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Abstract. The outlier detection problem has been a research topic withinteres-
ting applications in different domains, such as data cleaning and fraud detec-
tion. In this work, we propose an efficient and scalable distance-based algorithm
for detecting outliers in large high dimensional databases. Our algorithm par-
titions the database and sorts the objects that are candidates to be an exception,
reducing significantly the number of comparisons among objects. We evaluate
the different sorting heuristics in a comprehensive set of real and synthetic da-
tabases. The results show that our algorithm outperforms by52% the state of
the art algorithm.

Resumo. A Mineraç̃ao de Exceç̃oes tem sido umáarea de pesquisa que possui
interessantes aplicações em diferentes domı́nios, variando desde a limpeza de
dadosà detecç̃ao de fraudes. Neste trabalho, propomos um algoritmo eficiente
e escaĺavel baseado em distância para a mineraç̃ao de exceç̃oes em grandes
bases de dados de alta dimensionalidade. Nosso algoritmo realiza um partici-
onamento dos dados e ordena os objetos candidatos a exceção reduzindo sig-
nificativamente o ńumero de comparações entre objetos. Avaliamos diferentes
heuŕısticas de ordenaç̃ao em um conjunto abrangente de bases de dados reais e
sint́eticas. Os resultados mostram que nosso algoritmo obtém um ganho de até
52% em relaç̃ao ao estado da arte.

1. Introdução

O rápido desenvolvimento das técnicas de armazenamento de dados em meio digital fez
com que os tempos recentes fossem chamados de “Era da Informação”. Sistemas pode-
rosos de banco de dados para gerência e coleta de informaç˜oes são usados em diversos
campos, como finanças (empresas de grande e médio porte), astronomia, bioinformática,
dentre outros. A cada dia, novas transações e registros s˜ao gerados e armazenados para
futura análise e auxı́lio em tomada de decisões. Contudo,analisar essa grande quanti-
dade de dados torna-se uma tarefa não-trivial, mesmo para um especialista da área. A
Mineraç̃ao de Dadośe a área que busca extrair conhecimentos e encontrar informações
úteis em um conjunto de dados de forma automática.

A maioria dos problemas daMineraç̃ao de Dadostem como objetivo extrair
padrões existentes em um conjunto de dados. Com isso, a tendência é que objetos1 raros,

1Registros de uma base dados
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que não se enquadram nos padrões minerados, sejam ignorados ou até mesmo elimina-
dos. Esses objetos raros, porém, podem conter informações muito úteis. AMineraç̃ao
de Exceç̃oesse propõe a obter informações por meio da identificaçãoe análise de obje-
tos raros existentes em uma base de dados. Barnett e Lewis[Ord 1996] definem exceção
como um exemplo (ou um sub-conjunto de exemplos) que é inconsistente com o restante
do conjunto de dados.

A Mineraç̃ao de Exceç̃oesé aplicada e usada em vários cenários como detecção
de fraudes, análise de desempenho de atletas, combate à sonegação de impostos, detecção
de invasões em uma rede, procura de nichos de mercado, auxı́lio na aprovação de crédito
nas instituições financeiras, dentre várias outras.

Um dos grandes desafios daMineraç̃ao de Dadośe a criação de técnicas e al-
goritmos eficientes que consigam lidar com o crescimento acentuado da quantidade de
dados. No contexto deMineraç̃ao de Exceç̃oes, os algoritmos baseados em distância se
destacam pela eficiência. Basicamente, eles representam os registros da base de dados
através de pontos em um espaço multidimensional. Assim, adistância de um objeto aos
pontos mais próximos será considerada como seuvalor de excepcionalidade, e, portanto,
os objetos raros são aqueles que estão mais distantes de seus vizinhos, segundo alguma
métrica de distância. Recentemente foram propostas alternativas para a mineração de
exceções baseadas em distância para grandes bases de dados de alta dimensionalidade.
Essas técnicas buscam uma redução do número de cálculos de distância entre os pontos
aplicando uma simples regra de “poda”, também conhecida como busca aproximada de
vizinhos pŕoximos. Em outras palavras, a regra de “poda” permite que identifiquemos
objetos comuns (não-exceções) sem a necessidade de compará-los com todos os demais
registros da base de dados. O desempenho desses algoritmos está fortemente relacionado
com a eficiência dessa regra de poda.

Estratégias simples para a mineração de exceções utilizam algoritmos de
agrupamento[Ester et al. 1996, Zhang et al. 1996]. Nesses algoritmos consideram-se
exceções os objetos que perturbam o processo de agrupamento seja porque não conse-
guem ser agregados a nenhum agrupamento, ou são os únicos objetos atribuı́dos a um
agrupamento. A definição de exceções dada por esses algoritmos não é precisa matemati-
camente, mas possui um apelo intuitivo forte da excepcionalidade dos objetos. Nesse tra-
balho, primeiramente apresentamos um método para localização de objetos com um alto
valor de excepcionalidade (esses objetos não são necessariamente as exceções da base
de dados). Nossa primeira hipótese é que podemos encontrar “boas” exceções através
de heurı́sticas de ordenação simples que utilizem as caracterı́sticas dos agrupamentos dos
objetos. Além disso, estudamos e avaliamos os compromissos da regra de “poda”. Base-
ado nesse estudo, formulamos a segunda hipótese: podemos melhorar consideravelmente
a eficiência da regra de “poda” e reduzir o número de comparações entre objetos, anali-
sando primeiramente os objetos com um alto valor de excepcionalidade. Assim, propo-
mos abusca ordenada por exceções.

Para validar nossas hipóteses, desenvolvemos e avaliamos, segundo métodos ex-
perimentais estatı́sticos, quatro heurı́sticas de ordenação. Os resultados mostram que po-
demos encontrar objetos com um alto valor de excepcionalidade utilizando heurı́sticas
simples baseadas nas caracterı́sticas dos agrupamentos e isso torna a regra de “poda”
muito eficiente. Além disso, apresentamos um algoritmo para a mineração de exceções
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Sı́mbolo Descrição
n Número de exceções a serem detectadas em uma base de dados
k Número de vizinhos mais próximos considerado
Dk(p) Distância entre um pontop e seuk-ésimo vizinho mais próximo
Dk

min Distância entre a “pior” exceção encontrada e seuk-ésimo vizinho mais próximo
|P | Número de objetos em uma partiçãoP

R(P ) Valor da diagonal MBR de uma partiçãoP

Tabela 1. Notaç ões

em grandes bases de dados de alta dimensionalidade e mostramos que nossa abordagem é
eficiente e escalável em relação ao número de objetos. Osexperimentos demonstram que
o algoritmo proposto obtém um ganho de até 52% em relaçãoestado da arte, o algoritmo
RBRP[Ghoting et al. 2005].

A proposta, elaboração e execução deste trabalho foramrealizados pelo aluno de
iniciação cientı́fica Carlos H. C. Teixeira, sob orientac¸ão do professor Wagner Meira Jr. e
Co-orientação do aluno de mestrado Gustavo H. Orair.

O restante deste artigo está organizado como descrito a seguir. Primeiramente,
examinamos os trabalhos relacionados, os algoritmos baseados em distânca existentes,
na seção 2. Na seção 3, apresentamos nosso algoritmo para a mineração de exceções.
Avaliamos os resultados na seção 4 e finalmente concluı́mos nosso trabalho na seção 5.

2. Trabalhos Relacionados
Nesta seção, discutimos os trabalhos relacionados, maisespecificamente as técnicas de
detecção de exceções baseadas em distância. As notações usadas nas próximas seções
estão na Tabela 1.

O emprego de técnicas não-paramétricas para detecçãode exceções foi primeira-
mente proposto por [Knorr and Ng 1999], onde considera-se como exceção um objeto que
não possui “vizinhos” suficientes. Desde então, várias técnicas de definição de exceções
não-paramétricas, como as técnicas baseadas em distância e as técnicas baseadas em den-
sidade foram propostas. Enquanto as técnicas baseadas em densidade consideram a densi-
dade local da vizinhança do objeto para a identificação das exceções, as técnicas baseadas
em distância utilizam um conceito bem definido de distância para considerar uma exceção
como um objeto que está afastado de seus “vizinhos”. Dada uma medida de distância en-
tre objetos (por exemplo, distância Euclidiana), algumasdefinições de exceções em bases
de dados são:

• Exceções são pontos que possuem um número menor quek objetos vizinhos na
base de dados a uma distância menor ou igual ad [Knorr and Ng 1999].

• Exceções são osn pontos que possuem os maiores valores de distância
para seus respectivosk-ésimos vizinhos mais próximos[Ramaswamy et al. 2000,
Bay and Schwabacher 2003, Ghoting et al. 2005].

Em [Ramaswamy et al. 2000], propõe-se que a distância aok-ésimo vizinho
mais pŕoximo seja utilizada como uma medida da “excepcionalidade” dos objetos. A
introdução desse conceito permitiu que se apresentasse uma classificação entre os obje-
tos da base de dados considerando os valores de excepcionalidade. Dessa forma, ob-
jetos com alto valor de excepcionalidade seriam mais bem classificados. Neste con-
texto, a abordagem mais simples é um laço aninhado (algoritmo LA) que calcula as
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distâncias entre todos objetos da base de dados para encontrar o k-ésimo vizinho mais
próximo de cada objeto, o que resulta em complexidade quadrática –O(N2). Surgi-
ram, então, várias estratégias para tornar mais eficiente a procura pelok-ésimo vizinho
mais próximo, desde propostas baseadas em ı́ndices espaciais por meio de estruturas,
em geral árvores (como KD-trees[Bentley 1975], R*-trees[Ramaswamy et al. 2000]) até
o particionamento do espaço em células uniformes. Porém, essas abordagens são afetadas
pelamaldiç̃ao da dimensionalidadenão escalando em relação ao número de dimensões
[Knorr and Ng 1999, Ramaswamy et al. 2000].

Recentemente, surgiram trabalhos que propõem a mineraç˜ao de exceções
em bases de alta dimensionalidade. Bay e Schwabacher apresentaram o ORCA
[Bay and Schwabacher 2003], um algoritmo baseado no algoritmo do LA combinado à
busca aproximada de vizinhos próximos(definição 1). Além disso, para garantir que a
base de dados não possua uma disposição dos objetos que leve à ineficiência da poda, os
autores realizam um pré-processamento de ordenar aleatoreamente os objetos da base de
dados. Note que, à medida que processamos os objetos da basede dados, o valor do limite
de poda mı́nimoDk

min
cresce monotonicamente, obtendo assim uma poda mais eficiente.

Definição 1 Se durante a busca pelosk vizinhos mais pŕoximos de um pontop, ou seja,
durante a computaç̃ao deDk(p) encontrarmos um valor inferior aDk

min
, podemos segu-

ramente descartar o pontop como uma exceção.

Contudo, em [Ghoting et al. 2005] mostra-se que em bases de dados que pos-
suem um número de exceções muito pequeno, a busca aproximada de vizinhos ainda é
muito ineficiente, resultando em uma complexidade deO(N2). Foi proposto, então, o
RBRP, um algoritmo de duas fases que otimiza a regra de “poda”através dabusca or-
denada por vizinhos. Na primeira fase, realiza-se um particionamento dos dadoscomo
fase de pré-processamento. Os agrupamentos obtidos são,então, utilizados para ordenar
o espaço de busca por vizinhos próximos. Assim, a procura por vizinhos deve acontecer
primeiramente no próprio agrupamento do objeto e posteriormente prosseguir a busca das
partições mais próximas às mais distantes. A proposta fundamental do algoritmo RBRP é
encontrar vizinhos próximos de maneira eficiente. De acordo com a definição 1, podemos
dizer que o algoritmo RBRP tem como objetivo fazer com que o valor deDk(p) fique me-
nor queDk

min
rapidamente, através da diminuição deDk(p). Dessa forma, consegue-se

melhorar a eficiência dabusca aproximada de vizinhos próximosobtendo um desempenho
superior ao algoritmo ORCA.

3. O Algoritmo Proposto

Baseado no estudo dos compromissos da regra de “poda”, podemos apontar duas formas
de otimizarmos abusca aproximada de vizinhos próximos:

• Diminuir rapidamente o valor deDk(p), ou seja, encontrar vizinhos próximos
eficientemente para um objetop;

• Aumentar a taxa de elevação do valor deDk

min
, em outras palavras, encontrar

exceções rapidamente.

A primeira alternativa foi estudada em [Ghoting et al. 2005], onde foi proposto
o algoritmo estado da arte, RBRP e abusca ordenada de vizinhos. Nossa proposta de
otimização da regra de “poda” baseia-se na segunda alternativa. Nossa hipótese é que
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podemos encontrar objetos com um alto valor de excepcionalidade rapidamente através
de heurı́sticas de ordenação simples que utilizem as caracterı́sticas dos agrupamentos.
Assim, elevaremos o valor do limite de poda mı́nimoDk

min
rapidamente tornando abusca

aproximada de vizinhos próximosainda mais eficiente. Nosso algoritmo possui três etapas
principais: (1) Particionamento da base de dados, (2) Ordenação das partições e (3) Busca
por exceções.

3.1. Particionamento da base de Dados

Em nosso trabalho, utilizaremos uma extensão do algoritmode particionamento proposto
em [Ghoting et al. 2005]. Nesse trabalho, Ghoting utiliza uma técnica de agrupamento
hierárquico divisivo baseada no popular algoritmo K-médias2 [Hartigan and Wong 1979].
É importante ressaltar que o algoritmo de agrupamento é utilizado apenas como fase de
pré-processamento para que o algoritmo de busca de exceç˜oes consiga ser eficiente, assim,
pode-se utilizar qualquer técnica de particionamento de dados.

3.2. Ordenaç̃ao das partiç̃oes

Apontamos como uma boa heurı́stica aquela que seja capaz de abstrair, a partir das
informações provindas das partições, quais são os objetos, de fato, raros. Propomos,
então, as seguintes heurı́sticas de ordenação: (1) Aleatório, (2) Número de objetos nas
partições, (3) Tamanho espacial ocupado pela partiçãoe (4) Densidade da partição.

A primeira heurı́stica, aleatória, será usada como linhade base. Na segunda
heurı́stica, usamos uma idéia aplicada pelos algoritmos de agrupamento de que objetos
que estejam sozinhos em partições indicam uma intuiçãode excepcionalidade, e, assim,
realizamos a ordenação das partições pelo número de objetos pertencentes às partições
em ordem crescente. A terceira heurı́stica ordena as partic¸ões considerando o tamanho
espacial ocupado pelos agrupamentos. Partições maioresem termos de espaço ocupado
serão consideradas primeiro, pois tendem a possuir uma área maior para disposição dos
pontos. Com relação à métrica de densidade, acreditamos que em uma partição com
baixa densidade os objetos estão mais afastados uns dos outros sendo fortes candidatos à
exceção.

As heurı́sticas aleatória e número de objetos são de implementação direta. Para
estimar o tamanho espacial das partições, na terceira heurı́stica, utilizamos o valor da
diagonal do MBR[Roussopoulos et al. 1995]. Na última heur´ıstica proposta, utilizamos
como medida de densidade|P |−k

R(P )
, onde|P | é o número de objetos dentro de uma partição

P , R(P ) é o valor da diagonal do MBR da partiçãoP ek o número de vizinhos conside-
rados.

3.3. Busca por exceç̃oes

Nessa fase, recebemos um conjunto ordenado de partições,{P1, P2, P3, ..., Pl}, ondeP1

é o agrupamento com maior chance de possuir um objeto raro deacordo a heurı́stica
utilizada, enquanto o agrupamentoPl contém objetos com menores chances de serem
exceções. A busca por exceções segue a ordem da lista de partições, ou seja, inicia-se nos
objetos deP1 e termina nos objetos do agrupamentoPl.

2A abordagem K-protótipos [Huang 1998] foi utilizada para amineração de atributos numéricos e categóricos.
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Suponha, então, que estamos iniciando a busca por exceções na partiçãoP1.
Selecionamos um objetop qualquer dessa partição e iniciamos a busca pelos vizinhos
próximos dep. A busca pelos vizinhos próximos dep inicia-se no próprio agrupamento de
p. Contudo, se necessitarmos compararp com outros objetos da base, prosseguimos para
os agrupamentos seguintes do conjunto ordenado,{P2, P3, ..., Pl} nessa ordem, mesmo
que essa não seja a classificação das partições mais pr´oximas deP1. Note que, no algo-
ritmo RBRP, a busca por vizinhos fora da própria partiçãoprossegue, de forma ordenada,
das partições mais próximas às mais distantes da partic¸ão em questão.

Note que a otimização implementada no algoritmo RBRP e a nossa abordagem
de ordenação podem ser utilizadas conjuntamente, melhorando ainda mais a eficiência da
busca por exceções. No entanto, isso não foi feito, pois pretendemos mostrar a diferença
de impacto entre as duas propostas no desempenho dos algoritmos.

4. Resultados Experimentais

Nesta seção, faremos uma análise experimental de nosso algoritmo. Por falta de espaço,
selecionamos quatro bases representativas do conjunto total de 10 bases de dados. Apre-
sentamos os resultados obtidos a partir de duas bases de dados reais3 e duas sintéticas4. O
teste-t foi utilizado para comprovar se os resultados demonstram de forma significativa a
diferença entre as diferentes heurı́sticas e algoritmos.

• CoverType: Base de dados que representa tipos de floresta que cobrem regiões de
30x30 metros na região de Rocky Mountain [Bay et al. 2000].

• Itens Preg̃ao : A base de dados Itens Pregão possui registros que contém
informações referentes a Compras Governamentais de diversas instituições do
Brasil [Projeto Tamandua 2006].

• Agrupamentos: Esta base sintética é formada por agrupamentos uniformes e gaus-
sianos muito bem definidos no espaço de (2, -2).

• Agrupamentos com Ruı́do : Formada pela base de dados Agrupamentos adicio-
nando poucos ruı́dos de objetos seguindo uma distribuição uniforme (2, -2).

Base de dados Objetos Atrib. Reais Atrib. Categóricos
Itens Pregão 268.170 6 7
Forest Covertype 581.012 10 45
Agrupamentos 500.000 30 0
Agrupamentos com Ruı́do 500.500 30 0

Tabela 2. Descriç ão das bases de dados

4.1. Efićacia das heuŕısticas de ordenaç̃ao

Para estudar a eficácia das heurı́sticas de ordenação quanto ao fato de encontrarem “boas”
exceções, medimos o valorDk

min
(limite de “poda” mı́nimo) em 10 execuções utilizando

cada heurı́stica de ordenação. Note que o valor deDk

min
mensura a excepcionalidade dos

objetos raros encontrados até o dado momento. Os gráficos com o intervalo de confiança
de 90% são apresentados na Figura 1 considerando as bases dedados reais e sintéticas.

3Os atributos numéricos foram normalizados segundo a distribuição normal e os valores categóricos passados para uma
representação inteira.

4Bases com partições bem definidas e usadas para mostrar o impacto causado pela inserção de ruı́do no desempenho do algoritmo.
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(c) Agrupamentos
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(d) Agrupamentos com Ruı́do

Figura 1. Converg ência de Dk

min
para as bases de dados com 90% de confiança

Podemos ver nos gráficos (Fig. 1) que as heurı́sticas conseguem elevar o valor do
limite de “poda” mı́nimo percorrendo uma quantidade menor de objetos. Comprovamos
que as heurı́sticas de ordenação densidade, objetos e MBRforam estatisticamente superi-
ores à estratégia aleatória quanto à convergência deDk

min
. Nas bases reais, as heurı́sticas

densidade e objetos claramente se destacaram. Na base de dadosAgrupamentos(Figura
1(c)) vemos que a heurı́stica MBR estima de forma muito ruim onde estão as exceções
causando uma convergência retardada do valor do limite de “poda”. Isso ocorreu porque,
nessa base, os agrupamentos foram gerados com tamanho espacial muito próximos, o que
fez o tamanho das partições não ajudasse a encontrar ondeestão as exceções. Contudo,
na presença de ruı́do, essa mesma heurı́stica conseguiu melhorar extraordinariamente a
convergência do valorDk

min
(Fig. 1(d)). Note que o valor das exceções de 0.87 na base

Agrupamentossaltou para 8 com a adição de ruı́dos. Portanto, esperamosque o tempo de
execução para a baseAgrupamentos com ruı́do seja menor, pois o valor deDk

min
conver-

giu muito rapidamente.

Com esses resultados, validamos a hipótese de que podemos encontrar objetos
com um alto valor de excepcionalidade rapidamente, com heurı́sticas simples, baseando-
se nas caracterı́sticas dos agrupamentos dos dados.

4.2. Eficîencia das heuŕısticas de ordenaç̃ao

Para demonstrar o impacto das heurı́sticas de ordenação na eficiência do algoritmo, rea-
lizamos comparações pareadas com as diferentes heurı́sticas propostas para todas as ba-
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ses de dados citadas, executando 10 replicações de cada experimento5. Os tempos de
execução podem ser vistos na tabela 3, o intervalo de confiança de dois lados foi calcu-
lado com um nı́vel de significância de 10% (confiança de 90%). Note que o ganho médio
foi calculado considerando a heurı́stica que obteve o melhor desempenho em relação à
heurı́stica aleatória, a linha de base utilizada.

Como podemos ver na tabela 3, os resultados mostram que a utilização de
heurı́sticas de ordenação impactam significativamente no desempenho do algoritmo. O
ganho em eficiência na baseForest Covertypefoi cerca de 15% enquanto naItens Preg̃ao
obteve uma surpreendente melhora de 82%. Nossas heurı́sticas continuam sendo su-
periores com ganho de 36% e 71% para as basesAgrupamentose Agrupamentos com
ruı́do, respectivamente. Note que, após a inserção do ruı́do nabaseAgrupamentosnossas
heurı́sticas se distanciaram ainda mais da estratégia aleatória quanto à eficiência, prin-
cipalmente a heurı́stica MBR. Além disso, o tempo de execuc¸ão da base de dados com
ruı́do foi muito menor comparado à baseAgrupamentos, como esperávamos.

Heurı́sticas
Database Densidade Objetos MBR Aleatória Ganho Médio
Forest Covertype 274,38 302,3 310,71 321,81 14,74%
Itens Pregão 12,82 10,53 15,27 57,56 81,70%
Agrupamentos 111,75 109,29 198,02 170,27 35,81%
Agrupamentos com ruı́do 36,09 38,31 30,56 106,05 71,18%

Tabela 3. Comparaç ão do tempo de execuç ão das heurı́sticas de ordenaç ão com 90% de confiança

Analisando mais profundamente os resultados obtidos, podemos ver que há uma
correlação entre a convergência do valorDk

min
e o desempenho das heurı́sticas. Isso ex-

plica o desempenho inferior da heurı́stica MBR, na baseAgrupamentos, comparado às
demais heurı́sticas, inclusive comparado à ordenação aleatória. Ainda, observamos ni-
tidamente que as heurı́sticas densidade e objetos conseguiram excelentes resultados em
todas as bases de dados, confirmando mais uma vez a dependência da função de con-
vergência no desempenho do algoritmo. Com isso, validamosnossa hipótese de que
encontrar objetos raros rapidamente é um fator determinante para um bom desempenho
do algoritmo.

4.3. Comparaç̃ao entre os algoritmos

Avaliaremos agora, a escalabilidade de nosso algoritmo6 em relação ao número de objetos
das bases de dados comparando com o algoritmo estado da arte RBRP7. Por falta de
espaço, os gráficos mostram os resultados (com 90% de confiança) apenas para a base
Itens preg̃ao e a base sintéticaAgrupamentos com ruı́do.

Verificamos na Figura 2 que nossa abordagem é consistentemente superior ao
algoritmo RBRP em todas as bases testadas. O gráfico 2(a) mostra o ganho de 23%
de nosso algoritmo utilizando os registros de compras governamentais do Brasil (Itens
pregão). Para a baseAgrupamentos com ruı́do, nossa estratégia foi 52% mais eficiente
que o estado da arte, ambos apresentando uma caracterı́stica sub-linear neste caso. Isso
mostra que, analisar primeiramente os objetos com um alto valor de excepcionalidade

5Os tempos de preparação da base de dados não foram considerados durante as análises das heurı́sticas.
6A heurı́stica baseada na densidade dos agrupamentos foi utilizada em nossos experimentos.
7Foi implementada uma versão estendida do algoritmo RBRP utilizando a abordagemk-protótipos.
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Figura 2. Escalabilidade com relaç ão ao número de objetos das bases de dados com 90% de
confiança

(busca ordenada por exceções) tem um impacto maior sobre o desempenho comparado
com a técnica de encontrar vizinhos próximos rapidamente(busca ordenada de vizinhos
próximos).

5. Conclus̃ao e Trabalhos Futuros

Neste trabalho, formulamos e comprovamos duas hipóteses:(1) analisar primeiramente
registros com um alto valor de excepcionalidade impacta diretamente no desempenho
dos algoritmos para mineração de exceções baseados em distância, (2) podemos encon-
trar “boas” exceções, de forma simples, usando as caracterı́sticas dos agrupamentos dos
dados. Propomos a busca ordenada por exceções e avaliamosquatro heurı́sticas para
otimização da regra de “poda”. Nossos resultados provaram a efetividade das heurı́sticas
propostas na busca por exceções e como essa efetividade afeta diretamente o desempe-
nho do algoritmo. Demonstramos que nosso algoritmo obtém um desempenho até 52%
superior em relação ao estado da arte RBRP através da redução do número de cálculos de
distância entre objetos.

Como trabalhos futuros, estamos realizando um estudo de caso, a identificação
e análise dos registros anormais encontrados na base de dados de compras governamen-
tais do Brasil, a Itens Pregão. Esses objetos raros, podem representar operações ilı́citas,
fraudes, ou mesmo uma inserção errada de informação. Além disso, analisaremos de
forma detalhada várias contribuições importantes na área dos algoritmos de mineração
de exceções baseados em distância. Dentre eles podemos citar abusca ordenada por vi-
zinhos pŕoximosdo algoritmo RBRP, a “poda” de partições inteiras de Ramaswamy e a
busca ordenada por exceçõesapresentada neste trabalho. Com isso, pretendemos avaliar
o impacto de cada uma dessas abordagens na eficiência dos algoritmos e como elas se
relacionam entre si.

6. Agradecimentos
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