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1VeRLab - Laboratório de Visão Computacional e Robótica
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Abstract. In this paper, we present coordination algorithms that allow a swarm
of robots to work in a distributed fashion to navigate. We present algorithms to
solve two main problems: (i) Navigate in an environment with unknown obsta-
cles; (ii) Navigate in a more coordinated and efficient fashion, avoiding conges-
tion situations. We present simulation results, including experimental analisys,
and results using a group of real robots, showing the viability of the proposed
algorithms.

Resumo. Neste trabalho, são apresentados algoritmos de coordenação que
permitem a um enxame de robôs trabalhar de forma distribuı́da durante a
navegação. São apresentados algoritmos para resolver dois problemas prin-
cipais: (i) Navegar em um ambiente contendo obstáculos desconhecidos; (ii)
Navegar de forma mais coordenada e eficiente, evitando congestionamentos.
São apresentados resultados em simulação, incluindo análises experimentais, e
resultados utilizando um conjunto de robôs reais, demonstrando a viabilidade
das propostas.

1. Introdução
Grandes grupos de robôs têm recebido muita atenção recentemente. Geralmente chama-
dos de enxames, esses sistemas utilizam um grande número de agentes simples para rea-
lizar diversas tarefas. Em geral, enxames de robôs devem trabalhar de forma distribuı́da e
usar recursos limitados de processamento e comunicação. Devido a essas caracterı́sticas,
novos algoritmos para controlar e coordenar esses grandes grupos de robôs têm sido de-
senvolvidos.

Durante a realização de uma determinada tarefa, um robô deve navegar no am-
biente, ou seja, se movimentar de forma a atingir um determinado alvo, enquanto evita
colisões com obstáculos e outros robôs. Normalmente, deseja-se que a navegação seja o
mais eficiente e o mais confiável possı́vel. Existem dois problemas principais: (i) Como
encontrar um caminho viável até o alvo, em um ambiente contendo obstáculos desconhe-
cidos? (ii) Como evitar congestionamentos quando um grande número de robôs se dirige
à mesma região do ambiente? O objetivo do trabalho de iniciação cientı́fica, portanto, foi
desenvolver soluções distribuı́das para esses problemas, tornando a navegação do enxame
mais suave, robusta e eficiente. As soluções desenvolvidas foram analisadas e avaliadas
através de simulações e experimentos reais. Neste artigo é apresentada uma visão geral
do trabalho que foi desenvolvido, mais detalhes podem ser encontrados nas referências
indicadas.
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2. Navegação em Ambientes com Obstáculos

Uma problema importante ao se utilizar grandes grupos de robôs é a navegação. Uma
abordagem comum é controlar os robôs de forma descentralizada, misturando a descida
do gradiente com forças locais de repulsão. Porém, como no método convencional de
campos potenciais [Khatib 1986], a presença de obstáculos e forças locais de repulsão
entre os robôs pode prejudicar a convergência devido aos mı́nimos locais, regiões onde
a força resultante aplicada sobre o robô se anula ou o padrão de forças leva a movimen-
tos repetitivos. Alguns trabalhos, como [Hsieh and Kumar 2006], provam a ausência de
mı́nimos locais para tipos especı́ficos de ambiente, enquanto outros desenvolvem funções
de navegação para ambientes conhecidos, como por exemplo [Pimenta et al. 2005]. Mas
esses métodos podem ser difı́ceis de calcular em tempo real e podem não ser aplicáveis a
todos os tipos de ambientes. Outros trabalhos tratam o enxame como uma entidade mais
simples, ou utilizam hierarquias, para trabalhar com um menor número de graus de li-
berdade ([Kloetzer and Belta 2006]). Neste trabalho, ao invés de restringir o ambiente ou
desenvolver controladores e funções de navegação complexas, é utilizada a composição
de controladores simples e coordenação descentralizada para superar o mı́nimo local em
ambientes contendo obstáculos desconhecidos.

Foi utilizada uma estratégia de coordenação que permite aos robôs encontrar um
caminho viável até o alvo com a ajuda dos outros robôs. Esse algoritmo será chamado
Algoritmo Resgate (AR). A idéia básica é que alguns robôs que atingiram o alvo sejam
realocados como robôs de resgate. Esses robôs vão refazer o caminho percorrido pro-
curando por robôs que possam estar presos em mı́nimos locais. Será apresentada aqui
apenas uma idéia geral do algoritmo desenvolvido. Mais detalhes podem ser encontrados
em [Marcolino and Chaimowicz 2008c].

Os robôs do enxame podem estar em um de cinco diferentes estados durante a
execução da tarefa: normal, preso, resgate, anexado e completo. Todos os robôs começam
no estado normal. Se eles caı́rem em uma região de mı́nimo local, eles mudam o estado
para preso. Quando um robô chega no alvo ele pode se tornar um robô de resgate. Basi-
camente, enquanto se move em direção ao alvo, um robô salva uma seqüência de pontos
que é usada para marcar o seu caminho. Se ele se tornar um robô de resgate, irá refazer o
caminho percorrido de trás para frente, procurando por robôs no estado preso. Após per-
correr o caminho ao contrário, o robô move-se novamente para o alvo seguindo o caminho
na direção correta. Quando um robô de resgate detecta um robô preso em sua vizinhança,
realiza um broadcast de sua posição corrente e do seu caminho. Qualquer robô preso que
esteja a uma certa distância do robô de resgate e que possua uma linha de visão direta
com ele receberá o broadcast. Após recebê-lo, o robô preso muda o seu estado para ane-
xado. Um robô anexado irá mover para a posição recebida e depois seguirá o caminho
até o alvo. Um robô anexado também pode se comunicar com outros robôs no estado
preso, espalhando a informação sobre o caminho possı́vel até o alvo. Nessa situação, os
robôs no estado preso mudam o seu estado para anexado e vão também poder transmitir a
informação a seus vizinhos, criando uma poderosa corrente de comunicação. Finalmente,
um robô irá trocar seu estado para completo quando atingir o alvo.

Foram realizados diversos testes, tanto em simulação quanto com robôs reais
[Marcolino and Chaimowicz 2008a, Marcolino and Chaimowicz 2008b]. Serão apresen-
tados aqui os principais resultados. Na Figura 1 pode ser vista uma execução em
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Figura 1. Execução em simulação do AR.

Figura 2. Execução real utilizando o AR.

simulação desse algoritmo, em um cenário clássico de mı́nimo local: um obstáculo em
forma de U formando um beco sem saı́da. Foram simulados 110 robôs nesse cenário.
Os robôs iniciam na esquerda, no meio há um obstáculo e na direita pode ser visto o
alvo (quadrado sublinhado). Os estados dos robôs são representados pelos diferentes for-
matos: normal (cı́rculos brancos), preso (quadrados cinzas), anexado (triângulos brancos
apontando para a direita), resgate (triângulos pretos apontando para a esquerda), completo
(diamantes pretos). Como pode ser observado, devido aos robôs de resgate, um grande
número de robôs que estavam presos na região de mı́nimo local receberam um caminho
viável até o alvo e foram capazes de convergir de forma apropriada. Também foi reali-
zada uma análise experimental em simulação, onde comparou-se o algoritmo com uma
execução convencional, utilizando apenas forças de repulsão. A análise mostrou que,
com mais do que cem robôs, a quantidade que não consegue chegar ao alvo tornou-se
próxima de 0, enquanto que em uma execução convencional manteve-se alta. A análise
foi realizada com um intervalo de confiança de 95%. As simulações foram executadas uti-
lizando o MuRoS, um simulador desenvolvido no VeRLab que permite testar diferentes
controladores e algoritmos de coordenação em tempo real.

Realizou-se, então, uma execução real do algoritmo, utilizando sete robôs scarab.
Os scarabs são robôs diferenciais, controlados cinematicamente [Michael et al. 2008]. Os
robôs iniciam na parte inferior do cenário e devem convergir para o alvo que está depois do
obstáculo em forma de U. Os snapshots da execução podem ser vistos na Figura 2. Como
pode ser observado, essa prova de conceito mostra que o algoritmo pode ser utilizado em
um grupo de robôs reais, permitindo-os convergir para um alvo em um ambiente contendo
obstáculos desconhecidos.
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Figura 3. Passos da execução do algoritmo de coordenação proposto ACG.

3. Evitando Congestionamentos

Outro problema importante que ocorre durante a navegação de um enxame são os conges-
tionamentos, que acontecem quando um grande número de robôs se dirige à mesma região
do ambiente no mesmo intervalo de tempo. Esses problemas podem acontecer, por exem-
plo, quando grupos de robôs navegam em direções opostas ou quando um grande número
de robôs se dirige a um mesmo objetivo. Trabalhos sobre controle de tráfego podem
ser encontrados tanto na área de robótica cooperativa como na área de sistemas multi-
agentes. Alguns trabalhos utilizam um agente para gerenciar o tráfego nas interseções
onde pode acontecer um congestionamento, como [Dresner and Stone 2005]. Uma abor-
dagem semelhante, na área da robótica, pode ser vista em [Viswanath and Krishna 1997],
onde uma rede de sensores é utilizada para coordenar o tráfego dos robôs. Já em
[Treuille et al. 2006] é proposto um mecanismo para evitar o congestionamento ao ser
simulada uma multidão de pessoas. O método, porém, é muito centralizado para ser
utilizado em um enxame de robôs. No presente trabalho, são propostos métodos de
coordenação descentralizada que permitem a um enxame de robôs evitar situações de
congestionamento. Os algoritmos funcionam sem assumir que os robôs navegam em fai-
xas delimitadas, nem necessitam de meios externos ao enxame, como redes de sensores
ou agentes colocados nas interseções.

3.1. Algoritmo para Conflitos de Grupos

Primeiro será apresentado o mecanismo utilizado para o caso em que grupos de robôs
se movimentam em direções contrárias, que será chamado Algoritmo para Conflitos de
Grupos (ACG). A idéia geral do algoritmo é que os primeiros robôs a perceberem o risco
de um congestionamento avisem os outros, permitindo-os atualizar dinamicamente a tra-
jetória de forma a evitar o problema. Mais detalhes sobre esse algoritmo podem ser en-
contrados em [Marcolino and Chaimowicz 2009a].

Sempre que um robô detecta a presença de outro, ele envia uma mensagem avi-
sando qual é sua direção de destino. Assim, caso as direções de destino sejam diferentes,
os robôs são capazes de perceber o risco iminente de um congestionamento. Essa etapa
inicial do algoritmo pode ser vista na Figura 3(a). Os robôs que perceberam o risco de
um congestionamento enviam uma mensagem aos seus vizinhos, como pode ser visto na
Figura 3(b). Cada robô, ao receber essa mensagem, a retransmite para seus respectivos
vizinhos, como mostra a Figura 3(c). Dessa forma, a informação do risco de um conges-
tionamento é transmitida pelo enxame e cada grupo poderá desviar de forma apropriada,
como mostrado na Figura 3(d). Assim que um robô percebe o risco de um congestiona-
mento, seja encontrando um robô do outro grupo, seja pelo aviso de outros robôs de seu
próprio grupo, ele desvia do local onde aconteceria o problema. Para realizar o desvio,
o robô utiliza como base a direção de seu destino. Pode-se especificar, por exemplo, que
cada robô desviará no sentido anti-horário.
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Figura 4. Execução em simulação do algoritmo proposto ACG.

Figura 5. Execução real do algoritmo proposto ACG.

Foram realizados experimentos em simulação e com robôs reais, apresentados em
[Marcolino and Chaimowicz 2009a]. Uma execução em simulação desse algoritmo pode
ser vista na Figura 4. Quatro grupos de robôs devem navegar em direções opostas no
cenário. Como pode ser observado, os grupos circularam em torno da região onde acon-
teceria o congestionamento, e todos conseguiram chegar de uma forma suave e eficiente
no alvo proposto. Também foi realizada uma análise experimental em simulação, onde
comparou-se o algoritmo com uma execução convencional, utilizando apenas forças de
repulsão. Essa análise foi realizada com um intervalo de confiança de 95% e mostrou um
ganho no tempo de convergência de 40%. As simulações foram realizadas utilizando o
Player/Stage, uma plataforma livre que provê uma interface simples aos sensores e atua-
dores dos robôs através de uma rede IP.

Foram realizadas diversas execuções reais desse algoritmo, utilizando a plata-
forma de experimentação com enxames de robôs que vêm sendo desenvolvida no VeRLab.
Essa plataforma é composta por doze robôs e-puck [Cianci et al. 2007], um arcabouço de
programação integrado ao Player além de mecanismos de comunicação e localização. Os
snapshots de uma execução com quatro grupos podem ser vistos na Figura 5. E-pucks
com os leds acesos estão desviando da região de congestionamento. Essa prova de con-
ceito mostra que o algoritmo é viável em um grupo de robôs reais, permitindo-os navegar
de uma forma suave e eficiente mesmo quando se movimentam em direções opostas.

3.2. Algoritmo para Conflitos de Alvo

Para lidar com o caso em que um grande número de robôs se dirige para um mesmo ob-
jetivo, é utilizado o Algoritmo para Conflitos de Alvo (ACA). A idéia geral do algoritmo
é obrigar alguns robôs a esperar enquanto outros se dirigem ao alvo comum. Assim, um
número menor de robôs tenta chegar ao alvo no mesmo intervalo de tempo, diminuindo o
problema do congestionamento. Mais detalhes sobre esse algoritmo podem ser encontra-
dos em [Marcolino and Chaimowicz 2009b]. A solução é modelada como uma Máquina
de Estados Finitos Probabilı́stica, onde as arestas são marcadas com probabilidades que
definem a transição que será tomada. Os robôs podem estar em um de quatro diferentes
estados: normal, esperando, preso e impaciente. À partir do estado esperando, o robô
pode trocar para o estado impaciente com uma probabilidade ρ ou pode permanecer no
mesmo estado com uma probabilidade 1− ρ.
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Figura 6. Passos da execução do algoritmo de coordenação proposto ACA. A
cor verde identifica robôs no estado esperando ou preso.

É definida como perigo uma região em torno do alvo. Dentro dessa região, é
definida uma região livre. A idéia geral é que os robôs que chegam na região perigo irão
se coordenar de forma que apenas alguns deles entrem na região livre no mesmo intervalo
de tempo. Ao chegar na região livre, os robôs se movimentam diretamente para o alvo.
Também é definida uma sub-área na região de sensoriamento do robô como uma área-α.
Considerando um sistema de coordenadas centralizado na posição do robô, com o eixo y
apontando em direção ao alvo, a área-α é definida como o arco [−α, α] com centro em y
e raio δ. Essa área-α será utilizada para detectar outros robôs que possam interferir com
a navegação em direção ao alvo.

Caso um robô normal esteja na região perigo e detecte outro robô em sua área-α
com o mesmo alvo, ele irá mudar o seu estado para esperando (Figura 6(a)). Um robô
esperando não irá se movimentar em direção ao alvo. A cada iteração, irá verificar se pode
trocar o seu estado. Como mencionado, o robô irá trocar o seu estado para impaciente
com uma probabilidade ρ e irá manter o seu estado em esperando com uma probabilidade
1− ρ. Um robô normal também pode trocar seu estado para preso. Isso acontece quando
detecta um robô esperando ou preso com o mesmo alvo que ele. Dessa vez, essa troca
de estado pode acontecer mesmo fora da região perigo (Figura 6(b) e (c)). No estado
preso, o robô se comporta da mesma forma que um robô esperando, não irá se mover na
direção do alvo. Porém, a transição à partir desse estado não depende de probabilidades.
Um robô preso irá retornar ao estado normal quando não houver mais robôs no estado
esperando ou preso em sua área-α. Finalmente, um robô impaciente se movimenta em
direção ao alvo, da mesma maneira que um robô normal. Porém, um robô impaciente não
irá mais parar de se movimentar, isto é, não pode trocar seu estado para esperando nem
preso. Essa situação pode ser vista na Figura 6(d), onde o robô j retoma o seu movimento
em direção ao alvo no estado impaciente. Além disso, o robô k altera o seu estado para
normal e também volta a se movimentar em direção ao alvo. Pode-se ver na figura que
os outros robôs trocaram seus estados para esperando ao entrarem na região perigo e,
portanto, não irão impor dificuldades para o robô j chegar ao alvo e deixar essa região,
permitindo uma navegação mais suave.

Uma execução em simulação desse algoritmo pode ser vista na Figura 7, onde 48
robôs foram posicionados aleatoriamente fora da região perigo e da região livre. Todos os
robôs possuı́am um alvo no centro do cenário. Os robôs são representados por diferentes
formas de acordo com seus estados: normal (+), esperando (◦), preso (4) e impaciente
(×). Robôs no estado normal que já chegaram no alvo proposto e estão se movimen-
tando em direção ao próximo alvo são representados pelo sı́mbolo (*). O cı́rculo externo
representa a região perigo, enquanto o interno representa a região livre. Como pode ser
observado, os robôs esperando formam uma barreira na região perigo, enquanto os robôs
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Figura 7. Execuções em simulação do algoritmo proposto ACA.

Figura 8. Execução real do algoritmo proposto ACA.

no estado preso tendem a esperar fora dessa região. Isso permite que todos os robôs che-
guem no alvo de uma forma mais suave, já que o número de disputas é bem menor. Foi
realizada uma análise experimental, com um intervalo de confiança de 95%, onde foi ob-
tido um ganho no tempo de convergência de 20% em relação a uma execução utilizando
apenas forças de repulsão. Essas simulações foram executadas utilizando o Player/Stage.

Também foi realizada uma execução real desse algoritmo, utilizando doze robôs
e-puck, que pode ser vista na Figura 8. E-pucks com os leds acesos estão no estado espe-
rando ou preso, enquanto e-pucks com os leds apagados estão no estado normal ou impa-
ciente. Doze robôs são distribuı́dos em torno da região do alvo (indicada por uma pequena
marca nas imagens) em grupos de três. Após chegar no alvo comum, cada robô deve se
movimentar para seu alvo individual na região superior ou inferior do cenário. Como pode
ser observado, os robôs conseguiram completar a tarefa de forma suave. Assim, essa prova
de conceito mostra que o algoritmo é viável para um grupo de robôs reais, permitindo-os
navegar com mais eficiência. Mais detalhes sobre os experimentos realizados, incluindo
provas de convergência, podem ser vistos em [Marcolino and Chaimowicz 2009b].

4. Conclusão

Neste trabalho1, foram apresentadas soluções para que um enxame de robôs navegue de
forma mais eficaz e eficiente. Uma delas utiliza o trabalho coordenado dos robôs para
que eles consigam navegar em direção a um alvo em um cenário contendo obstáculos
desconhecidos. As outras apresentam algoritmos de coordenação distribuı́da para evitar
o problema do congestionamento quando grupos de robôs navegam em direções opostas
ou possuem um alvo em comum. Foram realizadas simulações, análises experimentais e
execuções reais para avaliar os algoritmos, onde se mostrou que eles são viáveis e permi-
tem ao enxame ter uma navegação mais suave e eficiente. Como trabalho futuro pretende-
se investigar mais profundamente as situações apresentadas, para atingir maiores ganhos
de eficiência e, assim, permitir uma navegação ainda melhor de um enxame de robôs.

1Este trabalho foi parcialmente financiado pelo CNPq e Fapemig. Os autores gostariam de agradecer Renato Garcia do VeRLab -
UFMG e Nathan Michael, Jonh Fink e Vijay Kumar do Grasp Lab. University of Pennsylvania pelo apoio nos experimentos.
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