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Abstract. Snarks are cubic graphs that do not admit a 3-edge-colouring and

that are regarded to be the minimal cubic graphs without this property. Snarks

have been studied by many researchers throughout the history, since many fa-

mous open problems are known to have their potential counter-examples resid-

ing in this family of graphs. In this paper we present relations between several

classes of critical snarks. It follows from one of such relations that no hypo-

hamiltonian snark is a counter-example to Tutte’s 5-flow Conjecture, thus giving

a positive answer to a question proposed by Cavicchioli et al. in 2003.

Resumo. Snarks são grafos cúbicos que não admitem 3-coloração de arestas e

que são considerados os grafos cúbicos minimais sem esta propriedade. Snarks

vêm sendo estudados por vários pesquisadores no decorrer da história, uma

vez que é sabido que vários problemas abertos famosos devem ter seus potenci-

ais contra-exemplos dentro desta famı́lia de grafos. Neste artigo apresentamos

relações entre várias classes de snarks crı́ticos. É consequência de uma destas

relações que nenhum snark hipohamiltoniano é um contra-exemplo para a Con-

jectura dos 5-fluxos de Tutte. Essa asserção responde afirmativamente a uma

questão proposta por Cavicchioli et al. em 2003.

1. Introduction

A k-edge-colouring is an assignment of at most k colours to the edges of a graph

such that no two adjacent edges are assigned the same colour. The chromatic in-

dex of a graph G is the minimum k such that G has a k-edge-colouring. It is well

known that cubic graphs fall into two categories regarding their chromatic index. By

Vizing’s Theorem (see [Bondy and Murty 1976][Theorem 6.2]) a cubic graph has chro-

matic index either 3 or 4. A snark is, in essence, a cubic graph that does not ad-

mit a 3-edge-colouring. Snarks are usually also required to have girth at least five

and be cyclically 4-edge-connected, in order to avoid triviality. The importance of the

study of snarks comes from the fact that for many famous open problems in Graph
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Theory it suffices to prove them for snarks. For instance, the Berge-Fulkerson’s Con-

jecture [Fulkerson 1971], Tutte’s 5-flow Conjecture [Tutte 1954] and the Cycle Dou-

ble Cover Conjecture [Seymour 1979, Szekeres 1973]. Snarks were named by Gard-

ner [Gardner 1976] after a creature from the poem “The Hunting of the Snark” by Lewis

Carroll. In the poem, the snark is a mysterious and legendary creature. The apparent dif-

ficulty to find non-3-edge-colourable cubic graphs inspired the name. Many references,

such as [Bondy and Murty 2008, Chetwynd and Wilson 1981, West 1996], present inter-

esting accounts of the appealing history behind the search for snarks.

The study of cubic graphs dates back to the Four Colour Problem, one of the oldest

and most studied problems in Graph Theory. The Four Colour Problem was one of first

problems known to be reducible to the class of cubic graphs. In 1880 Tait presented a

proof that the faces of a cubic planar map without a 1-edge cut could be coloured with at

most four colours if and only if it had a 3-edge-colouring. So far, no snark was known.

Only in 1898 the first snark was discovered by Julius Petersen; it was later named Petersen

graph. The Petersen graph is also the smallest possible snark. For many of the following

decades, few other snarks were discovered. However, in [Isaacs 1975] it was shown that

there were infinitely many snarks. Isaacs presented the infinite family of flower-snarks

and also described an operation, called the dot product which could be used to obtain a

new snark out of two snarks.

Let k > 1 be an integer, let G be a graph, let D be an orientation of G and let

ϕ be a weight function that associates to each edge of G a positive integer in the set

{1, 2, . . . , k − 1}. The pair (D,ϕ) is a (nowhere-zero) k-flow of G if every vertex v of

G is balanced, i. e., the sum of the weights of all edges leaving v equals the sum of

the weights of all edges entering v. Tutte [Tutte 1954] defined the concept of k-flow as

a generalization of the concept of k-face-colouring after observing that, for any planar

graph, a k-flow can be obtained from a k-face-colouring and vice-versa (a proof can be

found in [Younger 1983]). The concept of k-flow generalizes that of a k-face-colouring

since it does not depend on an embedding of the graph in a particular surface. In this

paper we focus our attention on Tutte’s 5-flow Conjecture, stated below.

Conjecture 1.1 (Tutte’s 5-Flow Conjecture [Tutte 1954]) Every graph with no 1-edge

cut admits a 5-flow.

Several partial results can be found in the literature. For instance,

Zhang [Zhang 1997], Diestel [Diestel 1996] and Seymour [Seymour 1995] bring many

partial results regarding Tutte’s Conjectures. The most important of all is Seymour’s 6-

Flow Theorem [Seymour 1981], which states that every graph with no 1-edge cut admits

a 6-flow. This is the best known approximation for Tutte’s 5-Flow Conjecture.

Tutte also proved the following Theorem, which is particularly relevant to this

work. Its proof is simple and elegant, and can be found in [Bondy and Murty 2008, The-

orem 21.11].

Theorem 1.2 (Tutte) A cubic graph admits a 4-flow if and only if it admits a 3-edge-

colouring.

Tutte’s 5-Flow Conjecture remains open. Also, no simple characterization for

snarks is known. Given the amount of research done so far regarding both problems, it is



clear that these are hard problems. This work aims at giving a small contribution to both

of them. More specifically, we studied how several classes of critical snarks relate to each

other. Among the classes studied there are snarks that are critical for being somehow

close to having a 4-flow and others that are critical for being somehow close to having

a 3-edge-colouring. We observed that two of such classes are equivalent and also that

hypohamiltonian snarks are included in this class. As a result, a question proposed by

Cavicchioli et al. in 2003, namely whether every hypohamiltonian snark has a 5-flow,

could be positively answered.

2. Concepts of criticality

A graph is said to be critical regarding a property, if it does not have that mathematical

property but is somehow close to having it. Typically, when some reduction operation is

applied to the critical graph, the resulting graph has the desired property. The definition of

many classes of critical graphs regarding both edge-colouring and k-flow properties can

be found in the literature. In this section, we give the definition of the classes of critical

graphs that were studied in this work.

Let G be a graph. We denote by G/e the graph obtained from G by the contraction

of edge e. Let S be a set of edges of G, then we denote by G \ S the graph obtained from

G after the removal of all edges in S. In particular, when S is a trivial set containing only

edge e we denote it by G \ e. We denote by G \ v the graph obtained from G after the

removal of vertex v and by G \ {u, v} the graph obtained from G after the removal of a

pair of vertices u and v.

A graph is 2-vertex-(colour)-critical if the removal of two adjacent vertices lowers

its chromatic index. A graph is 2-vertex-(colour)-co-critical if the removal of two non-

adjacent vertices lowers its chromatic index. A graph is (colour)-bicritical if it is 2-vertex-

critical and 2-vertex-co-critical simultaneously.

A k-factor is a spanning k-regular subgraph. Therefore, a 1-factor is a perfect

matching and a 2-factor is a spanning set of cycles. Every cubic graph with no 1-edge

cut has a perfect matching and thus can be decomposed into a 1-factor and a 2-factor.

We define the oddness of a graph G, denoted by ω(G), as the minimum number of odd

cycles in any 2-factor of G. Jaeger was the first to research on graphs with small oddness

(see [Jaeger 1988]).

Proposition 2.1 A cubic graph G is 3-edge-colourable if and only if ω(G) = 0.

Proof Let G be a 3-edge-colourable cubic graph. We denote by Mi the set of edges

coloured with colour i, for i = 1, 2, 3. Recall that M1 ∪M2 ∪M3 = E(G) and each Mi is

a perfect matching of G. Since G \M1 is a 2-factor of G, it follows that every cycle has

an even number of vertices.

Assume now that ω(G) = 0. Let M be a perfect matching of G, such that G \M
is a 2-factor containing even cycles only. Then, G \ M is 2-edge-colourable. It follows

that assigning a third colour to M yields a 3-edge-colouring of G.

It follows from Proposition 2.1 that no snark has oddness zero. Moreover, the odd-

ness of every cubic graph is always even, as every cubic graph has even order. In [Steffen

2004], a concept which is closely related to the oddness of a graph, called resistance, was



introduced. The resistance of a cubic graph G, denoted by ρ(G), is the minimum number

of edges that must be removed in order to obtain a 3-edge-colourable graph. Note that

ρ(G) ≤ ω(G), because the removal of one edge of each odd cycle in a 2-factor of G yields

a 3-edge-colourable graph.

Every cubic Hamiltonian graph has oddness zero and therefore has chromatic in-

dex 3. It follows that no snark is Hamiltonian. A graph G is called hypohamiltonian if

G \ v is Hamiltonian for every vertex v of G. A large number of famous snarks are both

hypohamiltonian and bicritical. In [Steffen 1998][Theorem 4.13] it is shown that every

hypohamiltonian snark is also bicritical.

In [da Silva and Lucchesi 2008] the concept of a k-flow-critical graph was intro-

duced with the purpose of studying the possible definitions of a minimal graph without

a k-flow and also understanding the structure of such graphs. Da Silva and Lucchesi ob-

served several analogies between properties satisfied by k-flow-critical graphs and by the

k-vertex-colour-critical graphs well studied by Dirac[Dirac 1951]. A graph G is k-(edge)-

flow-critical if it does not admit a k-flow but the graph G/e admits a k-flow for every edge

e of G. Clearly, as contracting an edge does not create any new cuts, every minimum

counterexample to Tutte’s 5-Flow Conjecture is a k-flow-critical graph.

3. The relation of critical snarks

In [da Silva and Lucchesi 2008][Theorem 3.1], it is shown that for a k-flow-critical

graph, the subgraph G \ e must also admit a k-flow for every edge e of G.

In [Jaeger 1988][Theorem 8.2] it was shown that every 3-edge-connected cubic graph

G such that G\e admits a 4-flow, has a 5-flow. In [da Silva and Lucchesi 2007][Theorem

3.1] this result was generalized to show that every k-flow-critical graph admits a

(k + 1)-flow. Da Silva et al. identified the 4-flow-critical snarks among the snarks

of order at most 28 generated by Brinkmann et al. (see [da Silva et al. 2013]

and [Brinkmann et al. 2013]). They found out that less than 5% of those are in fact 4-

flow-critical. On the other hand, they observed that every non-4-flow-critical snark G has

a 4-flow-critical snark H as a minor. Minor H does have a 5-flow. Then, an approach to-

wards solving the 5-Flow Conjecture could be to try to extend the 5-flow of minor H to G.

That reasoning was the inspiration to this work. An intuition that the task could be easier

when minor H is close to being Hamiltonian made us focus on studying hypohamiltonian

snarks first.

Given a cubic graph G, the graph G \ e is a subdivision of another cubic

graph Ge, which is called the underlying cubic graph of G \ e. It is well known

that any graph G admits a k-flow if and only if any of its subdivisions has a k-flow

(see [de Almeida e Silva 1991][Redução 3.2]). The following proposition follows from

these observations and Theorem 1.2.

Proposition 3.1 Let G be a snark and e be an edge of G. Snark G is 4-flow-critical if

and only if the underlying cubic graph Ge of G \ e is 3-edge-colourable for any edge e of

G.

Many famous snarks such as the Petersen graph, the first and second Blanuša,

the first and second Loupekine, the Szekeres snark and the Double-star snark,

are both hypohamiltonian and 4-flow-critical. Moreover, the infinite family of



flower-snarks is also known to be both hypohamiltonian [Fiorini 1983] and 4-flow-

critical [da Silva and Lucchesi 2012]. Steffen showed in [Steffen 1998][Theorem 4.31]

that every hypohamiltonian snark is also bicritical. These observations made us con-

jecture that hypohamiltonian and 4-flow-critical snarks could be the same class, or at

least related somehow. It was indeed possible to use the same technique used by Stef-

fen [Steffen 1998][Theorem 4.31] to prove the following proposition.

Proposition 3.2 If a snark G is hypohamiltonian, then G is 4-flow-critical.

Proof Let G be a hypohamiltonian snark and e := (u, v) be an edge of G such that

N(u) := {v, u1, u2} and N(v) := {u, v1, v2}. Since G \ v is Hamiltonian, the graph

H := G\{u, v} has an odd Hamiltonian path P whose ends are u1 and u2. The edges of H
can be 3-edge-coloured by alternating two colours in the Hamiltonian path and assigning

the third colour to the remaining edges. Clearly, H ∪ {(u1, u2), (v1, v2)} = Ge. We can

extend the 3-edge-colouring to Ge by assigning the second colour of P not incident with

u1 and u2 to (u1, u2) and the third colour to (v1, v2). It follows from Proposition 3.1 that

G is 4-flow-critical.

It follows from Proposition 3.2 that every hypohamiltonian snark admits

a 5-flow. This observation gives a positive answer to the question proposed

in [Cavicchioli et al. 2003, Question 6.1]. The converse of this assertion is not true; there

are 4-flow-critical snarks which are not hypohamiltonian. By using a computer program

we found 16 counter-examples on 26 vertices. One of them is depicted in Figure 1.

Figure 1. A 4-flow-critical non-hypohamiltonian snark

Cavicchioli et. al. presented the number of snarks of order at

most 28 that are hypohamitonian, 2-vertex-critical, 2-vertex-co-critical or bicrital

(see [Cavicchioli et al. 2003] [Table 1]). In [da Silva et al. 2013] the number of snarks

of order at most 28 that are 4-flow-critical is presented and it is, surprisingly, identical to

the number of 2-vertex-critical snarks. That observation led us to conjecture that these

two classes should be the same. This conjecture was later proved, as shown next.

Theorem 3.3 A snark is 4-flow-critical if and only if it is 2-vertex-critical.

Proof Let G be a snark, and let e := (u, v) be an arbitrary edge of G. Assume that

the neighbourhoods of u and v are N(u) := {v, u1, u2} and N(v) := {u, v1, v2} (see

Figure 2), respectively. Then, the underlying cubic graph Ge of G \ e can be obtained

from graph G \ {u, v} by the addition of edges (u1, u2) and (v1, v2) (see Figure 2).

If snark G is 4-flow-critical, then, by Proposition 3.1, the underlying cubic graph

Ge of G\e has a 3-edge-colouring. Then, so does graph G\{u, v}, a subgraph of Ge. This

argument is valid for every pair of adjacent vertices u and v, whence G is 2-vertex-critical.



v u

v1 v2 u1 u2

G

v1 v2 u1 u2

G \ {v, u}

v1 v2 u1 u2

Ge

Figure 2. Graph G \ {u, v} is a subgraph of Ge

Assume now that snark G is 2-vertex-critical. All vertices of G\{u, v} have degree

three, except {u1, u2, v1, v2}, which have degree two. By definition, graph G \ {u, v} has

a 3-edge-colouring. Let Mi, for i = 1, 2, 3, be the set of edges with colour i in a 3-edge-

colouring of G \ {u, v}. Each set Mi is a (not necessarily perfect) matching and covers

an even number of vertices, leaving an also even number of vertices uncovered. However,

the only vertices of G\{u, v} that may not be covered by some matching Mi are precisely

the four vertices of degree two. Hence, at most two sets Mi are not incident with vertices

{u1, u2, v1, v2}.

v1 v2 u1 u2

G \ {v, u}

v1 v2 u1 u2

G \ {v, u}

v1 v2 u1 u2

G \ {v, u}

v1 v2 u1 u2

Ge

v1 v2 u1 u2

Ge

v u

v1 v2 u1 u2

G

(a) First case (b) Second case (c) Third case

Figure 3. Cases considered in the proof of Theorem 3.3

Consider first the case in which precisely one set, say M1, is not incident with

any of the four vertices of degree two. Then, we can add edges (u1, u2) and (v1, v2) and

assign them colour 1 in order to obtain a 3-edge-colouring of Ge (see Figure 3.a). We

may thus assume that two sets Mi are not incident with vertices {u1, u2, v1, v2}. If one

set, say M1, is not incident with {u1, u2} and the other, say M2, is not incident with

{v1, v2}, we can add edges (u1, u2) and (v1, v2) and assign them colours 1 and 2 in order

to obtain a 3-edge-colouring of Ge (see Figure 3.b). We may thus assume that each set

is not incident with one of {u1, u2} and one of {v1, v2}. Adjust notation, if necessary, so



that M1 is not incident with {u1, v1} and M2 is not incident with {u2, v2}. In this case,

we can extend the 3-edge-colouring of G \ {u, v} to one of snark G by assigning colour

1 to edges (u, u1) and (v, v1), colour 2 to edges (u, u2) and (v, v2) and colour 3 to edge

(u, v) (see Figure 3.c); an obvious contradiction. We therefore conclude that it is always

possible to obtain a 3-edge-colouring of Ge, for every edge e of G. By Proposition 3.1, G
is 4-flow-critical.

A natural question that arises from Theorem 3.3 is whether or not the classes

of bicritical and 4-flow-critical snarks are also the same. In 1996, Nedela and

Škoviera [Nedela and Škoviera 1996] asked whether or not every 2-vertex-critical snark

is also bicritical. Steffen [Steffen 1999] and, independently, Chladný and Škoviera (not

published) found counter-examples for such statement. It follows that there are 4-flow-

critical snarks which are not 2-vertex-co-critical. Moreover, according to Cavicchiolli

et. al. [Cavicchioli et al. 2003][Table II], there are more 2-vertex-co-critical snarks than

2-vertex-critical snarks, whence there is no equivalence between 2-vertex-critical and 2-

vertex-co-critical snarks either. Another natural question is whether or not there is an

equivalence between snarks of oddness 2 and 4-flow-critical snarks. It is known that

the oddness of a cubic graph G equals two if and only if its resistance also equals

two [Steffen 1998][Lemma 2.5]. It follows from Proposition 2.1 that every snark has

oddness at least two. Next we show that every 4-flow-critical snark has oddness equal to

two.

Proposition 3.4 If G is a 4-flow-critical snark, then ω(G) = 2.

Proof Let e be an edge of G. Graph Ge has a 3-edge-colouring, and therefore, oddness

zero. Let Me be a perfect matching of Ge . Then M := Me ∪{e} is a perfect matching of

G. Graph G\M is a 2-factor of G which can be obtained from Ge\Me by the subdivision

of two edges, say e1 and e2. Edges e1 and e2 cannot lie in the same cycle of the 2-factor

Ge \Me, otherwise G would have oddness zero. We thus conclude that ω(G) = 2.

The converse of Proposition 3.4 is not true. According to [da Silva et al. 2013] the

smallest non-4-flow-critical snarks have order 20. We observed that one of them, the snark

presented in [da Silva et al. 2013] [Figure 1] and also depicted in Figure 4 has oddness 2.

We can 2-colour a Hamiltonian path with ends u1 and v1 and assign a third colour to the

remaining edges. This assignment is not a proper 3-edge-colouring because of the edges

(v1, v2) and (u1, u2). Since the removal of {(v1, v2), (u1, u2)} yields a 3-edge-colouring

of the graph, it follows that it has resistance two, whence oddness two.

u2 v2

u1

v1

Figure 4. A non-4-flow-critical snark with resistance and oddness two



4. Concluding remarks

We showed that a snark is 4-flow-critical if and only if it is 2-vertex-critical. We also

showed that every hypohamiltonian snark is 4-flow-critical and that every 4-flow-critical

snark has oddness two. Moreover, we observed that, aside from those, no other relation

between the classes of critical snarks studied exist. As described in the text, we came

to this conclusion by a combination of research of the literature to find out relations that

were known to be false as well as an investigation of counter-examples for those which

we could not find information in the literature.

One of the relations observed, specifically that every hypohamiltonian snark is

4-flow-critical, implies that every hypohamiltonian snark has a 5-flow. Such observation

allowed us to answer a question proposed by Cavicchioli et al. in 2003.

5. Authors contribution

Breno Lima de Freitas is an undergraduate student at UFSCar and was advised in this

work by Cândida Nunes da Silva. When Breno expressed to his advisor that he would

like to do research on graph theory, she presented to him her recent discoveries about

4-flow-critical snarks, i. e., that every snark had a 4-flow-critical snark as a minor, and

that minor was known to have a 5-flow. Then his advisor gave him as a tentative project,

the vague idea of trying to find 4-flow-critical snarks that had a high circumference, as it

seemed easier to extend the 5-flow of a 4-flow-critical minor H of a non-4-flow-critical

snark G if H had high circumference.

It was Breno who transformed this vague idea into a well defined project by

choosing the family of hypohamiltonian snarks to start with and researching interest-

ing properties of those graphs that could be helpful in establishing some relation with

4-flow-critical snarks. In his search he found the survey on snarks by Cavicchioli et

al. [Cavicchioli et al. 2003] which brought to his attention two important pieces of infor-

mation: (i) the number of hypohamiltonian snarks of order at most 28; (ii) and the open

question whether every hypohamiltonian snark has a 5-flow. Breno then brought this in-

formation to his advisor, together with the conjecture that hypohamiltonian snarks might

be 4-flow-critical and, if so, the open question was solved. Soon after his observation,

he and his advisor verified he was right and his project became to follow on the investi-

gation on how the classes of critical snarks are related. Therefore, Breno’s contribution

to the development of this project was a fundamental one. He showed to have important

research skills such as finding closely related references and asking an important research

question based on tuned intuition.

The third author, Cláudio L. Lucchesi, contributed to this project by helping to

prove Breno and Cândida’s conjecture that the classes of 2-vertex-critical and of 4-flow-

critical snarks were the same (Theorem 3.3).

The development of this project started in 2013. It was paused during 2014, when

Breno received a scholarship from the “Science without borders” program to study for

one year at the University of Toronto, in Canada. In 2015 the development of the project

was resumed.
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