
Fast Distance-based Outlier Detection using GPUs
Fernando Mussel, Carlos H. C. Teixeira, Wagner Meira Jr.

1Department of Computer Science – Universidade Federal de Minas Gerais (UFMG)
Belo Horizonte – MG – Brazil

{mussel,carlos,meira}@dcc.ufmg.br

Abstract. Outlier detection is an important area of data mining with many prac-
tical applications, such as credit card and insurance fraud detection, network
intrusion detection, etc. Distance-based detection methods, such as ORCA and
DIODE, have stood out due to their parametric-free nature and good scalability
on large and high dimensional datasets. In this paper we propose, a new par-
allel algorithm based on ORCA, which is designed to run efficiently on GPUs
(Graphical Process Units). Then we discuss the main challenges pertaining its
implementation and how we addressed them, in order to take full advantage of
the GPU’s parallel hardware. In our experimental analysis, we show that our
algorithm not only is able to efficiently prune unnecessary distance computa-
tions, but can also achieve up to 162X speedup compared to state-of-the-art
anomaly detection algorithms.

1. Introduction
Outlier Detection in an important area of data mining, dedicated to find abnormal data
records and patterns in datasets, i.e., records that present unusual or unexpected charac-
teristics. These anomalies often carry useful information that can be employed in a wide
range of practical applications, such as network intrusion detection, fraud discovery in
credit card or insurance databases, as well as disease outbreak detection based on the
analysis of patient data records, among several others.

However, there are several challenges associated with the outlier detection prob-
lem. First, the amount of data to be mined has grown in size (number of records), as
well as in complexity (number of attributes). Second, many proposed methods for outlier
detection require (1) expertise about the application domain (e.g. supervised methods,
statistical approaches), and/or (2) they present high computational cost (e.g. unsuper-
vised and non-parametric methods). Moreover, the notion of ”normal” behavior is highly
dependent on the application domain and can also change over time, i.e., time-series
databases [Yankov et al. 2007, Gupta et al. 2012].

Over the last decades, distance-based methods for outlier detection have stood out
due to their efficiency and good scalability on large and high dimensional databases. They
usually do not demand any knowledge about the application domain and, therefore, are
considered parameter-free approaches. The basic idea behind these methods is to project
the dataset into a Rd space, such that data records become points and then to apply a knn
search1 to find the closest neighbours of a given point q. If q is very far from its closest
points, then it is classified as an anomaly.

1Nearest-neighbour search



In principle, such methods have a O(M2 log p) worst-case, where M is
the number of points in the dataset and p the number of outliers been detected,
for they have to compute all pair-wise distances and then select the p largest in
each row of the distance matrix. Hence a lot of research has been done to im-
prove these methods in terms of running-time complexity, through the use of data
partitioning, ordering and pruning rules [Ramaswamy et al. 2000, Orair et al. 2010,
Ghoting et al. 2008, Bay and Schwabacher 2003]. One of the most important work was
done in [Bay and Schwabacher 2003], where the authors propose ORCA , a new algo-
rithm that achieves near linear running time complexity by randomizing the dataset and
employing a simple pruning rule. In fact, the optimization introduced by this work
was shown to be one of the most effective and, therefore, will be the basis of our re-
search [Orair et al. 2010]. The ORCA algorithm will be discussed in further detail on
section 2.

In this work, we explore another venue for improving the performance of out-
lier detection methods: the parallel capabilities of GPUs’ SIMD-based architecture. In
many research areas and in the industry, GPUs have been used for General Purpose Com-
putation (GPGPU), leveraging their immense computational power and parallelism to
accelerate workloads and algorithms. In data mining, for example, algorithms such as k-
means and knn have been adapted to run on GPUs, attaining orders of magnitude speedups
over their CPU implementation counter-parts [Li et al. 2010, Wasif and Narayanan 2011,
Garcia et al. 2010, Ahmed Shamsul Arefin and Moscato 2012]. However, the uses of
GPU in outlier detection have been surprisingly underexplored, limited to just brute-
force implementations [Alshawabkeh et al. 2010], thus O(M2 log p) running time com-
plexity, or by using approximate methods, with different definitions of outliers
[Angiulli et al. 2013].

The core of this undergraduate research project is to investigate how to imple-
ment an efficient outlier detection algorithm on the GPU, with near linear running time
complexity, by adapting the ORCA algorithm. Our main contributions are:

• We demonstrate that GPU brute force algorithms are not enough to accelerate
the outlier detection problem and can be out-performed by highly optimized CPU
implementations;
• We propose a GPU version of the ORCA algorithm, which efficiently applies the

ANNS2 pruning rule to avoid unnecessary distance computation;
• We show that our algorithm’s pruning rule is as efficient as the CPU ORCA im-

plementation, within a small constant factor;
• We show that our algorithm achieves up to 162X speedup over state-of-the-art,

even while performing 6 times more computation.

This research paper is organized as follows: in section 2 we explain three impor-
tant distance-based outlier detection algorithms, which will be referenced throughout the
paper. In section 3 we propose a GPU outlier detection algorithm, based on ORCA , and
discuss the major challenges and how they can be addressed. In section 4, we conduct an
experimental analysis of our proposed algorithm, comparing its performance against the
state-of-the-art methods. The related work are discussed in section 5. Finally, in section
6 we summarize our results and layout our future work.

2ORCA ’s pruning rule. For more detail see section 2



2. Background
This section briefly discusses three important outlier detection algorithms, which will be
referenced and used throughout this paper.

Algorithm 1: Orca-CPU algorithm
input : Dataset D ; k: # of neighbours to consider ; p: # of outliers to detect
output: O, List of the p points with largest anomaly score, i.e. the outliers of D
begin
O ← min heap() // Init. outlier list
foreach qi ∈ D do

dist vec← max heap() // Init. neighbour list

// knn step
foreach object rj in D do

heap push (dist vec, (d(qi, rj) , rj) )
if len(dist vec) > k then

heap pop (dist vec) // Keep the k closest neighbours

// ANNS: Check if dk(qi) is too low for qi to be an anomaly
if heap head (dist vec)[0] < dkmin then break

dk(qi)← heap pop (dist vec)[0] // Get qi’s anomaly score
heap push (O, (dk(qi), qi)) // Update the outlier heap
if len(O) > p then heap pop(O) // Keep the p most abnormal points

O← sort desc(O) // Sort outliers in descending order of score
return O

Brute-Force Such approach computes all the M2 distance pairs. For each qi ∈ D, it
finds qi’s nearest neighbours by computing the distance d(qi, rj), ∀rj ∈ D. At the end of
the knn search, the algorithm assigns dk(qi) as the anomaly score of qi, i.e the distance
between qi and its kth nearest neighbour. Finally, the algorithm classifies the p points with
the highest anomaly scores as the outliers.

ORCA This algorithm is an improved version of the brute-force approach. As it per-
forms the knn search of the outlier candidate qi, it uses a heap to keep track of the k closest
points to qi, i.e. its neighbours. As ever closer points are added to such heap, dk(qi), the
distance between qi and its k-th closest neighbour, decreases. It is important to under-
stand, that until the knn search is completed, dk(qi) is only an upper-bound of its actual
value and, therefore, can be seen as an upper-bound to the anomaly score of qi. Thus,
if at any moment during the knn search, dk(qi) becomes lower than dkmin, the minimum
anomaly score for an object to be considered an outlier, the search can be halted and qi
can be discarded as an anomaly. We refer to this optimization as Approximate Nearest
Neighbor Search (ANNS) and its implementation on GPUs is the main challenge of our
work. The algorithm 1 depicts, in greater detail, how ORCA works.

DIODE is an outlier detection framework, developed in [Orair et al. 2010], which im-
plements 4 optimization methods on top of the ORCA algorithm, with the goal of in-
creasing its pruning effectiveness. As a result, it performs as little distance computation



as possible, before discarding non-outliers. Note that 3 of these methods are dependent on
a pre-processing phase for clustering data. We will not explain its optimization strategies
due to space constraints, but we encourage anyone interested to read [Orair et al. 2010].
For the remainder of this paper, it suffices to know that this is one of the most efficient
distance-based outlier detection algorithms in the literature. Thus, we will be using it in
the experiment section, to assess how fast our GPU outlier detection algorithm is.

3. GPU-based Outlier Detection
In this section we start by arguing why a GPU brute-force approach is not enough to
accelerate the outlier detection. Then we propose a GPU algorithm based on ORCA ,
which needs to compute much less distance pairs than a brute-force method; and discuss
how to efficiently implement it on GPUs.

3.1. A Brief discussion on Brute-Force GPU Outlier Detection

As it was stated before, research on the use of GPUs to accelerate distance based out-
lier detection has been limited to brute-force approaches. These algorithms map nicely
to GPUs due to the huge amount of independent work, i.e., M2 distance computations
which could be, in principle, performed in parallel – only limited by the amount of SIMD
units on GPU’s hardware. However, state-of-the-art outlier detection algorithms, such as
ORCA and DIODE, may perform only a small fraction of the M2 distance computations
in order to find the p outliers. As a result, a GPU brute-force approach is not enough to
accelerate the anomaly detection (see Table 1).

PARAMETERS BF-GPU DIODE

k p Time (s) Dist. Time (s) Dist.

4 0.05% 237.42 2250.00 21.13 0.12
128 0.05% 504.87 2250.00 46.58 0.15

16 0.1% 321.57 2250.00 35.50 0.17
16 0.6% 320.94 2250.00 188.75 0.88

Table 1. Brute Force GPU vs DIODE performance comparison, on the Kddcup
dataset with M = 1.5M points. Time(s) gives the average execution time in sec-
onds, while Dist shows, in billions, the number of distance pairs calculated.

For instance, while processing the Kddcup dataset, the brute-force GPU algorithm
(BF-GPU) is between 1.7 and 11.2 times slower than DIODE, specifically because it per-
forms a lot more work. In other words, while DIODE only needs to calculate 0.15 billion
distance pairs to find p = 0.05% of outliers, BF-GPU computes all the 2.25 trillion pairs,
which corresponds to 15.000 times more computation. Therefore, we need to implement
a GPU outlier detection algorithm that also prunes unnecessary distance computations.
As such, we decided to implement a GPU version of the ORCA algorithm (Orca-GPU),
since the Orca’s ANNS pruning rule is the optimization that yields the most performance
gains, as pointed out in [Orair et al. 2010].

3.2. ORCA-GPU: Algorithm Overview

The main challenge in implementing the ORCA algorithm on the GPU is how to ef-
ficiently map its pruning rule to the hardware, balancing the need to provide enough



Algorithm 2: Orca-GPU Algorithm
input : dataset D ; k: # of neighbours to consider ; p: # of outliers to detect; r: size of OCB; s: size of

NCB
output: (OId, OS ): List of outlier ids and scores
begin

(OId,OS)← ([], []) // Init. outlier id and score vectors

for i← 0 to M , step r do
OCB ← load pts (D, i, r) // Load the next OCB
pKnn← [] // Init. Partial knn result matrix

for j ← 0 to M , step s do
NCB ← load pts (D, j, s) // Load the next NCB
ρ2 ← dist(OCB,NCB) // Compute the pair-wise distances
ρ2 ← sort asc (ρ2) // Sort neighbours in inc. order of distance

// Update OCB’s partial knn , with current NCB’s results
pKnn← merge (pKnn, ρ2) // Neighbour List
S ← compute score (pKnn) // Anomaly score

// GPU-ANNS
L← map pruning (S, dkmin,&cand left) // List of unpruned Out Cand
gather (L, S, pKnn,OCB) // Gather the data of the Out Cand left
if cand left == 0 then break // CPU

if cand left > 0 then
// Update outlier list, with the Out Cand not pruned
(OId,OS)← update outlist (OId,OS , L, S, p)

dkmin← OS [p] // Get new dkmin

return (OId, OS )

independent work to be processed in parallel, while still minimizing the amount of un-
necessary distance computations performed.

GPUs are extremely parallel and optimized for throughput and, as such, they re-
quire a lot of concurrent work to be scheduled in order to keep all of its computation units
busy. As a consequence, the detection algorithm needs to perform the knn search of multi-
ple outlier candidates in parallel. Furthermore, the control flow of execution threads has to
be the most similar possible, in order to minimize branch divergence (BD) – very costly
on GPUs – and to ensure that the threads are performing coalesced memory accesses
(CMA), i.e., adjacent threads reading from or writing to adjacent memory positions.

To work around the hardware constraints, our algorithm processes multiple out-
lier3 and neighbour candidates4 in groups, which we refer to as outlier candidate batch
(OCB) and neighbour candidate batch (NCB). In other words, it performs the knn search
of multiple outlier candidates (OCB), in parallel, comparing them to multiple neighbour
candidates at a time (NCB). Algorithm 2 shows in more detail how it is done.
The GPU algorithm starts by loading the next OCB to be processed and begins their knn
search, which can be divided in three main parts:

3Outlier Candidates are points qi ∈ D, that will have their anomaly score computed
4Neighbour candidates are points rj ∈ D which will be compared to qi, to check if they are nearest

neighbours



1. Point comparison: In this step, the GPU computes distance matrix
ρ2(OCB,NCB) and sorts each row i in ascending order, such that the first k
distances of row i correspond to the distance between outlier candidate qi and its
k-nearest neighbours in NCB .

2. Update Partial anomaly score: Then, we obtain the lists of k points inD[0 ... j+
s] that are the closest to the outlier candidates in OCB , i.e. the partial knn result.
This is done by merging the knn result obtained from NCB , with the partial knn
result that had been obtained so far. This updated partial knn result is stored in the
matrix pKnn and is used to update the upper-bound for the anomaly score of the
outlier candidates in OCB .

3. Pruning: Finally, the algorithm uses the updated anomaly scores stored in vector
S, to try to prune outlier candidates. For each qi ∈ OCB, it checks if S[i] < dkmin

to prune qi. The pruned candidates have their data (i.e. attributes, anomaly scores,
nearest neighbours) removed from the GPU buffers (i.e. OCB , S and pKnn)
For a given OCB , the algorithm will keep performing the knn searches until all the

outlier candidates are pruned or all the NCB batches have been processed, i.e., we have
searched for the nearest neighbours of OCB in the entire dataset. Once the processing
of the current OCB is finished, the algorithm checks if there are any unpruned outlier
candidates. If there are, then it updates the list of anomalies found so far, by inserting
these outlier candidates and then sorting the list, using their anomaly scores as keys.
Finally, the dkminis updated.

3.3. Trade-off: ANNS pruning efficiency × batching size
The rationale behind batching neighbour candidates is to provide a large enough group
of points to be compared to the outlier candidates, such that the GPU is fully busy. In
addition, by applying the ANNS rule only once per NCB batch, we ensure a high ratio
between dense computation – distance calculations and sorting – and the amount of pred-
icate evaluation and branching, which are expensive in the GPU but necessary to prune
non-outliers. This minimizes the performance impact caused by the pruning on the de-
tection execution time. Note that this approach is different from the one adopted by the
CPU algorithm, which tries to apply the pruning rule after every neighbour candidate is
compared to the outlier candidate qi. As such, the Orca-CPU algorithm will perform less
distance computation during the detection, since it will be able to prune non-outlier as
soon as possible. Nevertheless, as we show in section 4, the Orca-GPU’s pruning rule is
still very effective at avoiding unnecessary computation.

Another important consideration is how to hide the cost of copying, from the GPU
to the CPU, the number of outlier candidates left, so that the latter can either continue the
knn searches or load a new OCB. We dealt with this issue in two ways: (1) we perform
the copy asynchronously and overlap it with the executions of the kernel5 gather; (2)
we picked large enough OCB and NCB size, so that the communication cost becomes
comparatively smaller, in relation to the computation cost.

4. Experiments
In this section we analyze the pruning efficiency and performance of our ORCA-GPU
implementation, by comparing it against Orca-CPU and DIODE algorithms.

5Name given to functions which are executed on the GPU



4.1. Methodology

The ORCA-GPU algorithm was implemented using OpenCL and executed on an AMD
R9290 with 4GB of memory and 2560 processors, clocked at 1.0 GHz. The CPU im-
plementations were implemented in C language and compiled using gcc 4.8.3, with op-
timization level -O3. They were run on a system with a Xeon x3440 @ 2.53 GHz and
with 16 GB of memory. We used three different datasets: (1) Kddcup 1999: Contains
processed binary TCP data from a military computer network. We used a random sam-
ple from the original dataset, containing 1.5M points and 34 continuous attributes; (2)
COSMOS 6: dataset which contains data on the formation and evolution of galaxies, gath-
ered from ground and space-based telescopes. We use a random sample, containing 1.4M
points, with 32 continuous attributes ; (3) 2MASS 7: This is a Point Source Catalogue,
from the All Sky Survey Mission, which contains data on 500 million stars and galaxies.
We selected 1.4M points, each with 53 continuous attributes.

We will evaluate the performance of our algorithm, under different test configura-
tions, by varying the number of neighbours, k, and the amount of outliers to be detected,
p. Before running the GPU experiments, we determined empirically, that the best OCB
and NCB sizes were 16384 and 8192, respectively.

4.2. Performance Comparison

Figures 1a and 1b show how much faster our GPU algorithm is than its CPU counter-part.
When setting p = 0.05% and varying k, Orca-GPU achieved a maximum speedup of
117X for the COSMOS dataset and a minimum speedup of 58X for the Kddcup dataset.
Moreover, as we increased p, the amount of outliers to be detected, the performance gap
widen further, with the GPU achieving a maximum speedup of 319X for the 2MASS
dataset, reducing the detection time from 8700 seconds, to just 27 seconds.

Figures 1c and 1d show that the speedups attained over DIODE are smaller and
the reason is because the GPU is performing much more computation. As table 2 shows,
Orca-GPU and Orca-CPU compute relatively the same amount of distance pairs, with
the GPU computing at most 2.93 times more pairs. But relative to DIODE, the GPU
performs between 24 and 418 times more computation. Nevertheless, our GPU algorithm
still manages to offer considerable speedups over the state-of-the-art. When varying k
for instance, the Orca-GPU is between 7X and 9X faster than DIODE for the COSMOS
dataset, and up to 31X faster for the 2MASS dataset. Moreover, as we increased p the
speedups achieved were even bigger, with our algorithm being up to 8X faster on the
Kddcup and up to 15.7X faster on the COSMOS dataset. The gains on the 2MASS dataset
are larger still. While DIODE performed the detection in 4439 seconds, with p = 0.6%,
the GPU took just 27.36 seconds, a 162X improvement.

4.3. Discussion on Orca-GPU Performance

These experiments allow us to draw some important conclusions about the efficiency of
our proposed algorithm. Firstly, as we predicted in section 3, the ANNS pruning rule on
the GPU was not as effective as on the CPU, with the Orca-GPU computing between 1.81
to 2.93 times more distance pairs than its CPU equivalent. The main reason being, that

6http://irsa.ipac.caltech.edu/Missions/cosmos.html
7http://irsa.ipac.caltech.edu/Missions/2mass.html



4 8 16 32 64 128
Neighbourhood size(k)

1
2
4
8

16
32
64

128

Sp
ee

du
p

Datasets
Kddcup COSMOS 2MASS

(a) Speedup over Orca-CPU ; p : 0.05%

0.10% 0.20% 0.30% 0.40% 0.50% 0.60%
% of outliers been detected (p)

1
2
4
8

16
32
64

128
256
512

Sp
ee

du
p

Datasets
Kddcup COSMOS 2MASS

(b) Speedup over Orca-CPU ; k : 16

4 8 16 32 64 128
Neighbourhood size(k)

1

2

4

8

16

32

Sp
ee

du
p

Datasets
Kddcup COSMOS 2MASS

(c) Speedup over DIODE; p : 0.05%

0.10% 0.20% 0.30% 0.40% 0.50% 0.60%
% of outliers been detected (p)

1
2
4
8

16
32
64

128
256

Sp
ee

du
p

Datasets
Kddcup COSMOS 2MASS

(d) Speedup over DIODE ; k : 16

Figure 1. Speedups. In the first row, we report the speedup achieved by the
Orca-GPU algorithm, over its cpu counter-part. In the second row, there are the
speedups achieved over DIODE.

k = 4 k = 128
Orca GPU Orca CPU DIODE Orca GPU Orca CPU DIODE

Dataset Dist. Ratio Dist. Ratio Dist. Ratio Dist. Ratio Dist. Ratio Dist. Ratio
Kddcup 49.0 1.00 16.8 2.91 0.1 418.88 40.4 1.00 18.1 2.24 0.1 272.24
COSMOS 51.5 1.00 23.9 2.16 0.5 104.94 55.9 1.00 30.8 1.81 0.7 78.70
2MASS 39.8 1.00 13.6 2.93 1.0 39.03 40.5 1.00 14.8 2.74 1.7 24.09

Table 2. Pair-wise distance calculations, for p = 0.5%. Dist. reports, in billions, the
number of pairs computed, whereas Ratio, shows the ratio between the amount
of distance pairs calculated by Orca-GPU and the algorithm in question.

on the GPU the pruning rule is applied less frequently, once per NCB, in order to provide
the GPU enough parallel work to fully utilize its hardware. This distance computation
ratio might seem high, but it still allowed Orca-GPU to avoid computing up to 98% of all
distance pairs on the Kddcup dataset, which is equivalent to 45 times less work than the
brute-force approach would have performed.

In comparison to DIODE, our algorithm still had to perform up to 418 times more
work, but this was expected since DIODE has other 4 optimizations in addition to the



ANNS pruning rule, which combined, greatly reduce the amount of distance computations
required during the detection. However, because our GPU algorithm has a much higher
distance computation throughput, it still was able to attain up to 162X speedup over the
state-of-the-art algorithm, when detecting p = 0.6% of outliers.

These results are very promising and indicate that, if we are able to implement
DIODE’s optimization on the GPU, increasing its pruning efficiency, our algorithm could
achieve minimum speedups of two orders of magnitude over the state-of-the-art.

5. Related Work

As it was mentioned in section 1, numerous research projects have been done into how to
accelerate known data mining algorithms with GPUs. However, specifically in the area of
outlier detection, development has been surprisingly limited.
In [Alshawabkeh et al. 2010], the authors implemented an anomaly detection algorithm
for LOF outliers. It assigns to each object q ∈ D, a Local Outlier Factor8 based on how
different is the density of q’s neighbourhood and the density of the neighbourhood of
each one of its k nearest neighbours. Their algorithm not only performed brute-force knn
searches to find the neighbourhood of every point q, but it also stored the entire distance
matrix on the GPU’s memory, limiting its applicability to just very small datasets.

More recently, the authors of [Angiulli et al. 2013] implemented a family of GPU
algorithms based on the approximate algorithm SolvingSet [Angiulli et al. 2006]. It com-
putes the knn of every q ∈ D with respect to just a small object subset Cj , the outlier
candidate set, instead of the whole dataset. This approximate knn search provides an
upper-bound to the true anomaly score of q, which can then be used to discard the points
as outliers. In their experiments, they show that the GPU implementations were able to
achieve up to 45X speedup over their CPU SolvingSet code. However, it is important to
note that they used an approximate algorithm to find outliers with a different definition
than the ones that we use in this work.

6. Conclusion and Future Work

In this paper we proposed and implemented a GPU outlier detection algorithm based on
Orca, which not only was much faster than its CPU equivalent, but also offered consid-
erable speedups over the highly optimized DIODE algorithm, for all datasets tested. We
discussed the challenges of implementing Orca’s ANNS pruning rule on the GPU and
showed that our proposed implementation was very effective at balancing two opposing
requirements: provide enough independent work to be processed in parallel on the GPU
and, at the same time, avoid as much unnecessary computation as possible. As a result,
our implementation was up to 162X faster than DIODE.

For future work we intend to continue to improve our algorithm’s performance,
by implementing some of the optimizations that DIODE uses, in order to further reduce
the amount of computation that the GPU has to perform. We expect that these changes
will allow our algorithm to achieve much higher speedups over the state-of-the-art.

8LOF: an anomaly score.



References
Ahmed Shamsul Arefin, Carlos Riveros, R. B. and Moscato, P. (2012). Gpu-fs-knn: A

software tool for fast and scalable knn computation using gpus.

Alshawabkeh, M., Jang, B., and Kaeli, D. (2010). Accelerating the local outlier factor
algorithm on a gpu for intrusion detection systems. In Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units, GPGPU ’10, pages
104–110, New York, NY, USA. ACM.

Angiulli, F., Basta, S., Lodi, S., and Sartori, C. (2013). Fast outlier detection using a
gpu. In High Performance Computing and Simulation (HPCS), 2013 International
Conference on, pages 143–150. IEEE.

Angiulli, F., Basta, S., and Pizzuti, C. (2006). Distance-based detection and prediction of
outliers. Knowledge and Data Engineering, IEEE Transactions on, 18(2):145–160.

Bay, S. D. and Schwabacher, M. (2003). Mining distance-based outliers in near linear
time with randomization and a simple pruning rule. In Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’03, pages 29–38, New York, NY, USA. ACM.

Garcia, V., Debreuve, E., Nielsen, F., and Barlaud, M. (2010). K-nearest neighbor search:
Fast gpu-based implementations and application to high-dimensional feature match-
ing. In Image Processing (ICIP), 2010 17th IEEE International Conference on, pages
3757–3760. IEEE.

Ghoting, A., Parthasarathy, S., and Otey, M. E. (2008). Fast mining of distance-based
outliers in high-dimensional datasets. Data Min. Knowl. Discov., 16(3):349–364.

Gupta, M., Gao, J., Sun, Y., and Han, J. (2012). Integrating community matching and out-
lier detection for mining evolutionary community outliers. In Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’12, pages 859–867, New York, NY, USA. ACM.

Li, Y., Zhao, K., Chu, X., and Liu, J. (2010). Speeding up k-means algorithm by gpus. In
Computer and Information Technology (CIT), 2010 IEEE 10th International Confer-
ence on, pages 115–122.

Orair, G. H., Teixeira, C. H. C., Meira, Jr., W., Wang, Y., and Parthasarathy, S. (2010).
Distance-based outlier detection: consolidation and renewed bearing. Proc. VLDB
Endow., 3(1-2):1469–1480.

Ramaswamy, S., Rastogi, R., and Shim, K. (2000). Efficient algorithms for mining out-
liers from large data sets. SIGMOD Rec., 29(2):427–438.

Wasif, M. and Narayanan, P. (2011). Scalable clustering using multiple gpus. In High
Performance Computing (HiPC), 2011 18th International Conference on, pages 1–10.

Yankov, D., Keogh, E., and Rebbapragada, U. (2007). Disk aware discord discovery:
Finding unusual time series in terabyte sized datasets. In Data Mining, 2007. ICDM
2007. Seventh IEEE International Conference on, pages 381–390.


