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Abstract. The growing importance of smart devices calls for effective user au-
thentication mechanisms. In this paper, we argue that state-of-the-art authenti-
cation mechanisms are either vulnerable to known attacks or do not fully meet
usability needs. To address this problem we design NomadiKey, a user-to-device
authentication mechanism based on nomadic keyboard keys. NomadiKey in-
creases security level by placing keys at different screen coordinates each time
it is activated. Besides, NomadiKey preserves usability by maintaining the tradi-
tional relative position of keys. To increase security even further, we also design
an extension to NomadiKey, called NomadiKey++, that employs out-of-band
channels to protect the user from shoulder-surfing attacks.

1. Introduction
The deployment of denser smart environments and increasing user dependence on their
functionalities impose more stringent requirements on user security and privacy. Smart
devices can store gigabytes of personal, private, and potentially sensitive, user data. To
protect these data, devices often rely on user authentication mechanisms. These mecha-
nisms can be divided into three categories: (i) something the user has, (ii) something the
user is, and (iii) something the user knows.

Users can authenticate using a physical authenticator they have, like a token or
smart card [Bojinov and Boneh 2011]. However, in most cases, an adversary can simply
simultaneously steal the smart device and the authenticator and access user data.

Users can authenticate through their own biological features like fingerprints,
voice, or face. Some previous works propose and evaluate biometric authentication fac-
tors from unique body characteristics, like hand characteristics [Pan et al. 2013], iris
recognition [Mock et al. 2012], and ECG measurements [Rostami et al. 2013]. Other
previous works consider behavioral patterns to authenticate the user, often transparently
[Wang et al. 2015]. Biometric schemes usually require simple actions from users during
authentication and are vulnerable to few attacks. These schemes, however, require user’s
biometric features to be stored as secrets in the device, which raises privacy concerns.

In most cases, a user authenticates onto a smart device inputting a secret pre-
viously configured on the device. This type of authentication is the most common on
smart devices [Egelman et al. 2014]. The security and usability of these mechanisms
are heavily affected by the secret chosen; complex secrets increase security but impair
usability [Dell’Amico et al. 2010]. Previous work, similar to ours, try to achieve a bet-
ter trade-off between security and usability by, for instance, motivating users to create
stronger but easy-to-input passwords [Haque et al. 2013], using short strokes instead of
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Table 1. Worst-case scenario of information available to adversaries
TOUCH INFORMATION

ATTACK Location Order Content
Smudge •

Vision • •
Shoulder-surfing • • •

simply touching buttons [Arif and Mazalek 2013], or designing extensions to resist spe-
cific attacks [Yue et al. 2014].

We consider three classes of attacks against authentication mechanisms, namely
smudge, computer vision, and shoulder-surfing attacks. Smudge attacks use digital image
processing to identify where the screen was touched from residues on the screen (e.g.,
oil or dust) [Aviv et al. 2010]. Computer vision attacks use computer vision techniques
to estimate the position of the fingers (and shadows) as they approach the screen to infer
when and where the screen was touched [Yue et al. 2014]. In Shoulder surfing attacks,
adversaries observe the user authenticating, or videos of the user authenticating, to obtain
touch position, order, and screen contents. Evaluation of these attacks shows success
rates as high as 92%, 91%, and 95% respectively. Our adversary models are summarized
in Table 1.

To defend against the aforementioned attacks, we designed an authentication
mechanism robust to these attacks while incurring a negligible increase in authentica-
tion speed (Section 2). NomadiKey [Cotta et al. 2016], as it is called, places keys at
random absolute positions on the screen each time it is activated, preventing adversaries
from inferring which keys are pressed during authentication and improving security. Be-
sides, NomadiKey preserves usability by maintaining keys’ relative positions, helping
users navigate the keyboard and locate keys. To protect users against shoulder-surfing
attacks, we also present a security extension for NomadiKey that employs vibrations as
an out-of-band channel during authentication. The out-of-band channel prevent observ-
ing adversaries from retrieving the entire authentication secret through a shoulder-surfing
attack.

We compare NomadiKey and NomadiKey++ with five other authentication
schemes in face of smudge, vision, and shoulder surfing attacks (Section 3). We first
present a worst-case model of each attack, then use statistical modeling to quantify secu-
rity of each authentication mechanism under no attack and under each of the attacks. We
also compare the usability of NomadiKey and NomadiKey++ to the usability of classic
PIN authentication and of PIN authentication on random keyboards (Section 4).

In this paper, we make the following novel contributions:

1. NomadiKey++, A security extension to NomadiKey to protect users against
shoulder-surfing attacks.

2. Expanded analytical evaluation of NomadiKey, including other authentication
mechanisms and shoulder-surfing attacks.

3. Analytical and empirical evaluation of NomadiKey++, comparing it to No-
madiKey and other existing authentication mechanisms.

This paper is an extension of previous work. Former versions of NomadiKey ap-
peared on SBSeg [Neto et al. 2015] and IEEE ICC [Cotta et al. 2016] (The student is
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a coauthor, under the name Artur Luis Fernandes). The student, together with his advi-
sors, were the sole responsible for conceiving, designing, implementing and evaluating
the security extension presented in this paper. The student played a key role in all stages
of the development of the original version of NomadiKey as well and was responsible for
presenting the work at ICC in Kuala Lumpur, Malaysia. At that time, he also gave an inter-
view about the work, which appeared in online venues like IEEE Spectrum1 and Android
Community2. Finally, NomadiKey and NomadiKey++ were the subject of the student’s
final graduation project at UFMG. These and other information about NomadiKey can be
found online at its page3.

2. NomadiKey
In what follows, we present NomadiKey, a new authentication mechanism for smart de-
vices that targets what we believe is a good balance between security and usability. The
essence of NomadiKey is an algorithm that allocates positions for keys on the screen as
freely as possible but under the constraint that the relative order among them is the same
as in a traditional keyboard. More precisely, NomadiKey places keys at random absolute
positions while constraining the relative position of keys. Figure 1 shows an example
keyboard built by NomadiKey. Keys are in random positions, but observe that keys on the
first line (1, 2, and 3) are above other keys and keys on the first column (1, 4, and 7) are
to the left of other keys.

Figure 1. NomadiKey. Figure 2. NomadiKey++.

2.1. NomadiKey: Key Position Algorithm

Let Sw and Sh be the screen width and screen height, respectively; and let Bw and Bh be
the button width and button height, respectively; let C and R be the number of columns
and rows in the keyboard, respectively. We consider the top-left corner of the screen is
the origin, i.e., the point (0, 0). We show pseudocode for NomadiKey in Algorithm 1.

NomadiKey partitions the screen into columns and randomizes the coordinate x(c)
where each column c ∈ [1, C] starts. For each column c, NomadiKey computes its mini-
mum possible starting coordinate xmin(c) as xmin(c) = x(c − 1) + αBw. The αBw term

1http://spectrum.ieee.org/tech-talk/telecom/security/this-mobile-security-feature-will-annoy-you-but-
it-will-also-protect-your-phone

2https://androidcommunity.com/nomadikey-shrinks-passcode-entries-to-prevent-smudge-attacks-
20160603/

3https://sites.google.com/view/nomadikey/
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ensures that there is space for placing keys in column c− 1, where α > 1 is a factor that
defines the minimum width of a column as a function of the button width Bw. We set
x(c− 1) = xmin(c− 1) if column c− 1 has not been placed yet. This makes xmin(c) the
smallest coordinate that still reserves at least αBw for each unplaced column to the left of
column c. We define x(0) = −αBw. Similarly, the maximum possible starting coordinate
xmax(c) for column c is xmax(c) = x(c + 1)− αBw. To cover the case where c = C, we
define x(C + 1) = Sw + αBw.

NomadiKey then chooses coordinate x(c) where column c starts uniformly dis-
tributed between xmin(c) and xmax(c). NomadiKey repeats this computation exchanging
x for y, C for R, and Bw for Bh to compute ymin(r) and ymax(r) for each row r ∈ [1, R]
(see Algorithm 1). NomadiKey then chooses the coordinate y(r) where each row r starts
uniformly distributed between ymin(r) and ymax(r).

The algorithm ensures each grid cell is at least αBw units wide and at least αBh

units high, which guarantees NomadiKey can place all keys. NomadiKey chooses the
x coordinates of keys on column c uniformly distributed between x(c) and x(c + 1);
similarly for y coordinates.

Procedure 1 Key Placement
1: procedure COMPUTE xmin(c)
2: if column c− 1 has been placed then
3: return x(c− 1) + αBw

4: else
5: return xmin(c− 1) + αBw

6: procedure COMPUTE ymax(r)
7: if row r + 1 has been placed then
8: return y(r + 1)− αBw

9: else
10: return ymax(r + 1)− αBw
{Procedures for xmax and ymin are analogous}

11: procedure NOMADIKEY
12: for c ∈ random(1, C) do
13: x(c)← U(xmin(c), xmax(c))

14: for r ∈ random(1, R) do
15: y(r)← U(ymin(r), ymax(r))

16: for c ∈ [1, C] do
17: for r ∈ [1, R] do
18: place key in column c, row r at position

U(x(c), x(c+ 1)), U(y(r), y(r + 1))

2.2. NomadiKey++: Shoulder-Surfing Protection
By randomizing the keys’ absolute position, NomadiKey strikes a higher security level
against smudge and vision attacks (Section 3). However, NomadiKey remains vulnerable
to shoulder-surfing adversaries, that can identify where each key is placed. To protect the
user against this type of attack, we have designed an extension to NomadiKey based on
out-of-band channels.

Adversaries perform shoulder-surfing attacks by positioning themselves near un-
suspecting users and observing them authenticate. To protect against this type of attack,
we designed an extension to NomadiKey, called NomadiKey++, that employs vibrations
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as an out-of-band channel during authentication. Because adversaries are unable to detect
the vibrations by observing the user authenticate, they are no longer able to discover the
entire authentication secret through shoulder-surfing attacks.

NomadiKey++ works as follows. When it is triggered, the user is presented with
a NomadiKey keyboard, as described in Section 2.1. As soon as the keyboard appears,
NomadiKey++ starts highlighting keys one by one. In two random digits, the device
vibrates while highlighting the key. After all keys have been highlighted, the user authen-
ticates himself by entering his secret and the two keys indicated by the vibrations. The
extra keys can be included in any order and position, even between digits of the secret.
Figure 2 shows an example of NomadiKey++ highlighting the key 2.

3. Analytical Evaluation

In this section, we compare the security of NomadiKey and NomadiKey++ with classic
and random PIN keyboard layouts, pattern-based authentication, LG’s new Knock Code4,
and Samsung’s Digital Door Lock5. We compare all these authentication mechanisms
through their security coefficient, their number of possible distinct authentication secrets.
We compare the security coefficients under safe operation (“no attack”) as well as under
smudge, vision, and shoulder-surfing attacks, as defined in our attack models in Section 1.

Table 2 shows closed formulas for the security coefficient of the evaluated mecha-
nisms under safe operation and under each attack. We express security level as a function
of the secret length n, the number of distinct keys d, the repetitions ri of a key i and the
number of random digits f added by NomadiKey++ and Digital Lock. We consider as
keys the digits in PINs, NomadiKey and Digital Lock; the knocks in Knock Code; and
dots for pattern authentication. Note we consider a more generic version of Digital Lock
that adds f random digits instead of 2.

Security under safe operation. Under safe operation, the security coefficient of key-
board authentication grows exponentially with secret length. We note Knock Code’s se-
curity level is equivalent to that of a 2×2 keyboard. The exponent’s base is the number
of possibilities for each PIN digit; or screen quadrants for knocking. The security of
pattern-based authentication, in turn, depends on the number of dots available for pattern
continuation, which is given by the n-permutation of the nine possible dots. Note that the
security coefficient for pattern-based authentication is lesser or equal to the n-permutation
of 9 dots. This is because not all patterns are possible for every dot subset. Also note that
the extra digits added by Digital Lock and NomadiKey++ do not increase security under
safe operation because an adversary has to guess only the n original PIN digits.

Security under smudge attacks. Smudge attacks allow adversaries to identify the loca-
tion where the screen was touched, but not the order. Because of their predictable layout,
classic PIN, pattern, and Knock Code authentication are vulnerable to smudge attacks.
For classic PIN authentication, each touch allows the adversary to identify one number in
the PIN. After identifying the numbers in the PIN, the adversary needs to guess the order
in which they should be entered. Again, Knock Code’s security is equivalent to that of
a 2×2 keyboard. For pattern-based authentication, we note each dot can only be visited

4http://www.lg.com/us/mobile-phones/knockcode
5http://www.samsungdigitallife.com/DigitalDoorLock.php
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Table 2. Security coefficient under different attack models.

SECURITY COEFFICIENT
MECHANISM Safe Operation Smudge attack Vision attack Shoulder Surfing

Classic PIN 10n
n!

∏d
i=1 ri!

1 1

Random
Keyboards 10n

(
10

d

)
n!

∏d
i=1 ri!

10!

(10− d)!
1

NomadiKey 10n P
n!

∏d
i=1 ri!

P 1

Pattern ≤
9!

(9− n)!
2 1 1

Knock Code 4n
n!

∏d
i=1 ri!

1 1

Digital Lock 10n Gn+f
f

n!
∏d

i=1 ri!
1 1

NomadiKey++ 10n Gn+f
f ∗ P

n!
∏d

i=1 ri!
Gn+f

f ∗ P Gn+f
f

n = secret length d = distinct keys ri = repetitions of key i f = number of random digits added

once, i.e. the pattern is a Hamiltonian path. An adversary can authenticate by inputting
the pattern seen in the smudge in forward and reverse directions.

For PIN authentication on random keyboards, knowing where the user touched
the screen does not provide any information on which keys were pressed. The only in-
formation revealed is the number of distinct digits in the secret. For any d distinct touch
points, the adversary needs to try all

(
10
d

)
key combinations. For each key combination,

the adversary has to try all possible orderings, as in classic PIN authentication.

NomadiKey is a middle-ground between PIN authentication on classic and ran-
dom keyboards. The random absolute position of NomadiKey’s keys prevents an adver-
sary from discovering exactly which keys were pressed based on smudge touches. As
in random keyboards, the adversary must try a number of key combinations P and all
possible orderings for each key combination. The number of key combinations P , how-
ever, is less than

(
10
d

)
because the adversary can ignore key combinations that contradict

NomadiKey’s restriction on keeping the relative position of keys. For instance, if the
smudge reveals two perfectly aligned touches in a vertical line, the adversary can infer
that the keys belong to one column and prune the set of possible values for each key.

In Digital Lock and NomadiKey++, when analyzing the smudge, an adversary is
unable to distinguish the digits belonging to the PIN from the f random digits added by
the authentication mechanism. In order to discover the user’s secret, the adversary must
first discover which digits belong to the user’s PIN. The number of possibilities for the
adversary to remove the random digits from the user’s PIN is given by the number of
distinct combinations of f digits that can be removed from the n+ f digit set. Using gen-
erating functions, the number of combinations can be modeled as a product of equations
of the form (x0 + x1 + ...+ xri). The number of combinations is given by the coefficient
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of the xf component in the expanded form of the product. In our evaluation, we use Gn+f
f

to express the number of possibilities of choosing f digits from an n+ f set.

Finally, the security coefficient under smudge attacks of Digital Lock is given by
the number of combinations Gn+f

f and the number of permutations of n digits. That is,
the adversary has to, first, discover which are the real digits from the user’s PIN and, sec-
ond, discover the real order of the digits of the real PIN. For NomadiKey++, the security
coefficient is given by Gn+f

f , the permutations of n, and the parameter P . That is, the
adversary has to test all the permutations of all the Gn+f

f combinations of all the n + f
sets that do not contradict NomadiKey’s restrictions, based on the touches revealed by the
smudge attack.

Security under vision attacks. Vision attacks allow an adversary to know where the
screen was touched, and in which order. Classic PIN authentication, pattern-based au-
thentication, Knock Code, and Digital Lock have “static keys”, so vision attacks give full
information over which keys were pressed and in which order. Besides, Digital Lock’s
random digits are always entered before the user’s real PIN digits, allowing an adversary
to know which digits do not belong to the user PIN. Hence, the security coefficient of
these mechanisms under vision attacks is 1.

NomadiKey and PIN on random keyboards provide some security against vision
attacks as an adversary does not know exactly which keys were pressed. In NomadiKey,
the adversary has to try all possible P key combination for a given set of touch points;
similarly, an adversary has to try n-permutations of 10 keys for PIN authentication on
random keyboards.

Unlike Digital Lock, the random digits of NomadiKey++ can be added at any point
during authentication, meaning an adversary cannot distinguish random digits from real
PIN digits based on the touch position and order. In NomadiKey++, the adversary still has
to decide which digits belong to the user’s secret for all possible keyboard configurations
of NomadiKey.

Security under shoulder-surfing attacks. Our model for shoulder-surfing attacks allows
an adversary to identify the exact keys touched in NomadiKey and random keyboards,
completely revealing the authentication secret. NomadiKey++ is the only mechanism that
provides a non-trivial security coefficient. NomadiKey++ uses vibrations during authenti-
cation to communicate random extra digits to the user, which are entered together with the
real PIN during authentication. A shoulder-surfing adversary cannot distinguish between
real and random PIN digits. Because of this, the security coefficient for NomadiKey++
under shoulder-surfing remains Gn+f

f .

4. Empirical evaluation
In this section, we present results of our empirical evaluation of NomadiKey and No-
madiKey++. We complete our security analysis by assessing the value of the parameter
P and we compare the usability of NomadiKey, NomadiKey++, classic PIN keyboards,
and random PIN keyboards using prototypes we developed for each mechanism.

4.1. Security Evaluation
To complete our security evaluation of NomadiKey and NomadiKey++, we evaluate the
values of P empirically. Recall that P is the number of possible key combinations given
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a set of touch positions. To evaluate P , we generate up to 105 distinct random secrets out
of the 10!/(10 − d)! possible secrets with d distinct keys, for d varying from 1 to 7. We
then generate one hundred different keyboard layouts for each secret using Algorithm 1
with α = 2, ensuring each row (column) is at least two buttons wide (high). Finally, we
simulate a computer vision attack on each of the 107 (secret, layout) pairs to estimate the
distribution of P .

Figure 3 shows the distribution of P . We observe that, for PINs with 4 distinct
keys, the security coefficient of NomadiKey and NomadiKey++ is increased by more
than 50 times in the median case. Vertical trends for d = 1 and d = 2 happen for touch
positions where an adversary would have to try all possible d-key combinations, as for
PIN authentication on random keyboards.

Figure 3. Empirical evaluation of the number P of possible key combinations in
NomadiKey for a given set of touch positions.

4.2. Usability evaluation

To evaluate the usability of NomadiKey and NomadiKey++, we compare them to PIN au-
thentication on classic and random keyboards. We measure usability as the authentication
delay, how long it takes for users to authenticate. We implemented the four authentica-
tion mechanisms in an Android application. We considered PINs of four digits, based on
average secret length of 4.5 digits found in previous work [Harbach et al. 2014].

We asked volunteers to authenticate in our developed application using each of
the four authentication mechanisms. For each mechanism, the user was presented with
five different random secrets. The user authenticated three times with each of the five
secrets for a total of 15 authentications per mechanism. The tests were performed with
20 volunteers, 10 male and 10 female, using two devices: an LG G3 and an LG G4, both
devices have screens of 5.5”.

Figure 4 shows authentication delay for NomadiKey. As expected, authentication
delay for NomadiKey is a middle ground between traditional and random PIN authenti-
cation. We note that authentication times for NomadiKey are closer to those of random
PINs than classic PINs. This is because, besides its nomadic nature, keys on NomadiKey
are smaller than those used in other keyboards. Having smaller keys allows NomadiKey
to increase security, as keys can be better spread on the screen, but it makes it harder for
users to reach and press keys, decreasing usability.
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Figure 4. Usability of NomadiKey and PIN authentication.

Figure 5 shows results for NomadiKey++. It can be noted that authentication
delays on NomadiKey++ are much higher than authentication delays on other authentica-
tion mechanisms (Figure 4). There are mainly two reasons for this. First, PINs entered
for NomadiKey++ are longer (6 digits instead of 4) because users must enter their PIN
and the two random digits from NomadiKey++. Logically, longer PINs lead to higher
authentication delays. Second, in NomadiKey++ the user often waits for all keys to be
highlighted before he can authenticate. This process alone takes 4500 ms, with each key
being highlighted for 400 ms. For the sake of comparison, we also show in Figure 5
the authentication delay of NomadiKey and NomadiKey++ without considering the high-
lighting period.

Figure 5. Usability of NomadiKey++.

Finally, we argue that the combination of NomadiKey and NomadiKey++ strikes
a good tradeoff between security and usability. Even using smaller keys, the usability
of NomadiKey remained at least as good as the usability of random keyboards. Being
on average only 1.3s slower than traditional keyboards and with a higher security coeffi-
cient. While, despite presenting lower usability, NomadiKey++ presents a considerably
higher security level, being the only mechanism with non-trivial security coefficient under
shoulder-surfing attacks.

5. Conclusion
In this work, we extend NomadiKey, a mechanism for user authentication on smart de-
vices. NomadiKey places keys in random absolute positions to improve security while
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keeping the relative positions of keys to preserve usability. In order to increase No-
madiKey’s security even further, we proposed a security extension called NomadiKey++,
that employs out-of-band channels during authentication to thwart shoulder-surfing ad-
versaries. Our analytical and empirical evaluation of NomadiKey and NomadiKey++
indicate they present a good trade-off between security and usability, with NomadiKey++
presenting lower usability for the sake of much stronger security.
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