07. ACM.

Gligoric, M., Gvero, T., Jagannath, V., Khurshid, S., Kuncak, V., and Marinov, D. (2010).
Test generation through programming in udita. In ICSE ’10, pages 225–234.

Jackson, D. (2012). Software Abstractions: Logic, Language, and Analysis. The MIT
Press.

Jagannath, V., Lee, Y. Y., Daniel, B., and Marinov, D. (2009). Reducing the costs of
bounded-exhaustive testing. In FASE ’09, pages 171–185.

Opdyke, W. (1992). Refactoring Object-Oriented Frameworks. PhD thesis, University of
Illinois at Urbana-Champaign.

Pacheco, C., Lahiri, S., Ernst, M., and Ball, T. (2007). Feedback-directed random test
generation. In ICSE ’07, pages 75–84.

Schäfer, M. and de Moor, O. (2010). Specifying and implementing refactorings. In
OOPSLA ’10, pages 286–301. ACM.

Schäfer, M., Ekman, T., and de Moor, O. Challenge proposal: verification of refactorings.
In PLPV ’09, pages 67–72. ACM.

Soares, G., Catão, B., Varjão, C., Aguiar, S., Gheyi, R., and Massoni, T. (2011a). Ana-
lyzing refactorings on software repositories. In SBES ’11, pages 164–173.

Soares, G., Cavalcanti, D., and Gheyi, R. (2011b). Making aspect-oriented refactoring
safer. In SBLP’11.

Soares, G., Gheyi, R., and Massoni, T. (2013a). Automated behavioral testing of refac-
toring engines. IEEE TSE, 39(2):147–162.

Soares, G., Gheyi, R., Murphy-Hill, E., and Johnson, B. (2013b). Comparing approaches
to analyze refactoring activity on software repositories. JSS, 86:1006,1022.

Soares, G., Gheyi, R., Serey, D., and Massoni, T. (2010). Making program refactoring
safer. IEEE Software, 27:52–57.

Soares, G., Mongiovi, M., and Gheyi, R. (2011c). Identifying overly strong conditions in
refactoring implementations. In ICSM ’11, pages 173–182.

